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Making use of Simulators :

So far, we looked at Simulation-Based Inference:
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Making use of Simulators

So far, we looked at Simulation-Based Inference:

From Lukas Heinrich: learned about Differentiable Programming

f(x) R*" 5 R f(x) {..};
automatic
differentiation

v F(x) = (ﬁ ..... ﬁ) dF(x) {.};



Making use of Simulators .

So far, we looked at Simulation-Based Inference:

From Lukas Heinrich: learned about Differentiable Programming

What can we do with a differentiable simulator?

[dLd
4 L0 = *

10 dx d@] E [dx 10 SIM(H)] Where x = SIM(0)



Optimization through simulator ;

Simulator /0

Observations
X

Parameters ) l

0




What can we do with a Differentiable Simulator? .




Rendering and Inverse Rendering 7

rendering equation

Rendering: ?“ . ﬁi

From 3D model scene, simulate image | %
on camera at given position and angle &Z
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Analysis-by-Synthesis

Synthetic Data

a . A 4 R 4 Differentiable R
Initial
Parameters > 0, .| Forward Model| >
0 l F(6)
" N y N y
S 4 ™
. Gradient Descent Loss 4
on 0; 5 L(F(6),X)
____________________ | - J

0" = arg mgn L(F(0),X)

L=|F(0)—X|*

Real Data, X



Analysis-by-Synthesis

Goal:
Find parameters 6 such that the simulator with these parameters, F(60),
generates synthetic data that matches the observed data



Analysis-by-Synthesis
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Goal:

Find parameters 6 such that the simulator with these parameters, F(60),
generates synthetic data that matches the observed data

Basic idea:
* Start with initial guess 6,

Synthetic Data

Initial
Parameters
6o

_____________________

i Gradient Descent ! [ Loss

on 6; L(F(6),X)

Real Data, X



Analysis-by-Synthesis "

Goal:
Find parameters 6 such that the simulator with these parameters, F(60),
generates synthetic data that matches the observed data

Basic idea:
* Start with initial guess 6, - Oiferentbie
* Given 8; Generate synthetic data with T %
simulator F(0) U —

Gradient Descent Loss
; on 6; L(F(6),X)




Analysis-by-Synthesis 2

Goal:
Find parameters 6 such that the simulator with these parameters, F(60),
generates synthetic data that matches the observed data

Basic idea:
* Start with initial guess 6, - Diferentiable
* Given 0; Generate synthetic data with T %% o
simulator F(6) U —

on 6;

* Loss function compares synthetic & real data | Gradient Descent



Analysis-by-Synthesis

Goal:

Find parameters 6 such that the simulator with these parameters, F(60),
generates synthetic data that matches the observed data

13

BaSiC idea: Synthetic Data
* Start with initial guess 6, - A m
Parameters
* Given 6; Generate synthetic data with 2 o

simulator F(0)

* Loss function compares synthetic & real data
* Update 6,,, to lower loss

Gradient Descent Loss
on 6; L(F(0),X)

£
[

Real Data, X

dL dF(6)
dF do

Gradient descent with differentiable simulator: 6 < 6 —n



Analysis-by-Synthesis
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What'’s going on here? Maximum Likelihood Estimation
If we assume an error model I = F(6) + € where e~N(0,1)
Then p(X|6) =N(F(0),1)

And L=—logp(X|0) = |F(8) — X|?



Analysis-by-Synthesis
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What'’s going on here? Maximum Likelihood Estimation

If we assume an error model I = F(6) + € where e~N(0,1)
Then p(X|0) = N(F(0),1)

And L=—logp(X|0) = |F(8) — X|?

We get a point estimate for the MLE 0 by solving this optimization



Analysis-by-Synthesis
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What'’s going on here? Maximum Likelihood Estimation

If we assume an error model I = F(6) + € where e~N(0,1)

Then p(X|0) = N(F(0),1)

And L=—logp(X|0) = |F(8) — X|?

We get a point estimate for the MLE 6 by solving this optimization

Note: In general this is NOT an amortized process,

for each observation X, have to solve a different optimization problem



Combining partial measurements .

Goal
Measurements from ,
Input Images : . ) Combine to form 3D model
different view points
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So Why Analysis-by-Synthesis? o

Reconstructing spatio-temporal signals from a set of observations

L= Z|Fi(5(x, 9)) — Xi|2 [ € observations
i

lll-posed inverse problems: often not enough X’s to fully constrain system
Often signal S(+) is represented with voxels, meshes, etc... with parameters 6

F; = simulation of it" observation... e.g. simulate camera i at specific position



So Why Analysis-by-Synthesis?
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Reconstructing spatio-temporal signals from a set of observations

2
L= ElFi(NNQ (X)) — Xi| [ € observations
i
lll-posed inverse problems: often not enough X’s to fully constrain system

Analysis-by-Synthesis approach has recently been highly successful for
reconstructing a signal parameterized by a neural network,
— often called a Neural Field



Combining partial measurements
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Input Images

WA A S R
Lol Rt B o R
FaAaMaEgEs LR
E R e R T R R
DG oA & W
o AR Y R g
FledFEg4E2ED
S R N
Y EE SR R
Y kA o

Measurements from
different view points

Neural Network Model
of 3D system

Goal

Combine to form 3D model




Defining Neural Field 21

Definition 1: A field is a function which assigns scalar / vector / tensor values
for all spatial and / or temporal coordinates™.

Definition 2: A neural field is a field that is parameterized fully or partially by a
neural network.

*Sometimes over other spaces, like frequency space



Examples of Neural Fields 2

3D Parabola Image Vector Field

‘ (Explicit Surface)
3D Signed Distance Fields
(Implicit Surface)

d.d ARl ARAE ANN LIS A IRURILI B (LA il \ F I e l d S

Audio

Slide credit: T. Takikawa



What are Neural Fields?
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v

Neural Network

.(le) —_—

v

Neural Network
(P)

¢

r

. . !
Magnet

Geospatial Data
[Blumenstock et al. 2015]




Neural Radiance Fields (NeRF)
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https://arxiv.org/abs/2003.08934

Neural Radiance Fields (NeRF) s

P TI LIS . Represent Scenes using Neural Network
R R R — i z
FANIEFEE N y B2 A
RS RN N e LS Wl 2 @
PG AEFEELEY - :
o MR Y e R I e
YL ETED h
B 0 k%
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Spatial
Color
Density

Angle

[ Coordinate Sampling ] [ Neural Network ] ( Output )

Model 3D Object density and color using neural network

Input: Output:
position — neural network — density & color

2003.08934


https://arxiv.org/abs/2003.08934

Neural Radiance Fields (NeRF) »

T TI T I Represent Scenes using Neural Network
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https://arxiv.org/abs/2003.08934
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2003.08934

Neural Radiance Fields (NeRF)

A -


https://arxiv.org/abs/2003.08934

Neural Field General Framework

What we want to The bridge: What we can
reconstruct: forward maps measure:
, Volume Rendering RGB Image
Spatial q' -
X )
V/[‘\\V . . . S h T .
Temporal ! Signed Distance Field phere Tracing Depth  Normal

-I—I—I—I—I—IT> -

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [ Forward Map ] Sensor Domain

‘ Supervision '

Slide credit: Y. Xie




Many Applications
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[Coordinate Sampling ] [ Neural Network ] [ Reconstruction ] [ Forward Map ] [ Sensor Domain ]
SDF Sphere Tracing Normal Depth
=)
z Radiance Field

O VY, O VY,
XY
/0N

W’

W% \ ) Meshing -)

\

)

CT/MRI Image

- Radon/Fourier #

Transform

Figures adapted from:
Mildenhall et al. 2020 (NeRF)
Shen et al. 2021 (NeRP)

Slide credit: Y. Xie



2003.08934

Forward Map: Differentiable Rendering
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5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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_ /;f T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp (— /; a(r(s))ds>


https://arxiv.org/abs/2003.08934

Neural Fields + Differential Equations:
Physics-Informed Neural Networks (PINN)

31

h2
Schrodinger’s Equation  — %v%ﬁ + V@D — E¢

t =0.959 t=0.79 t =0.98
5 5 5
= = =
0 0 0
-5 0 5 -5 0 5 -5 0 5
T T T
— Exact == = Prediction

[Raissi et al. 2019 (PINN)]



https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125

Neural Fields in Science and Engineering

X-Ray Images and Initial Calibration Neural Adaptive Tomography 3D Geometry and Optimized Calibration

DA

1] 0 b 3 [

9@
% Response

Tomographic Reconstruction [Ruckert et al. 2022]

Topology Optimization [Doosti et al. 2021]

P 1.0
=
o 0.8
> >
=
0.6 é
(a) GT scene (b) visibilities it 0.4 ;
£
-
= 0.2
-500 0 500
z [cm]

(c) dirty image  (d) our reconstruction
Astronomical Interferometry [Wu et al. 2021] Neutrino Detectors 2211.01505



https://dl.acm.org/doi/10.1145/3485114.3485124
https://ojs.aaai.org/index.php/AAAI/article/view/20171
https://vccimaging.org/Publications/Ruckert2022NeAT/
https://arxiv.org/abs/2211.01505

Model Structures

33

Many of the neural networks in are relatively simple MLPs, well placed within
the synthesis pipeline.

A few novel(-ish) features, especially for modeling spatio-temporal data

-

Input
Encoding
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Activation
Functions
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Spectral Bias
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On the Spectral Bias of Neural Networks

Nasim Rahaman *'? Aristide Baratin "' Devansh Arpit' Felix Draxler> Min Lin' Fred A. Hamprecht?
Yoshua Bengio! Aaron Courville!

Abstract
Neural networks are known to be a class of highly
expressive functions able to fit even random input-
output mappings with 100% accuracy. In this
work we present properties of neural networks
that complement this aspect of expressivity. By
using tools from Fourier analysis, we highlight a
learning bias of deep networks towards low fre-
quency functions - i.e. functions that vary glob-
ally without local fluctuations — which manifests
itself as a frequency-dependent learning speed.
Intuitively, this property is in line with the ob-
servation that over-parameterized networks pri-
oritize learning simple patterns that generalize
across data samples. We also investigate the role
of the shape of the data manifold by presenting

expose this bias by taking a closer look at neural networks
through the lens of Fourier analysis. While they can ap-
proximate arbitrary functions, we find that these networks
prioritize learning the low frequency modes, a phenomenon
we call the spectral bias. This bias manifests itself not just
in the process of learning, but also in the parameterization of
the model itself: in fact, we show that the lower frequency
components of trained networks are more robust to random
parameter perturbations. Finally, we also expose and ana-
lyze the rather intricate interplay between the spectral bias
and the geometry of the data manifold by showing that high
frequencies get easier to learn when the data lies on a lower-
dimensional manifold of complex shape embedded in the
input space of the model. We focus the discussion on net-
works with rectified linear unit (ReLU) activations, whose
continuous piece-wise linear structure enables an analytic

empirical and i d that,
counter-intuitively, learning higher frequencies

Contributions!

gets easier with i i

1. Introduction

The remarkable success of deep neural networks at general-
izing to natural data is at odds with the traditional notions of
model complexity and their empirically demonstrated ability
to fit arbitrary random data to perfect accuracy (Zhang et al.,
2017a; Arpit et al., 2017). This has prompted recent in-
vestigations of possible implicit regularization mechanisms
inherent in the learning process which induce a bias towards
low complexity solutions (Neyshabur et al., 2014; Soudry
etal., 2017; Poggio et al., 2018; Neyshabur et al., 2017).

In this work, we take a slightly shifted view on implicit
regularization by ing that loy lexity i
are learned faster during training by gradient descent. We

“Equal contribution  'Mila, Quebec, Canada ‘Image
Analysis and Learning Lab, Ruprecht-Karls-Universitit
Heidelberg, Germany.  Correspondence to: Nasim Ra-
haman  <nasim.rahaman@live.com>,  Aristide ~Baratin
<aristide.baratin@umontreal.ca>, Devansh Arpit <devan-
sharpit @gmail.com>.

I of the 36" I ional C on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1. We exploit the continuous piecewise-linear structure
of ReLU networks to evaluate its Fourier spectrum
(Section 2).

N

We find empirical evidence of a spectral bias: i.e.
lower frequencies are learned first. We also show that
lower frequencies are more robust to random perturba-
tions of the network parameters (Section 3).

o

We study the role of the shape of the data manifold: we
show how complex manifold shapes can facilitate the
learning of higher ies and develop a th 1
understanding of this behavior (Section 4).

2. Fourier analysis of ReLU networks

2.1. Preliminaries

Throughout the paper we call ‘ReLU network’ a scalar func-

tion f : R? s R defined by a neural network with L hidden

layers of widths d, - - - dy, and a single output neuron:
fx) = (T<L+U 000TWo...000 T“)) x

!Code:

“Neural networks are biased to fit
lower frequency signals”

Baatz et al. 2021

That’s a problem if we want to learn fine details!


https://research.nvidia.com/publication/2021-06_nerf-tex-neural-reflectance-field-textures

Positional Encoding s

Map input value x to a vector of sine & cosine values at different frequencies

Positional Encodings

~y(v) Y(X): [YI(X)772( ),,Ym(x)]
. — 1
Y2i) (x) = sin(2" mx),
C ) ¥y () =cos(Z T m)
S Originally introduced in the context of transformers
y @IGNB

1706.03762


https://arxiv.org/abs/1706.03762

Positional Encoding "

Map input value x to a vector of sine & cosine values at different frequencies
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https://arxiv.org/abs/2103.13415

Positional Encoding In Action -
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https://arxiv.org/abs/2006.10739

Activation Functions
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https://arxiv.org/abs/2006.09661

Activation Functions -

ReLU (baseline) _ ) SlREN (ours)

2006.09661
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https://arxiv.org/abs/2103.10427
https://arxiv.org/abs/2006.09661

A few points on why neural fields? 0

Compact:
Can efficiently summarize signals without dense grids
Combining measurements lets us surpass resolution of any one measurement

Regularization:
Explicit regularization: in the form of priors: mein|F (NNg(x)) — 1 |2 + Q(NN(6))

* E.g. total variation, constraining model smoothness V,,NNg(x)

Implicit regularization: NN imposes implicit priors in the form of architecture

choice which determines the set of functions we can fit to data and how we
interpolate
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Application for MAGIS-100 Experiment



Atomic Sensors
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Gravitational waves

cause a small modulation

in the distance between ’
objects

A

I

L (1 + hsin(wt))

/ / v
strain  frequency ‘

In MAGIS, atoms play two roles

Inertial References

Freely falling objects, separated by a
large baseline

Must be insensitive to perturbations
from non-gravitational forces

Clock
Monitor separation b/w inertial frames
Measure time for light to cross baseline




Atomic Sensors .

Gravitational waves Quantum
cause a small modulation = —_ )
in the distance between ‘ —te |g)
objects Py 7 Ao
phase
_ evolution:
' _ 2L
L (1 + hsin(wt)) Ap =wy (7)
/ / v 1 123 Atomic
strain  frequency ‘ 7655 Clo_Ck_ le)
Y e l9)
= hL
AT ~—



Single Atom Interferometer
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I

t=2T

33

Position

Laser interaction

Laser interaction

Laser interaction
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Imagine the Cloud
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Launch lattice
Connection | I “ optics
node chamber ™|

Atom cloud ---
location

.. In-vacuum
lenses

(b)

Counts/pixel (x 10%)

Phase ¢ = oscillation offset

-
«

»
»

15 18
16 -
10} 2
k3
42
a
,2 2

2 2 0 1 2
X (mm)

arXiv:2104.02835



https://arxiv.org/abs/2104.02835

Simple Example: Two Atomic Clocks .

Separated (vertically)
Atom \8 Baseline Distance L

Phase evolved by atom after time T

Time /

9) + 5 leyer! 75 19)

_iW(lT

le) e

-
+

Sl
+

Sl



Simple Example: Two Atomic Clocks o

—_—e)

()
wWa

— | )

Separated (vertically)
Baseline Distance L

GW changes light
travel time

AT ~ hL/c
Time

‘€> e—lewa (T+AT)




Clock Gradiometer s
Excited state phase evolution difference:

Ultra-light DM coupling

Aqb ~ WA (QL/C) causes time-varying
atomic energy levels

(b)
DM induced

|(> ) toscillation
Two ways for phase to vary: / o

dw A Dark matter

0L = hL Gravitational wave —

(a)

<

)\ "
% | 0O A L Each interferometer measures the
change over time T

L (1+ hsin(wt))

Laser noise is common-mode
suppressed in the gradiometer

Graham et al., PRL 110, 171102 (2013).
Arvanitaki et al., PRD 97, 075020 (2018).



MAGIS-100
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Matter wave Atomic Gradiometer Interferometric Sensor

LASER
HUTCH
ATOM
..""L:M:mln‘g‘ O
e
Neutrino Beam Line for MINERvVA and MINOS Experiments 4
c
» 100-meter baseline atom interferometry in existing shaft at Fermilab = e
e Intermediate step to full-scale (km) detector for gravitational waves 8
|
e Clock atom sources (Sr) at three positions to realize a gradiometer
e Probes for ultralight scalar dark matter beyond current limits (Hz range)
e Extreme quantum superposition states: >meter separation, up to 9 s duration
= 55 : 1 A~ e
e 9 O bt 3EFermilab G A SOURCE
3] JOHNS HOPKINS
GJ Nl\‘LR‘Il\ inoi & NIVERSITY OF K'Kd UNIVERSITY OF
B UNIVERSITY OF % Northern Illinois & ‘{2 LIVERPOOL




Expected Sensitivity
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Future MAGIS experiments
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;“?‘ 1017 ;':
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& 10"9M ------ 5
) 17
GGN MAGIS- Space
(resonant mode)
Dark Matter
lo Mz
Advanced LIGO Advanced LIGO (a) -2 g10[f¢ ] 2 4

1 10 0.100 1 10
Frequency (Hz)

Frequency (Hz)

Gravitational Waves B MICROSCOPE
<
e |
o
-6-
@\*‘,’8«’%
R -16 -14 -12 -10

I eV
arXiv:2104.02835 0g10[My/eV]



https://arxiv.org/abs/2104.02835

Simulation and Analysis Pipeline

51
Differentiable Simulator Differentiable Simulator . - .
Wave function evolution, : Optics and Image f | : Phase & GW/DM
Laser propagation @ Imagerb Formation ; : ) syst‘ema-tlcs Analysis
Cloud Initial State ‘7 : estimation

(known)

Images on Camera
(Observed)

Ad

1.0 —05 o 0.5 1.0
X (mm)

Laser Waver front 3D Atom Cloud Density
(unkown) (unkown)

YA



Simulation and Analysis Pipeline

Differentiable Simulator . Bl s
Optics and Image e . | . ¢
Formation - - oo

Images on Camera
(Observed)

[oX 0.
X (mm)

3D Atom Cloud Density
(unkown)
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New Single-Shot Multi-View Imaging

e—

Focal Mirrors

Design Goals

* Increased light detection — improve phase estimation

Lens

Sensor

"

L EIE IR SR BIE SR BIE Sk

LR AR IR IR BIE BIE SR

LR IR IR BIE BIE NI i

LR IR SR BIE SR BIE SR

LA IR IR IR BRI B

LR IR SR BIE SR BIE Sk

LA IR IR HIE BIE BIE NI S

LI NIE I BIE NIE NIE NIk S

* Multi-view imaging for 3D reconstruction — improve systematics estimation

arXiv:2205.11480



https://arxiv.org/abs/2205.11480

New Single-Shot Multi-View Imaging .

Focal Mirrors

Plane & 8

/ & & Lens

Sensor

We built it!

arXiv:2205.11480



https://arxiv.org/abs/2205.11480

Neural Fields for Atom Cloud Reconstruction
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Atom Density

Optics, Ray Tracing, Tomography Images

image 8=0.9 0.1 <0175 Image = 21,9 =15,r= 0175 mage: =21, ¢ = 15,1 0175
2 SRS © ° M
RGN
o < w o o
. \
e \
oo
. = = »
o
%) =0 =0 0
. S DNE I He 20 30 o H e me 2 ® o H ke m me 2
20 R T S .
" o . o
© ° “
™ ™ ™
= = 10 1
< 2 2 2
<
= = =
e N T T R N N

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [ Differentiable Forward Map ] [ Sensor Domain ]

Spatial

A °
o 2 o m

(mm)
\!\\

Neural field to model atom cloud density

Forward model: differentiable ray tracing and optics —» tomographic imaging

Code: gradoptics



https://magis-slac.github.io/gradoptics/_build/html/index.html

Computing Pixel Intensities

56

Pixel

Lens

Iy

Y

Apix Tw€Tays ti€depth

D polr(e)]

Mirror




3D Cloud Reconstruction in Simulation

57
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Measured Data



3D Cloud Reconstruction in Simulation -

- Learned 3D cloud
— Learned 2D marginal
m Target 2D marginal

Resolution ~ 60pum
Computed comparison to
ground truth density with
1.0 Fourier Shell Correlation

X (mm)

arXiv:2205.11480



https://arxiv.org/abs/2205.11480

Reconstructing Real Objects .

Generated Views



https://arxiv.org/abs/2205.11480

3D Reconstruction Comparisons

Mesh of Reconstructed Surface

Resolution ~ 70pum
Computed using split-halves
Fourier Shell Correlation

arXiv:2205.11480
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https://arxiv.org/abs/2205.11480

61

Application for Design Optimization



Detector Design Optimization
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As we saw in L. Heinrich’s talk:

Goal is to optimize the parameters ¢ of a detector models to minimize a
design function f(-) when evaluated on samples of data x

Ep,oolf ()] = J dx f(x)pgy (x)

Work in progress: L. Heinrich, MK



Detector Design Optimization

63

As we saw in L. Heinrich’s talk:

Goal is to optimize the parameters ¢ of a detector models to minimize a
design function f(-) when evaluated on samples of data x

Ep,cx) [F(x)] = | dx f(x)p(interact at x|A = Detectory (x))

Work in progress: L. Heinrich, MK



Detector Design Optimization
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As we saw in L. Heinrich’s talk:

Goal is to optimize the parameters ¢ of a detector models to minimize a
design function f(-) when evaluated on samples of data x

Ep,cx) [F(x)] = | dx f(x)p(interact at x|A = Detectory (x))

Work in progress: L. Heinrich, MK



Neural field as a detector

65

Detector in this example was a very simply toy with 1 parameter
* Predetermined detector structure with varying radius, i.e. ¢ = radius

Instead, we could try to optimize a detector freeform from scratch

p(interactat x|A = NNy (x))
o Q
%/,(g Q) Neural Field
y - o P
;) o
o

20k parameters



Neural Fields for Detector Design ”

Detector Material Particle Showers Hits / Design Objective

Spatial : 7%§§
L ~XLARL f//¢§\)

\
1@
[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [ Differentiable Forward Map ] [ Sensor Domain ]

(
S/

Neural field to model material distribution

Forward model: particle showers

Code: gradoptics



https://magis-slac.github.io/gradoptics/_build/html/index.html

Detector Design Optimization with Neural Field o

10.0 10.0
7.5 7.5
5.0 5.0
2.5 2.5

y Z

0.0 0.0

-2.5 -2.5

-5.0 -5.0

-7.5 -7.5

-10.0 -10.0
-10.0 -7.5 -5.0 =25 00 25 50 75 10.0 -10.0 -7.5 =50 =25 00 25 50 75 10.0

X X

Rediscovers “classic” layout:
Learns to contain shower with no material in middle, material outside

Work in progress: L. Heinrich, MK
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A Few Comments Before Wrapping Up



Ongoing work on Neural Fields
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Generalization: how to amortize, get beyond per-instance optimization

Uncertainty Quantification: how to get uncertainty on fitted signal for
science applications?

Inference: How to extra information, e.g. physical parameter estimates, from
a fit neural field?

Generative modeling: How can we generate neural fields instead of
generating data in measurement space?

Many open questions, but more progress on some topics (e.g. generalization,
generative modeling) which get a lot of focus in graphics community



Physics + Al
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Neural fields are an interesting example of hybrid Physics-Al systems

Combines physics knowledge (differentiable simulator) with neural networks

to model complex signals

Physics guides learning & ensures we can make physical plausible predictions

Way to add physics inductive bias, in the form of physics code, in NNs

* Where adding symmetries to architectures is like adding structure information,
now we can add dynamical information in the form of physics code

4 )

Neural Network

-

- /

.

Physics Code

~

)

Inference
objective
—

%
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Wrapping Up



Summary 1

Neural Fields combine neural networks and differentiable simulators to
enable powerful gradient-based optimization of signals

Originally developed in computer graphics, generalizing the concept enable
exciting applications in science, from reconstruction to system design

Can be seen as a development of novel Hybrid Physics+Al Systems by directly
integrating physics code into ML models

Still much to be done! Generalization, Inference on neural fields, generative
modeling, uncertainty quantification, ...



Backup



Benefits of Neural Fields
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Compact:

1024 x 1024 x 3 = 3MB

Equivalent size neural network
has 750k floating point weights



Why Neural Fields?
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Compact:

Even more challenging in 3D

- Color, density, distance, ...

NNV

Expensive in storage!



Challenges with Neural Fields
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Generalization:
* Basic setup requires per-instance optimization
* Lots of work the share knowledge across reconstructions

Pre-trained or optimized Feature encoding
embeddings Encoder
Bl
O/
X —> O X —> ()
Query Query
coordinate  Neyra] Field coordinate  Neyral Field

Per-instance Optimization

Query
coordinate Neural Field




77

MAGIS-100



Detector Technology: Atom Interferometer s

Best clocks in the world now lose <1 second in 1018 seconds (a)
SZ

MAGIS-100 is based on same physics as Sr optical lattice clock

Atom interferometry provides a pristine inertial reference e Atoms

Compare two (or more) atom ensembles separated by a large baseline

Differential measurement suppresses many sources of common noise and
systematic errors

Jase

w
()
% ’ ,
’ ’
%’ ,@@\\ /,/ ,,/
= QX e e ® Atoms
[y U 7 7
@ A\ e -
’ ’
7’ ’ ()
,/ ,/ Q T
’ 7’ 3
%
Atom ; 11, p) ;5 =
= ()
(@] -

Atom interferometer Gradiometer

Atomic clock transition



Atom Interference

Light
interferometer

Atom
interferometer

Atom

Light é y,
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Light pulse atom interferometry
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atom) = [p) I :
7/2 pulse /\‘\ “beamsplitter” _5 g L,
1 " z o
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Clock Gradiometer
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Clock:
measure light travel time

Accelerometer:
atoms excellent inertial test masses
— follow geodesics

Gradiometer:
Differential accelerometer
— remove laser noise w/ single baseline

Measure differential acceleration by
comparing the light travel times

(a)

Cloud 1 Cloud 2
= (b
¥ ]
2T+% AR N
e B4 R A
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GW / DM Analysis Principle
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Launch sequence repetition rate ~1 Hz

Image clouds (fluorescent imaging) at end of sequence
Extract phase from interference pattern per launch
Look for signals of time-varying phase difference

In this Mid-band frequency range
* GW signals can persist for months
* Can have multiple overlapping signals

* Measurements at different times of year
can help signal localization

1l

Agp




Rendering Views

Genera ted Views



Phase Extraction & Uncertainties y

Many systematic effects can be sources of
noise in phase measurements

* Especially laser wavefront variations - i.e.
laser phase varying spatially

Goal: 3D Cloud Reconstruction

Why:
* Increased light detection
* Model spatially varying systematic effects

How: Single-Shot Multi-View Imaging System

Challenge: How to reconstruct the cloud in 3D?
* Tomographic imaging with complex geometry

Table 3. Summary of key experimental parameters and target values of MAGIS-100 (initial) (see
Table 2). Spectral densities are taken to be in the ~ 0.1 — 3 Hz frequency band of interest. Note
that the cloud kinematics can either be stabilized to below the target values or measured each shot
at the target uncertainty.

Parameter Target Value  Primary Driving Factors

LMT atom optics n = 100 Increase sensitivity to science signals

Phase resolution 102 rad/y/Hz Increase sensitivity to science signals
Frequency noise/drift < 10 Hz Increase pulse transfer efficiency (Section 4.3)

Per:ghot p osm.on uncerta} nty 10 pm/vHz Coupling to wavefront aberrations (Section 5.2)
Per shot velocity uncertainty 10 pm/s/ VHz

Coupling to cloud kinematic and laser pointing
jitter (Section 5.2 and Section 5.4)

Laser intensity stabilization  0.1%/vHz AC Stark shifts (Section 5.5)

Laser pointing stability 30 nrad/ VHz Coupling to wavefront aberrations (Section 5.4)
Magnetic field uniformity 1 mG (rms) Clock frequency shifts

. . *
Laser wavefront variation 5 mrad

“at transverse length scales < 3 mm
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Application for Dune



y [cm]

y [cm]

DUNE Photon Response "

Lookup table:

Expensive Simulation —_— Visibility(x) PMT Response

Photon simulation involves modeling
optical visibility

) : * Probability of observing a photon

LR is LR & LR LR LR i

% produced at a given point per PMT
e is is i e s s #4 ' . g
| Typically, expensive simulation done to
produce grid of points (voxels)
-500 0 500
z [cm]

Very large grid — large memory
consumption, not easily tunable to data

2211.01505


https://arxiv.org/abs/2211.01505

y [cm]

y [cm]

DUNE Photon Response
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Expensive Simulation

=500

0
Z [cm]

—

500

Lookup table:

Visibility(x)

Visibility

Lookup table

\ 4

Neural Network
(SIREN)

—_— PMT Response

Train neural network to
represent lookup table

Voxels —» network weights
* More memory efficient

Network easily trainable

* Tune representation on
measured data

2211.01505


https://arxiv.org/abs/2211.01505
https://www.vincentsitzmann.com/siren/

DUNE Photon Response "

Lookup table:

Visibility(x) PMT Response
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Slide credit: S. Gasiorowski 2211.01505
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