universitätbonn 53rd International Winter Meeting on Nuclear Physics Bormio, January 26-30, 2015

Review of Recent ATLAS Results

Jürgen Kroseberg

(Physics Institute, University of Bonn)

W'a(1.75 TeV)x5

1800 200

on behalf of the ATLAS Collaboration

The Need for "New Physics" (Beyond the SM)

unexplained observations:

- ark energy, dark matter
- no antimatter
- omissions:

universität**bonn**

- gravity not included in SM
- arbitrary(?) free parameters:
 - three particle generations
 - many different masses
 - unification of forces?

fine tuning ("hierarchy problem"):

 Higgs mass much smaller than assoc. corrections

X

Example(!): Supersymmetry

Class of SM extensions to potentially

solve the hierarchy problem

universität**bonn**

- provide dark matter candidate if lightest SUSY particle (LSP) is stable (↔ "R parity" conserved)
- unify forces at high scales
- minimal supersymmetric SM (MSSM):

- need unprecedented **precision**/sample sizes and/or collision energies
- need to be ready for (m)any signature(s)

SU(S)

LHC / ATLAS Run1

excellent accelerator and detector performance

many other crucial prerequisites: trigger, reconstruction, calibration, simulation, computing, theory, ... (none of them covered in this talk)

Particle Signatures in ATLAS

Jürgen Kroseberg Review of ATLAS Results 53rd Bormio Winter Meeting Jan 30, 2015

Selected(!) Measurements & Searches involving:

QCD Processes are Everywhere

- measure small-angle elastic pp scattering by correlating signals in ALFA detectors ≈240m away from the interaction point
- 4h low-luminosity run with special beam optics/clean conditions

Jürgen Kroseberg Review of ATLAS Results 53rd

- experimental handle on large range of QCD processes
- provide input to model pp collisions and access to properties of strong IA
- NLO pQCD able to describe huge range in jet kinematics
- in particular no signs of BSM physics
 (e.g. via high-mass di-jet resonances) yet

W and Z Bosons: Cornerstones of the SM

- mediators of the weak interaction
- decay into fermion pairs; esp. leptonic modes provide distinct exp. signature
- relevant to signal and background processes in SM and BSM analyses
- sensitive to proton structure

universität**bonn**

Jürgen Kroseberg Review of ATLAS Results

53rd Bormio Winter Meeting Jan 30, 2015

Jürgen Kroseberg Review of ATLAS Results 53rd Bormio Winter Meeting Jan 30, 2015

Single Boson Cross Sections Data/Theory universitätbonn

Â

Vector Boson +	X Cross Section Measureme	nts Status: July 2014	∫£ dt [fb ⁻¹]	Reference
$\sigma^{\rm fid}(\gamma+{\sf X})[\eta^{\gamma} <\!\!1.37]$	$\sigma = 236.0 \pm 2.0 \pm 13.0 - 9.0 \text{ pb} \text{ (data)}$ JETPHOX (theory)	•	4.6	PRD 89, 052004 (2014)
$-[1.52 < \eta^{\gamma} < 2.37]$	$\sigma = 123.0 \pm 1.0 \pm 9.0 - 7.0 \text{ pb (data)}$ JETPHOX (theory)	0	4.6	PRD 89, 052004 (2014)
$\sigma^{fid}(Z)$	or = 479.0 ± 3.0 ± 17.0 pb (data) FEWZ+HERA1.5 NNLO (theory)		0.035	PRD 85, 072004 (2012)
$-[n_{jet} \ge 1]$	$\sigma = 68.84 \pm 0.13 \pm 5.15 \mathrm{pb} \mathrm{(data)}$ Blackhat (theory)	ATLAS Proliminary	4.6	JHEP 07, 032 (2013)
$-[n_{jet} \ge 2]$	$\sigma = 15.05 \pm 0.06 \pm 1.51 \text{ pb} \text{ (data)}$ Biackhat (theory)		4.6	JHEP 07, 032 (2013)
$-[n_{jet} \ge 3]$	$\sigma = 3.09 \pm 0.03 \pm 0.4 \text{ pb} \text{ (data)}$ Blackhat (theory)	Run 1 $\sqrt{s} = 7, 8$ lev	4.6	JHEP 07, 032 (2013)
$-[n_{jet} \ge 4]$	$\sigma = 0.65 \pm 0.01 \pm 0.11$ pb (data) Blackhat (theory)		4.6	JHEP 07, 032 (2013)
$-[n_{b-jet} \ge 1]$	σ = 4820.0 ± 60.0 + 360.0 - 380.0 fb (data) MCFM (theory)	LHC pp $\sqrt{s} = 7 \text{ TeV}$	4.6	ATLAS-STDM-2012-15
$-[n_{b-jet} \ge 2]$	$\sigma=520.0\pm20.0+74.0-72.0$ tb (data) MCFM (theory)	• Theory	4.6	ATLAS-STDM-2012-15
$-\sigma^{fid}(Z \rightarrow bb)$	σ = 2.02 ± 0.2 ± 0.26 pb (data) Powheg (theory)	• Data • stat	19.5	arXiv:1404.7042 [hep-ex
$-\sigma^{fid}(ZjjEWK)$	$\sigma = 54.7 \pm 4.6 + 9.9 - 10.5 \text{ (b)} \text{ (data)}$ PowhegBox (theory)		20.3	JHEP 04, 031 (2014)
$\sigma^{fid}(W)$	σ = 5.127 ± 0.011 ± 0.187 nb (data) FEWZ+HERA1.5 NNLO (theory)	LHC pp $\sqrt{s} = 8 \text{ TeV}$	0.035	PRD 85, 072004 (2012)
$-[n_{jet} \ge 1]$	$\sigma = 498.6 \pm 0.4 \pm 42.3 \text{ pb (data)}$ Blackhat (theory)	Theory	4.6	ATLAS-CONF-2014-035
$-[n_{jet} \ge 2]$	$\sigma = 113.3 \pm 0.2 \pm 12.4 \text{ pb (data)}$ Blackhat (theory)	Data	4.6	ATLAS-CONF-2014-035
$-[n_{jet} \ge 3]$	$\sigma = 22.56 \pm 0.11 \pm 3.08 \text{ pb (data)}$ Blackhat (theory)	stat stat+syst	4.6	ATLAS-CONF-2014-035
$-[n_{jet} \ge 4]$	$\sigma = 4.486 \pm 0.057 \pm 0.864 \text{ pb} (data)$ Blackhat (theory)		4.6	ATLAS-CONF-2014-035
$-[n_{jet} \ge 5]$	$\sigma = 0.936 \pm 0.032 \pm 0.299 \text{ pb (data)}$		4.6	ATLAS-CONF-2014-035
$-[n_{jet}=1, n_{b-jet}=1]$	$\sigma = 5.0 \pm 0.5 \pm 1.2 \text{ pb (data)}, \\ \text{MCFM+D.P.I. (theory)}$	•	4.6	JHEP 06, 084 (2013)
$-[n_{jet}=2, n_{b-jet}=1]$	$\sigma = 2.2 \pm 0.2 \pm 0.5 \text{ pb (data)}.$ MCFM+D.P.I. (theory)		4.6	JHEP 06, 084 (2013)
$\sigma^{\text{fid}}(W) / \sigma^{\text{fid}}(Z) [n_{\text{jet}} \ge 1]$	1] Ratio = 8.587 ± 0.019 ± 0.223 (data) Blackhat (theory)		4.6	ATLAS-CONF-2014-034
$-[n_{jet} \ge 2]$	Ratio = 8.781 ± 0.041 ± 0.261 (data) Blackhat (theory)		4.6	ATLAS-CONF-2014-034
$-[n_{jet} \ge 3]$	Ratio = 8.493 ± 0.033 ± 0.47 (data) Blackhat (theory)		4.6	ATLAS-CONF-2014-034
$-[n_{jet} \ge 4]$	Ratio = 8.168 ± 0.193 ± 0.924 (data) Blackhat (theory)		4.6	ATLAS-CONF-2014-034
	00 02 04 06 08 10	12 14 16 18 20		
	0.0 0.2 0.1 0.0 0.0 1.0	data/theory		
		uala/ineory		

Diboson Production

- ⊌ WW, WZ, ZZ production is **rare**
- add important options to test the electroweak sector of the SM
- background processes in Higgs boson studies and BSM searches
- potential BSM signals

universität**bonn**

Searches → "anomalous" TGC?

$$\odot$$
 in SM: $\lambda_{\gamma} = \lambda_{Z} = 0$ $\kappa_{\gamma} = \kappa_{Z} = g_{1}^{Z} = 1$

select events with samecharge WW pair + two jets

Phys. Rev. Lett. 113 (2014) 141803

9 4.5σ evidence for WWjj

TGC from WW and WZ Events

7TeV

JHEP01 (2015) 049

8TeV Heavy Diboson Resonances?

arXiv:1409.6190, acc. by EPJC

- select events with a lepton pair and two jets
- three different selections (optimised for different resonance p_T)
- two different signal hypotheses (" Bulk RS graviton G* ", " EGM W' ")

universität**bonn**

Iarge mass:

heaviest fundamental SM particle and by far the heaviest quark

short lifetime:

only quark to decay before hadronisation (no bound states)

- □ large coupling to Higgs (yt≈1)
- accident of nature or more fundamental reasons?

rich experimental signature

also single top production via weak interaction

weak decay into a W and down-type (almost always b) quark

Top Quark Pair Decays

universität**bonn**

Top Pair Candidate Event

$t\bar{t} \rightarrow W^+b W^-\bar{b} \rightarrow e^+v_e b \mu^- \bar{v}_\mu \bar{b}$

universitätbonn production cross section kinematics
properties

W

decay

branching ratios

W helicity

new decays?

q

mass

charge

lifetime, width

polarisation

new resonances?

b

t

correlations

spin correlations

charge asymmetry

Top Pair Production Cross Section

Single Top Production Cross Section

Top Quark Mass

8TeV

Jan 30, 2015

173.3±0.8 GeV (0.5%)

7TeV Top Pair Charge Asymmetry

Definition:
$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

$$\Delta|y| = |y_{t}| - |y_{\overline{t}}|$$

JHEP 02 (2014) 107

rapidity y

SM expectation: 1.2%

Measurements:

ATLAS+CMS,√s	TOPLHCWG, September 2014				
tī asymmetry		stat. uncertainty total uncertainty			
ATLAS I+jets [JHEP 1402 (2014) 107]	F	$0.006 \pm 0.010 \pm 0.005$			
CMS I+jets [PLB 717 (2012) 129]	H-+H	0.004 ± 0.010 ± 0.011			
ATLAS+CMS I+jets Preliminary	H • H	$0.005 \pm 0.007 \pm 0.006$			
ATLAS dilepton [ATLAS Preliminary]	H + H	0.021 ± 0.025 ± 0.017			
CMS dilepton [JHEP 1404 (2014) 191]	K →●→H	-0.010 ± 0.017 ± 0.008			
Theory (NLO+EW) [PRD 86, 034026 (2012)		0.0123 ± 0.0005			
lepton asymmetry	I				
ATLAS dilepton [ATLAS Preliminary]	<mark>₩●</mark> ₩	$0.024 \pm 0.015 \pm 0.009$			
CMS dilepton	K— ● —H	$0.009 \pm 0.010 \pm 0.006$			
Theory (NLO+EW)		0.0070 ± 0.0003			
-0.1	0	0.1			
	A _C				

Comparison with New Physics Models:

- precise information on the mass based on several complementary approaches;
 "world combination" with 0.5% uncertainty
- single top production has become important tool

Top Quark Summary

universität**bonn**

various ways to constrain BSM physics

Higgs Boson

The Higgs Boson: New & Fundamentally Different 😪

universität**bonn**

- only fundamental spin-0 particle
- external potential
- "background field" (non-zero vacuum expectation value)
- mass-dependent coupling to other particles
- "saves" the electroweak SM

Summer 2012

Higgs Boson Production at the LHC

Higgs Boson Decays

Ŷ

Higgs Boson Signals: Decays to Bosons

7+8TeV)

Higgs Boson Signals: Decays to Fermions

(7+8TeV)

⊌ 4.5σ (3.4σ)

arXiv:1501.04943, subm. to JHEP Jürgen Kroseberg Review of ATLAS Results

⊌ 1.4σ (2.6σ)

JHEP01 (2015) 069

53rd Bormio Winter Meeting Jan 30, 2015

Higgs Boson Signal Strength: Decays

Higgs Boson Signal Strength: Production Modes

- universität**bonn**
- ggF dominates; other modes?
- e.g. VBF provides distinct signature:

- two hard jets with large rapidity separation; Higgs decay products typically in between
- 3.2σ VBF H→WW* evidence from μ_{VBF}/μ_{ggF} analysis (>4σ for all decays)

universität**bonn**

Higgs boson couplings to other particles enter measured signal strength via combination of production and decay

Higgs Coupling Analysis Concept

- coupling analysis currently requires assumptions / approximations:
 - Single, narrow, scalar J^P=0⁺ resonance at observed mass

$$(\sigma \cdot BR)(i \rightarrow H \rightarrow f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

parametrise possible deviations via multiplicative modifiers ("scale factors"):

$$\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{SM}} \qquad \kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{SM}}$$

with effective scale factors for couplings via loops and total width

$$\begin{array}{c} \bullet \quad \mathbf{e.g.} \quad g \underbrace{\bullet}_{g} \underbrace{\bullet}_{$$

ATLAS-CONF-2014

Higgs Coupling Scale Factors universität**bonn**

7+8TeV)

ATLAS-CONF-2014-009

Higgs Boson Mass

7+8TeV

Iso: 95% C.L. observed (expected) upper limits on Higgs boson width:

γγ: 5.0 (6.2) GeV ZZ*: 2.6 (6.2) GeV

Higgs Bosons Beyond the SM

Higgs Bosons Beyond the SM

- since observation of first signals Higgs physics program has expanded into a wide range of measurements and searches
- all measurements of the 125 GeV Higgs boson so far agree with SM expectation
- also provides BSM physics probe
- no additional Higgs bosons found yet

(A bit more on) BSM Searches

- select events with large missing
 transverse energy and high-pT
 jets
- define 15 signal regions with different jet multiplicity, MET and jet p_T requirements
- no excess over SM BG found; set limits on gluino mass of ≈1.4 TeV (for massless LSP)

Many More SUSY Searches...

universität**bonn**

]	A	LAS SUSY Sea	arches	* - 95	5% (CLL	ower Limits	ATL	S Preliminary
	Sla	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit		$\sqrt{s} = 7, 8$ lev Reference
Inclusive Searches	Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM $\overline{q}\bar{q}, \bar{q} \rightarrow q \tilde{k}_{1}^{0}$ $\overline{g}\bar{k}, \bar{g} \rightarrow q q \tilde{k}_{1}^{0}$ $\bar{g}\bar{k}, \bar{g} \rightarrow q q \tilde{k}_{1}^{-} \rightarrow q q W^{\pm} \tilde{k}_{0}^{0}$ $\bar{g}\bar{k}, \bar{g} \rightarrow q q \tilde{k}_{1}^{-} \rightarrow q q W^{\pm} \tilde{k}_{0}^{0}$ $\overline{g} MSB (\ell NLSP)$ GMSB (ℓ NLSP) GGM (bino NLSP) GGM (higsino NLSP) GGM (higsino NLSP) GGM (higsino NLSP) GGM (higsino NLSP) GGM (higsino LSP)	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r + 0 \ - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	<i>q. ž</i> <i>q. ž</i>	$ \begin{split} \mathbf{m}(\tilde{q}) = \mathbf{m}(\tilde{g}) \\ \text{any } \mathbf{m}(\tilde{q}) \\ \text{any } \mathbf{m}(\tilde{q}) \\ \text{any } \mathbf{m}(\tilde{q}) \\ \mathbf{m}(\tilde{k}^0_1) = \mathbf{G} \mathbf{eV} \\ \mathbf{m}(\tilde{k}^0_1) = \mathbf{S} \mathbf{G} \mathbf{eV} \\ \mathbf{m}(\tilde{k}^0_1) > \mathbf{S} \mathbf{G} \mathbf{eV} \\ \mathbf{m}(\tilde{k}^0_1) > \mathbf{S} \mathbf{G} \mathbf{eV} \\ \mathbf{m}(\tilde{k}^0_1) = \mathbf{O} \mathbf{G} \mathbf{eV} \\ \mathbf{m}(\tilde{k}^0_1) = \mathbf{O} \mathbf{eV} \\ \mathbf{m}(\tilde{k}^0_1) = \mathbf{O} \mathbf{eV} \end{split}$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2012-140 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 ^{ra} gen. <u>ĝ med.</u>	3 rd gen. ĝ med.	$ \begin{split} \tilde{g} &\rightarrow b \tilde{b} \tilde{\lambda}_{1}^{0} \\ \tilde{g} &\rightarrow t \tilde{\ell}_{1}^{0} \\ \tilde{g} &\rightarrow t \tilde{\ell}_{1}^{0} \\ \tilde{g} &\rightarrow b \tilde{\ell}_{1}^{0} \\ \end{split} $	0 0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ĝ 1.25 TeV ĝ 1.1 TeV ĝ 1.34 TeV ĝ 1.35 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{k}_{1}^{0}){<}350\text{GeV} \\ m(\tilde{k}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{k}_{1}^{0}){<}300\text{GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{i}_1 \tilde{i}_1 (\text{light}), \tilde{i}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{i}_1 \tilde{i}_1 (\text{light}), \tilde{i}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{i}_1 \tilde{i}_1 (\text{medium}), \tilde{i}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{i}_1 \tilde{i}_1 (\text{medium}), \tilde{i}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{i}_1 \tilde{i}_1 (\text{medium}), \tilde{i}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{i}_1 \tilde{i}_1 (\text{measure}), \tilde{i}_1 \rightarrow b \tilde{k}_1^T \\ \tilde{i}_1 \tilde{i}_1 (measure$	$\begin{array}{c} 0 \\ 2 e, \mu (\mathrm{SS}) \\ 1 - 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes g Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3	Jan 100-620 GeV Jan 275-440 GeV Ži 110-167 GeV Ži 130-210 GeV Ži 130-210 GeV Ži 130-210 GeV Ži 130-210 GeV Ži 215-530 GeV Ži 210-640 GeV Ži 210-640 GeV Ži 90-240 GeV Ži 290-600 GeV	$\begin{split} & m(\tilde{t}_{1}^{*}) < & = 0 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) = 2 m(\tilde{t}_{1}^{*}) \\ & m(\tilde{t}_{1}^{*}) = 55 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) = m(\tilde{t}_{1}) \cdot m(W) \cdot 50 \text{GeV}, m(\tilde{t}_{1}) < < m(\tilde{t}_{1}^{*}) \\ & m(\tilde{t}_{1}^{*}) = 16 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) - 20 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) - 20 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) - 0 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) - 15 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) > 150 \text{GeV} \\ & m(\tilde{t}_{1}^{*}) - 200 \text{GeV} \\ \end{split}$	1308,2631 1404,2500 1208,4305, 1209,2102 1403,4853 1403,4853 1308,2631 1407,0508 1406,1122 1407,0608 1403,5222 1403,5222
EW direct	EW direct	$ \begin{array}{c} \tilde{t}_{1,\mathbf{k}}\tilde{t}_{1,\mathbf{k}},\tilde{t} \rightarrow \delta X_{1}^{0} \\ \tilde{t}_{1,\mathbf{k}}^{*}\tilde{t}_{1,\mathbf{k}}^{*},\tilde{t}_{1} \rightarrow \delta v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow \delta v(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow \tilde{t}_{1}v\tilde{t}_{1}(\tilde{r})v, \delta \tilde{v}\tilde{t}_{1}(\tilde{r})v) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow W_{1}^{*}\delta X_{1}^{*} \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*} \rightarrow W_{1}^{*}\delta X_{1}^{*} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*} \rightarrow W_{1}^{*}\delta X_{1}^{*} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*},\tilde{x}_{2}^{*} \rightarrow W_{1}^{*}\delta X_{1}^{*} \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	ℓ 90-325 GeV χ1 140-465 GeV χ1 100-350 GeV χ1 100-350 GeV χ1 χ2 χ1 χ2 χ2 285 GeV χ2 620 GeV	$\begin{split} m(\tilde{r}_{1}^{0}) &= 0 \text{ GeV } \\ m(\tilde{r}_{1}^{0}) &= 0 \text{ GeV } m(\tilde{c}, \tilde{v}) &= 0.5(m(\tilde{c}_{1}^{0}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{c}_{1}^{0}) &= 0 \text{ GeV } m(\tilde{c}, \tilde{v}) &= 0.5(m(\tilde{c}_{1}^{0}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{c}_{1}^{0}) &= 0.6(m(\tilde{c}, \tilde{v}) &= 0.5(m(\tilde{c}_{1}^{0}) + m(\tilde{c}_{1}^{0})) \\ m(\tilde{c}_{1}^{0}) &= m(\tilde{c}_{1}^{0}) &= 0.5(m(\tilde{c}_{1}^{0}) + m(\tilde{c}_{1}^{0})) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived	Long-lived particles	Direct $\tilde{\chi}_1^{\dagger}\tilde{\chi}_1^{-}$ prod., long-lived $\tilde{\chi}_1^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{\epsilon}, \tilde{\mu}) + \tau(e, $ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	X ¹ / ₁ 270 GeV 832 GeV \tilde{g} 475 GeV 475 GeV $\tilde{\chi}^0_1$ 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{k}_{1}^{2})\!$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	RPV	$ \begin{array}{l} \mbox{LrV} pp \rightarrow v_{\tau} + X, v_{\tau} \rightarrow e + \mu \\ \mbox{EV} pp \rightarrow v_{\tau} + X, v_{\tau} \rightarrow e(\mu) + \tau \\ \mbox{Bilinear RPV CMSSM} \\ \mbox{X}_1 X_1, X_1^+ \rightarrow W X_1^0, X_1^0 \rightarrow e \bar{v}_{\mu}, e \mu \bar{v}_e \\ \mbox{X}_1 X_1, X_1^+ \rightarrow W X_1^0, X_1^0 \rightarrow e \bar{v}_{\tau}, e \tau \bar{v}_{\tau} \\ \bar{s} \rightarrow q q \\ \bar{g} \rightarrow \bar{q} q \\ \bar{g} \rightarrow \bar{1} (t, \bar{1}_{\tau}) \rightarrow b s \end{array} $	$2 e, \mu 1 e, \mu + \tau 2 e, \mu (SS) 4 e, \mu 3 e, \mu + \tau 0 2 e, \mu (SS)$	0-3 <i>b</i> 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	Pr 1.61 eV Pr 1.11 EV Q.R 1.35 TeV X ¹ 750 GeV X ¹ 450 GeV Ž 916 GeV Ž 850 GeV	$\begin{array}{l} x_{11}=0.10, x_{122}=0.005\\ x_{11}^{\prime}=0.10, x_{122}=0.055\\ m(\bar{g})=m(\bar{g}), c_{T,2,F}<1 \text{ mm}\\ m(k_{1}^{\prime})>0.2, xm(k_{1}^{\prime}), x_{12,1}\neq 0\\ m(k_{1}^{\prime})>0.2, xm(k_{1}^{\prime}), x_{13,1}\neq 0\\ \text{BR}(r)=\text{BR}(r)=\text{BR}(r)=0\% \end{array}$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ) $\sqrt{s} = 7$ TeV full data	$ \begin{array}{c} 0\\ 2 e, \mu (SS)\\ 0\\ \hline s = 8 \text{ TeV}\\ \text{artial data}\\ \end{array} $	4 jets 2 b mono-jet $\sqrt{s} = 8$ full d	Yes Yes TeV ata	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV 100-1 1	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8 Mass scale [TeV]	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	*Onl	v a selection of the available	e mass limit	s on new	states	s or pher	omena is shown. All limits quoted are observed minus 1 σ theoretical	lass scale	ITEV1

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Jürgen Kroseberg Review of ATLAS Results 53rd Bormio Winter Meeting Jan 30, 2015

Many More BSM Physics Searches...

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

universitätbonn

High

LHC

Luminosity

Run2 to start this year with higher energies and larger datasets

LHC / HL-LHC Plan

→Lyn Evans's Talk

Underlying Event in Jet Events

Eur. Phys. J. C74 (2014) 2965

Jet Cross Sections Data/Theory

universität**bonn**

Heavy Gauge Bosons?

arXiv:1410.4103, subm. to PLB

8TeV

e.g. search for W'→tb→lepton+jets

- invariant top-b mass combined with other quantities into boosted decision tree
- Imits obtained in terms of coupling and mass for left and right-handed W'

Diboson Cross Sections

universität**bonn**

Â

Diboson Cross	Section	on Me	asure	ement	s	Status:	July 201	4	· · ·		∫£ dt [fb ⁻¹]	Reference
$\sigma^{fid}(\gamma\gamma)[\DeltaR_{\gamma\gamma}>0.4]$	$\sigma = 44.0 \pm 0.0 2 \gamma h$) + 3.2 - 4.2 pb (c INLO (theory)	Jata)		•		0	35			4.9	JHEP 01, 086 (2013)
$\sigma^{\rm fid}({\sf W}\gamma\to\ell\nu\gamma)$	$\sigma = 2.77 \pm 0.0 \\ \mathrm{MC}$	03 ± 0.36 pb (data FM (theory))				•				4.6	PRD 87, 112003 (2013)
$-\left[n_{\rm jet}=0 ight]$	$\sigma = 1.76 \pm 0.0$ MC	13 ± 0.22 pb (data FM (theory))			•					4.6	PRD 87, 112003 (2013)
$\sigma^{\rm fid}(Z\gamma \to \ell\ell\gamma)$	$\sigma = 1.31 \pm 0.0 \\ \mathrm{MC}$	02 ± 0.12 pb (data FM (theory))			•	AT	LAS F	Prelimina	ary	4.6	PRD 87, 112003 (2013)
$-\left[n_{\rm jet}=0 ight]$	$\sigma = 1.05 \pm 0.0 \\ \text{MC}$	02 ± 0.11 pb (data FM (theory))		•		Rur	n 1 √s	5 = 7, 8 1	ΓeV	4.6	PRD 87, 112003 (2013)
$\sigma^{\rm total}({\rm pp}{\rightarrow}{\rm WW}{+}{\rm WZ})$	$\sigma=72.0\pm9.0$ MC) ± 19.8 pb (data) FM (theory)				•		l			4.7	ATLAS-CONF-2012-157
$\sigma^{\rm fid}({\rm W}^{\pm}{\rm W}^{\pm}{\rm jj})$ EWK	$\sigma = 1.3 \pm 0.4 \\ \mathrm{Pow}$	± 0.2 fb (data) rhegBox (theory)					A				20.3	arXiv:1405.6241 [hep-ex
$\sigma^{\text{total}}(pp \rightarrow WW)$	$\sigma = 51.9 \pm 2.0$ MC $\sigma = 71.4 \pm 1.2$ MC	\pm 4.4 pb (data) FM (theory) \pm 5.5 - 4.9 pb (c FM (theory)	Jata)								4.6 20.3	PRD 87, 112001 (2013) ATLAS-CONF-2014-033
$-\sigma^{\text{fid}}(WW \rightarrow ee)$	$\sigma = 56.4 \pm 6.8$	± 10.0 fb (data) FM (theory)			•						4.6	PRD 87, 112001 (2013)
$-\sigma^{\text{fid}}(WW \rightarrow \mu\mu)$	$\sigma = 73.9 \pm 5.9 \\ \mathrm{MC}$) ± 7.5 fb (data) FM (theory)				•					4.6	PRD 87, 112001 (2013)
$-\sigma^{\text{fid}}(WW \rightarrow e\mu)$	$\sigma = 262.3 \pm 1 \\ \mathrm{MC}$	2.3 ± 23.1 fb (data FM (theory)	a)			•		LHC pp	$\sqrt{s} = 7 \text{ Ter}$	v	4.6	PRD 87, 112001 (2013)
$\sigma^{\text{total}}(pp \rightarrow WZ)$	$\sigma = 19.0 + 1.4$ MC $\sigma = 20.3 + 0.4$	$4 - 1.3 \pm 1.0 \text{ pb}$ (c FM (theory) 8 - 0.7 + 1.4 - 1.0 pb	iata) 3 pb (data)						Theory Data		4.6	EPJC 72, 2173 (2012)
$-\sigma^{\text{fid}}(WZ \rightarrow \ell \nu \ell \ell)$	$\sigma = 99.2 + 3.1$ MC	FM (theory) 8 – 3.0 + 6.0 – 6. FM (theory)	2 fb (data)		Å			•	stat stat+syst		13.0	ATLAS-CONF-2013-021
(rtotal(nn 77)	$\sigma = 6.7 \pm 0.7$	+ 0.5 – 0.4 pb (da FM (theory)	ata)			•					4.6	JHEP 03, 128 (2013)
0 (pp→22)	$\sigma = 7.1 + 0.5$ MC	-0.4 ± 0.4 pb (da FM (theory)	ita)		A			LHC pp	$\sqrt{s} = 8 \text{ Te}$	V	20.3	ATLAS-CONF-2013-020
$-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell$	$\sigma = 107.0 \pm 9$	theg (theory) 0 ± 5.0 fb (data)		•					Theory		4.5	arXiv:1403.5657 [hep-ex arXiv:1403.5657 [hep-ex
	$\sigma = 25.4 + 3.1$	wheg (theory) 3 - 3.0 + 1.6 - 1.4 whee Rev 8, and 277	4 fb (data)			•		-	Data		4.6	JHEP 03, 128 (2013)
$-\sigma^{\rm ind}(ZZ \rightarrow 4\ell)$	$\sigma = 20.7 + 1.0$	$3 - 1.2 \pm 1.0$ fb (d FM (theory)	ata)				20	▲	stat		20.3	ATLAS-CONF-2013-020
$-\sigma^{\mathrm{fid}}(ZZ^* \to 4\ell)$	$\sigma = 29.8 + 3.1$ Pow	8 - 3.5 + 2.1 - 1. hegBox & gg2ZZ	9 fb (data) (theory)			•			stat+syst	<	4.6	JHEP 03, 128 (2013)
$-\sigma^{\rm fid}(ZZ^*\to\ell\ell\nu\nu)$	$\sigma = 12.7 + 3.$ Pow	1 – 2.9 ± 1.8 fb (d vhegBox & gg2ZZ	ata) (theory)		•		Ľ	. L			4.6	JHEP 03, 128 (2013)
	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0		
								dat	a/theo	orv		

universität**bonn**

- main goal: measure off-shell Higgs signal strength
- assuming same on-shell and off-shell Higgs couplings, can use this result to constrain the total Higgs boson width
- analyses in two channels (4I and 2I2v final states)
- parallel analyses with different techniques (e.g. cut-based and ME for 4I)

Higgs Boson Width Limit from Off-Shell ZZ Events 🏆

The Higgs Boson as BSM Probe

 use Higgs coupling analysis to look for BSM particles in loopmediated production and decays

7+8TeV)

universität**bonn**

ATLAS-CONF-2014-009

 reconsider Higgs coupling analysis in the framework of various BSM scenarios

ATLAS-CONF-2014-010

 e.g. heavy Higgs boson arising from additional EW singlet:

