From deep inside to outer space: exploring neutron skins

Michaela Thiel

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

 $E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \,\delta^2 + \mathcal{O}(\delta)^4$

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \,\delta^2 + \mathcal{O}(\delta)^4$$
symmetry energy
$$E_{sym}(\rho) = \left[S_v + \frac{L}{3}\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2\right] + \dots$$

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

symmetry energy

$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$
slope parameter

$$L = 3\rho_{0}\frac{\partial E_{sym}(\rho)}{\partial \rho}\Big|_{\rho_{0}}$$
Symmetry energy

curvature parameter

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial \rho^2} \bigg|_{\rho_0}$$

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

symmetry energy

$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$
slope parameter

$$L = 3\rho_{0}\frac{\partial E_{sym}(\rho)}{\partial \rho}\Big|_{\rho_{0}}$$

curvature parameter

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial \rho^2} \bigg|_{\rho_0}$$

One of the second second

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \,\delta^2 + \mathcal{O}(\delta)^4$$

symmetry energy

$$E_{sym}(\rho) = \left[S_v + \frac{L}{3}\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2\right] + \dots$$

slope parameter

$$L = 3\rho_0 \frac{\partial E_{sym}\left(\rho\right)}{\partial \rho} \bigg|_{\rho_0}$$

curvature parameter

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial \rho^2} \bigg|_{\rho_0}$$

J. Piekarewicz, ICNT2013

state of affairs

diverse experiments but consistent results

are model dependeces clearly understood?

ultimate accuracy: ±0.03 fm?

state of affairs

evolution along isotop chain sensitive to S_v and L

diverse experiments but consistent results

are model dependeces clearly understood?

ultimate accuracy: ±0.03 fm?

state of affairs

M. Centelles et al., PRL 102 (2009) 122502

4/12

X. Roca-Maza et al., PRL 106 (2011) 252501

Mainz energy recovering superconducting accelerator

1.3 GHz c.w. beam normal conducting injector LINAC superconducting cavities in recirculation beamline

Mainz energy recovering superconducting accelerator

1.3 GHz c.w. beam normal conducting injector LINAC superconducting cavities in recirculation beamline

```
EB-mode (external beam):
150 MeV @ 300 μA (pol.)
```

ERL-mode (energy recovering mode): 100 MeV @ 10mA (unpol.)

P2@MESA: go for ultimate precision full azimuthal coverage (solenoid)

P2@MESA: go for ultimate precision full azimuthal coverage (solenoid)

Dominik Becker

J. Piekarewicz et al., Phys. Rev. C 85 (2012) 041302

⁴⁸Ca vs. ²⁰⁸Pb

J. Piekarewicz et al., Phys. Rev. C 85 (2012) 041302

⁴⁸Ca vs. ²⁰⁸Pb

J. Piekarewicz et al., Phys. Rev. C 85 (2012) 041302

⁴⁸Ca vs. ²⁰⁸Pb ¹³²Sn vs.²⁰⁸Pb

J. Piekarewicz et al., Phys. Rev. C 85 (2012) 041302

⁴⁸ Ca vs. ²⁰⁸ Pb	¹³² Sn vs. ²⁰⁸ Pb
	better FOM at low energy!
CREX	A1 @MAM

Proof-of-principle: PVES ¹²C (commissioning 09/2014)

11/12

11/12

Proof-of-principle: PVES ¹²C (commissioning 09/2014)

booking forward to challenging times what doesn't KILL YOU MAKES YOU CRANKY STRONGER PISSED OFF STRONGER CRUMPY STRONGER

11/12

conclusions

[t

∆R_{no}

remarkable consistency model dependencies under control?

combine efforts from theory & experiment

backup slides

RECIPE:

(1) high quality accelerator

RECIPE:

(1) high quality accelerator

(2) tagged photon facility

RECIPE:

(1) high quality accelerator

(2) tagged photon facility

(3) 4π detector system

coherent π^0 photoproduction @

$$\frac{d\sigma}{d\Omega}(\mathbf{PWIA}) = \frac{s}{m_N^2} \times \frac{1}{2} \frac{q_\pi^*}{k^*} \left| F_2\left(E_\gamma^*, \theta_\pi^*\right) \right|^2 \sin^2\left(\theta_\pi^*\right) \times A^2 F^2\left(q\right)$$

separation of coherent and incoherent events: DE \approx 1.5-3 MeV

campaign in 2012:

FSI: complex optical potential tuned to p-A scattering NPA 660, 423 (1990) correction modest at low p momenta evolution along isotopic chain

plus measurement on

(N/Z: 1.07 to 1.54)

program 1: transverse Asymmetry A_n

direct probe of two or more photon exchange: A_n is zero at first Born approximation (forbidden by time reversal symmetry)

A_n can contribute to the extracted A_{PV} if beam asymmetry has transverse component

N_{skin} landscape: theory

Brueckner-Hartree-Fock (BHF)

Phys. Rev. C 80, 045806 (2009)

Quantum Monte Carlo (QMC)

Phys. Rev. C 85, 032801(R) (2012)

Chiral effective field theory (CEFT)

Phys. Rev. Lett. 105, 161102 (2010)

are models with large neutron skins really incompatible with available laboratory or astrophysical data? Phys. Rev. Lett. 111, 162501 (2013)

parity violation program @

start with "easy" target: carbon ...

... plenty of other challenges:

beam stability Polarimetry polarization at several mA low noise electronics high rates

pilot experiment scheduled for July 2014:

quarz bar: (10 x 50 x 100) mm³ PMTs with quarz window!

parity violation program @

carbon measurement

E = 570 MeVI = 20 mA $q = 20^{\circ}$ asymmetry: 3.260 ppm

the complete program: transverse asymmetry A_n ²⁰⁸Pb measurement ¹²⁰Sn measurement

the best playground for a phycisist

