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4Making use of Simulators

So far, we looked at Simulation-Based Inference:

From Lukas Heinrich: learned about Differentiable Programming

What can we do with a differentiable simulator?

𝑑
𝑑𝜃

𝔼 𝐿 𝑥 = 𝔼
𝑑𝐿
𝑑𝑥

𝑑𝑥
𝑑𝜃

= 𝔼
𝑑𝐿
𝑑𝑥

𝑑
𝑑𝜃

𝑆𝐼𝑀(𝜃) Where 𝑥 = 𝑆𝐼𝑀(𝜃)



5Optimization through simulator

∇"𝑥

𝑋



6What can we do with a Differentiable Simulator?



Rendering and Inverse Rendering

Rendering: 
From 3D model scene, simulate image 
on camera at given position and angle

7

Inverse Rendering: 
From multiple 2D images, 
reconstruct 3D model of scene



8Analysis-by-Synthesis

Initial 
Parameters

𝜃!
𝜃"

Forward Model
𝐹(𝜃)

Synthetic Data

Real Data, 𝑋

⊝Loss
ℒ(𝐹 𝜃 , 𝑋)

Gradient Descent
on 𝜃"

𝜃∗ = argmin
"
ℒ(𝐹 𝜃 , 𝑋)

ℒ = 𝐹 𝜃 − 𝑋 +

Differentiable



9Analysis-by-Synthesis
Goal: 
Find parameters 𝜃 such that the simulator with these parameters, 𝐹(𝜃), 
generates synthetic data that matches the observed data



Basic idea:
• Start with initial guess 𝜃!
•Given 𝜃" Generate synthetic data with 

simulator 𝐹(𝜃)
• Loss compares synthetic & real data
•Update 𝜃"#$	to lower loss
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13Analysis-by-Synthesis
Goal: 
Find parameters 𝜃 such that the simulator with these parameters, 𝐹(𝜃), 
generates synthetic data that matches the observed data

Basic idea:
• Start with initial guess 𝜃!
•Given 𝜃" Generate synthetic data with 

simulator 𝐹(𝜃)
• Loss function compares synthetic & real data
•Update 𝜃"#$	to lower loss

Gradient descent with differentiable simulator: 𝜃	 ← 𝜃 − 𝜂 ,ℒ,-
,- "
,"



14Analysis-by-Synthesis

What’s going on here?   Maximum Likelihood Estimation

If we assume an error model 𝐼 = 𝐹 𝜃 + 𝜖  where 𝜖~𝑁(0,1)

Then            𝑝 𝑋 𝜃 = 𝑁(𝐹 𝜃 , 1)

And    ℒ = − log 𝑝(𝑋|𝜃) = 𝐹 𝜃 − 𝑋 +
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16Analysis-by-Synthesis

What’s going on here?   Maximum Likelihood Estimation

If we assume an error model 𝐼 = 𝐹 𝜃 + 𝜖  where 𝜖~𝑁(0,1)

Then            𝑝 𝑋 𝜃 = 𝑁(𝐹 𝜃 , 1)

And    ℒ = − log 𝑝(𝑋|𝜃) = 𝐹 𝜃 − 𝑋 +

We get a point estimate for the MLE 𝜃 by solving this optimization

Note: In general this is NOT an amortized process, 

 for each observation 𝑋, have to solve a different optimization problem



17Combining partial measurements

Input Images Measurements from
different view points Combine to form 3D model

Goal



18So Why Analysis-by-Synthesis?

Reconstructing spatio-temporal signals from a set of observations

ℒ =B
.

𝐹. 𝑆 𝒙, 𝜃 − 𝑋.
+

Ill-posed inverse problems: often not enough 𝑋’s to fully constrain system

Often signal 𝑆(⋅) is represented with voxels, meshes, etc… with parameters 𝜃

𝐹. ≡ simulation of 𝑖/0 observation… e.g. simulate camera 𝑖 at specific position

𝑖 ∈ observations



19So Why Analysis-by-Synthesis?

Reconstructing spatio-temporal signals from a set of observations

ℒ =B
.

𝐹. 𝑁𝑁" 𝒙 − 𝑋.
+

Ill-posed inverse problems: often not enough 𝑋’s to fully constrain system

Analysis-by-Synthesis approach has recently been highly successful for 
reconstructing a signal parameterized by a neural network, 
 → often called a Neural Field

𝑖 ∈ observations



20Combining partial measurements

Input Images Measurements from
different view points Combine to form 3D model

Neural Network Model
of 3D system

Goal



21Defining Neural Field

Definition 1: A field is a function which assigns scalar / vector / tensor values 
for all spatial and / or temporal  coordinates*.

Definition 2: A neural field is a field that is parameterized fully or partially by a 
neural network.

*Sometimes over other spaces, like frequency space



22Examples of Neural Fields

Slide credit: T. Takikawa



23What are Neural Fields?

Magnetic Field
Neural Network 

(Φ)

Φ:ℝ# → ℝ#

(x,y)

Geospatial Data
[Blumenstock et al. 2015]

Neural Network 
(Φ)

Φ:ℝ# → ℝ$

(x,y)

Slide credit: S. Sridhar



24Neural Radiance Fields (NeRF)

2003.08934

https://arxiv.org/abs/2003.08934


25Neural Radiance Fields (NeRF)

Model 3D Object density and color using neural network

  Input:     Output:
  position   →   neural network   → density & color

2003.08934

https://arxiv.org/abs/2003.08934


26Neural Radiance Fields (NeRF)

2003.08934

https://arxiv.org/abs/2003.08934


27Neural Radiance Fields (NeRF)

2003.08934

https://arxiv.org/abs/2003.08934


28Neural Field General Framework

What we want to 
reconstruct:

What we can 
measure:

The bridge:
forward maps

Supervision

Depth Normal

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal

t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing

Radiance Field

Reconstruction Domain

Signed Distance Field

Reconstruction Domain Forward Map Sensor Domain

Slide credit: Y. Xie  



29Many Applications

Volume Rendering

Meshing

Radon/Fourier 
Transform

Sphere Tracing Normal Depth

RGB Image Depth

Mesh

Reconstruction Forward Map Sensor Domain

SDF

Radiance Field

CT/MRI ScanCT/MRI Image

SDF

Figures adapted from: 
Mildenhall et al. 2020 (NeRF)
Shen et al. 2021 (NeRP)

Neural NetworkCoordinate Sampling

t

yx

z

Slide credit: Y. Xie  



30Forward Map: Differentiable Rendering

2003.08934

https://arxiv.org/abs/2003.08934


31

Neural Fields + Differential Equations: 
Physics-Informed Neural Networks (PINN)

𝒅	
𝒅𝒙

𝑑
𝑑𝑥

Schrödinger’s Equation

[Raissi et al. 2019 (PINN)]

https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125


32Neural Fields in Science and Engineering

Topology Optimization [Doosti et al. 2021]

Astronomical Interferometry [Wu et al. 2021]

Tomographic Reconstruction [Ruckert et al. 2022]

Neutrino Detectors 2211.01505

https://dl.acm.org/doi/10.1145/3485114.3485124
https://ojs.aaai.org/index.php/AAAI/article/view/20171
https://vccimaging.org/Publications/Ruckert2022NeAT/
https://arxiv.org/abs/2211.01505


33Model Structures

Activation 
Functions

Input 
Encoding

Many of the neural networks in are relatively simple MLPs, well placed within 
the synthesis pipeline.

  A few novel(-ish) features, especially for modeling spatio-temporal data



34Spectral Bias

“Neural networks are biased to fit 
lower frequency signals”

That’s a problem if we want to learn fine details!

[Baatz et al. 2021]

https://research.nvidia.com/publication/2021-06_nerf-tex-neural-reflectance-field-textures


35Positional Encoding

Map input value 𝑥 to a vector of sine & cosine values at different frequencies

Positional Encodings

1706.03762

Originally introduced in the context of transformers

https://arxiv.org/abs/1706.03762


36Positional Encoding

Map input value 𝑥 to a vector of sine & cosine values at different frequencies

2103.13415

𝛾 𝒙 = sin 𝒙 , cos 𝒙 , … , sin 2!"#𝒙 , cos 2!"#𝒙 $	

https://arxiv.org/abs/2103.13415


37Positional Encoding In Action

2006.10739

https://arxiv.org/abs/2006.10739


38Activation Functions

2006.09661

https://arxiv.org/abs/2006.09661


39Activation Functions

2103.10427

2006.09661

https://arxiv.org/abs/2103.10427
https://arxiv.org/abs/2006.09661


40A few points on why neural fields?

Compact: 
Can efficiently summarize signals without dense grids
Combining measurements lets us surpass resolution of any one measurement

Regularization:
Explicit regularization: in the form of priors: min

"
𝐹 𝑁𝑁" 𝑥 − 𝐼

+
+ Ω(𝑁𝑁 𝜃 )

• E.g. total variation, constraining model smoothness ∇%𝑁𝑁&(𝑥)

Implicit regularization: NN imposes implicit priors in the form of architecture 
choice which determines the set of functions we can fit to data and how we 
interpolate



41

Application for MAGIS-100 Experiment



42Atomic Sensors

strain frequency

In MAGIS, atoms play two roles

Inertial References
• Freely falling objects, separated by a 

large baseline
•Must be insensitive to perturbations 

from non-gravitational forces

Clock
•Monitor separation b/w inertial frames
•Measure time for light to cross baseline



43Atomic Sensors

strain frequency



44Single Atom Interferometer

Laser interaction

|𝑒,
𝑝 +

ℏ𝑘
⟩

|𝑔, 𝑝⟩

Laser interaction Laser interaction



45Imagine the Cloud

Phase 𝜙 = oscillation offset 

arXiv:2104.02835

https://arxiv.org/abs/2104.02835


46Simple Example: Two Atomic Clocks

Time

Phase evolved by atom after time T

Atom 
clock

Atom 
clock

Separated (vertically) 
Baseline Distance L



47Simple Example: Two Atomic Clocks

GW changes light 
travel time

Time

Atom 
clock

Atom 
clock

Separated (vertically) 
Baseline Distance L



48Clock Gradiometer

Each interferometer measures the 
change over time T

Laser noise is common-mode 
suppressed in the gradiometer

Excited state phase evolution difference:

Two ways for phase to vary:

Gravitational wave

Dark matter

Graham et al., PRL 110, 171102 (2013).
Arvanitaki et al., PRD 97, 075020 (2018).

L (1 + h sin(ωt ))

Ultra-light DM coupling 
causes time-varying 
atomic energy levels



49MAGIS-100
Matter wave Atomic Gradiometer Interferometric Sensor

• 100-meter baseline atom interferometry in existing shaft at Fermilab
• Intermediate step to full-scale (km) detector for gravitational waves

• Clock atom sources (Sr) at three positions to realize a gradiometer

• Probes for ultralight scalar dark matter beyond current limits (Hz range)
• Extreme quantum superposition states: >meter separation, up to 9 s duration

10
0 

m
et

er
s



50Expected Sensitivity
Future MAGIS experiments

Dark Matter

arXiv:2104.02835

Gravitational Waves

https://arxiv.org/abs/2104.02835


51Simulation and Analysis Pipeline

Phase & 
systematics 
estimation

GW/DM
Analysis



52Simulation and Analysis Pipeline

Phase & 
systematics 
estimation

GW/DM
Analysis



53New Single-Shot Multi-View Imaging

Design Goals
• Increased light detection → improve phase estimation
•Multi-view imaging for 3D reconstruction → improve systematics estimation

Atom Cloud

arXiv:2205.11480

https://arxiv.org/abs/2205.11480


54New Single-Shot Multi-View Imaging

Atom Cloud

arXiv:2205.11480

We built it! 

https://arxiv.org/abs/2205.11480


55Neural Fields for Atom Cloud Reconstruction

Neural field to model atom cloud density

Forward model: differentiable ray tracing and optics → tomographic imaging

Atom Density Optics, Ray Tracing, Tomography Images

Code: gradoptics

https://magis-slac.github.io/gradoptics/_build/html/index.html


56Computing Pixel Intensities

Pixel

Lens
Mirror

𝜔

Neural Field

𝐼:.; ∝ B
<!"#

	 B
=$∈=>?@

	 B
/"∈,A:/0

𝜌" 𝑟B 𝑡.



573D Cloud Reconstruction in Simulation

Target: Measured DataModel



583D Cloud Reconstruction in Simulation

C Learned 3D cloud
− Learned 2D marginal
∎ Target 2D marginal

Resolution ~ 60μm 
Computed comparison to
ground truth density with
Fourier Shell Correlation

arXiv:2205.11480

https://arxiv.org/abs/2205.11480


59Reconstructing Real Objects

arXiv:2205.11480

https://arxiv.org/abs/2205.11480


603D Reconstruction Comparisons
CAD

M
icroscope

Learned M
odel

Resolution ~ 70μm 
Computed using split-halves 
Fourier Shell Correlation

Mesh of Reconstructed Surface 

arXiv:2205.11480

https://arxiv.org/abs/2205.11480


61

Application for Design Optimization



62Detector Design Optimization
As we saw in L. Heinrich’s talk: 
Goal is to optimize the parameters 𝜙 of a detector models to minimize a 
design function 𝑓(⋅) when evaluated on samples of data 𝑥

𝔼4!(5) 𝑓 𝑥 = ∫ 𝑑𝑥	𝑓 𝑥 𝑝6(𝑥)

Work in progress: L. Heinrich, MK
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As we saw in L. Heinrich’s talk: 
Goal is to optimize the parameters 𝜙 of a detector models to minimize a 
design function 𝑓(⋅) when evaluated on samples of data 𝑥
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64Detector Design Optimization
As we saw in L. Heinrich’s talk: 
Goal is to optimize the parameters 𝜙 of a detector models to minimize a 
design function 𝑓(⋅) when evaluated on samples of data 𝑥
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65Neural field as a detector

Detector in this example was a very simply toy with 1 parameter
• Predetermined detector structure with varying radius, i.e. 𝜙 = 𝑟𝑎𝑑𝑖𝑢𝑠

Instead, we could try to optimize a detector freeform from scratch

𝑝(interact	at	𝑥|𝜆 = NN6(𝑥))

𝑥
𝑦
𝑧

𝜆

20k parameters

Neural Field



66Neural Fields for Detector Design

Neural field to model material distribution

Forward model: particle showers

Particle Showers Hits / Design Objective

Code: gradoptics

Detector Material

https://magis-slac.github.io/gradoptics/_build/html/index.html


67Detector Design Optimization with Neural Field

𝑦

𝑥 𝑥

𝑧

Rediscovers “classic” layout:
Learns to contain shower with no material in middle, material outside

Work in progress: L. Heinrich, MK



68

A Few Comments Before Wrapping Up



69Ongoing work on Neural Fields

Generalization: how to amortize, get beyond per-instance optimization

Uncertainty Quantification: how to get uncertainty on fitted signal for 
science applications?

Inference: How to extra information, e.g. physical parameter estimates, from 
a fit neural field?

Generative modeling: How can we generate neural fields instead of 
generating data in measurement space?

Many open questions, but more progress on some topics (e.g. generalization, 
generative modeling) which get a lot of focus in graphics community 



70Physics + AI
Neural fields are an interesting example of hybrid Physics-AI systems

Combines physics knowledge (differentiable simulator) with neural networks 
to model complex signals

Physics guides learning & ensures we can make physical plausible predictions

Way to add physics inductive bias, in the form of physics code, in NNs
•Where adding symmetries to architectures is like adding structure information, 

now we can add dynamical information in the form of physics code

Neural Network Physics Code Inference 
objective

∇



71

Wrapping Up



72Summary

Neural Fields combine neural networks and differentiable simulators to 
enable powerful gradient-based optimization of signals

Originally developed in computer graphics, generalizing the concept enable 
exciting applications in science, from reconstruction to system design

Can be seen as a development of novel Hybrid Physics+AI Systems by directly 
integrating physics code into ML models

Still much to be done! Generalization, Inference on neural fields, generative 
modeling, uncertainty quantification, …



73

Backup



74Benefits of Neural Fields

Compact:

1024 x 1024 x 3 = 3MB

Equivalent size neural network 
has 750k floating point weights



75Why Neural Fields?

Compact:

Even more challenging in 3D

Color, density, distance, …

Expensive in storage!



76Challenges with Neural Fields

Generalization: 
• Basic setup requires per-instance optimization
• Lots of work the share knowledge across reconstructions

Input Images Optimize NeRF Render new viewsPer-instance Optimization

Auto-decodingFeature encodingPre-trained or optimized 
embeddings
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MAGIS-100



78Detector Technology: Atom Interferometer

Gradiometer

Best clocks in the world now lose <1 second in 1018 seconds

MAGIS-100 is based on same physics as Sr optical lattice clock

Atom interferometry provides a pristine inertial reference

Compare two (or more) atom ensembles separated by a large baseline

Differential measurement suppresses many sources of common noise and 
systematic errors

Atomic clock transition Atom interferometer

Atom

Beam
splitter

Beam
splitter

M
irror

Atoms

Atoms

Laser

Slide credit: 
J. Hogan



79Atom Interference

Light 
interferometer

Atom 
interferometer

Atom

http://scienceblogs.com/principles/2013/10/22/quantum-erasure/
http://www.cobolt.se/interferometry.html

Light fringes

Beam
splitter

Beam
splitter

M
irror

Atom fringes

Light

Slide credit: J. Hogan



80Light pulse atom interferometry

Slide credit: J. Hogan

Atom

Beam
splitter

Beam
splitter

M
irror

Time

Po
sit

io
n

p/2 pulse “beamsplitter”

ћk

p pulse “mirror”

ћk

“beamsplitter”
p/2 pulse

ћk

Interior 
view |p+ћk›

|p›

ћk



81Clock Gradiometer

Graham et al., PRL 110, 171102 (2013).
Arvanitaki et al., PRD 97, 075020 (2018).

Clock: 
measure light travel time

Accelerometer: 
atoms excellent inertial test masses
  → follow geodesics 

Gradiometer:
Differential accelerometer
   → remove laser noise w/ single baseline

Measure differential acceleration by 
comparing the light travel times

Cloud 1 Cloud 2



82GW / DM Analysis Principle

Launch sequence repetition rate ~1 Hz

Image clouds (fluorescent imaging) at end of sequence

Extract phase from interference pattern per launch

Look for signals of time-varying phase difference

In this Mid-band frequency range
•GW signals can persist for months
• Can have multiple overlapping signals
•Measurements at different times of year 

can help signal localization

Δ𝜙

𝑡



83Rendering Views



84Phase Extraction & Uncertainties

Many systematic effects can be sources of 
noise in phase measurements
• Especially laser wavefront variations – i.e. 

laser phase varying spatially

Goal: 3D Cloud Reconstruction

Why: 
• Increased light detection
• Model spatially varying systematic effects

How: Single-Shot Multi-View Imaging System

Challenge: How to reconstruct the cloud in 3D?
• Tomographic imaging with complex geometry
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Application for Dune



86DUNE Photon Response 

Photon simulation involves modeling 
optical visibility
• Probability of observing a photon 

produced at a given point per PMT

Typically, expensive simulation done to 
produce grid of points (voxels)

Very large grid → large memory 
consumption, not easily tunable to data

2211.01505

Expensive Simulation Lookup table:
Visibility(x) PMT Response

Slide credit: S. Gasiorowski

https://arxiv.org/abs/2211.01505


87DUNE Photon Response 

Train neural network to 
represent lookup table

Voxels → network weights
•More memory efficient

Network easily trainable
• Tune representation on 

measured data

2211.01505

Expensive Simulation Lookup table:
Visibility(x) PMT Response

Slide credit: S. Gasiorowski

Lookup table

Neural Network
(SIREN)

https://arxiv.org/abs/2211.01505
https://www.vincentsitzmann.com/siren/


88DUNE Photon Response 

2211.01505

Expensive Simulation Lookup table:
Visibility(x) PMT Response

Slide credit: S. Gasiorowski

Lookup table

Neural Network
(SIREN)

Calibrate NN model
with fine tuning 
on data

https://arxiv.org/abs/2211.01505
https://www.vincentsitzmann.com/siren/

