

Outline

Why heavy quarks Charm production pp collisions p-A collisions A-A collisions Intrinsic charm? Conclusions

Disagreement STAR-PHENIX ion; chaten in discussed factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

A probe for QCD medium in A-A collisions

Temperature

Heavy quarks as probes for QGP - Energy Loss

28/1/2015

Alessandro

Nuclear Modification Factor

Thermalization and path-length dependence

p-A collisions

D meson production cross sections in pp at $\sqrt{s} = 200$ GeV

- **Oisagreement STAR-PHENIX** factor 2 in cross section measurement.
- Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark. Predictions
 Contradicteds-section evaluated in a wide rapidity range 2.0<y<4.5

Nuclear Physics, Section B 871 (2013)

Alessandro Grelli

Total charm cross-section

Production of D mesons in p-Pb collisions

✓ Nuclear modification factor in p-Pb collisions is compatibile with unity and with theoretical calculations including gluon saturation

Initial state effects play a small role for $p_T > 2$ GeV/c

Disagreement STAR-PHENIX factor 2 in cross section measurement.

Data in agreement with binary scaling - negligible initial state nuclear effects.

Charm with non photonic electrons.

High suppression of charm, at the level of light quark. *Predictions contradicted*!.

 2

Alessandro Grelli

Comparison with charged hadrons and non-prompt J/Psi

BAA

28/1/2015

Alessandro

Why to go back(or forward) with intrinsic charm

Intrinsic charm (IC)

0.2

NLO Lower Bound (New)

Intrinsic charm at LHC energies

Conclusions

Stages of a HIC

RHIC results

ilts

