
Simulation-Based Inference I

Michael Kagan
SLAC

July 19, 2023



2Science-ing

We have a scientific theory

From which we can make testable predictions

Then compare to experimental data
     and draw inferences about the theory

The Standard Model



3Our Prediction are Not Deterministic

Our predictions are almost never exact, e.g. due to
• Randomness of physical processes
• Randomness in measurement process
• Incomplete information
•Quantum Mechanics
•…

Our predictions are often statistical

𝑝 𝑑𝑎𝑡𝑎 𝑡ℎ𝑒𝑜𝑟𝑦

𝑥



4Likelihood Based Inference
Given data to analyze, 𝑥, that was generated through a random process, 

We develop the likelihood, a model of the data generation process that 
describes the probability of the data given some parameters 𝜃

𝑝(𝑥|𝜃)



5Likelihood Based Inference
Given data to analyze, 𝑥, that was generated through a random process, 

We develop the likelihood, a model of the data generation process that 
describes the probability of the data given some parameters 𝜃

𝑝(𝑥|𝜃)

Example: 

𝑝 𝑥 𝜃 = 𝑁 𝜃, 1 =
1
√2𝜋

𝑒!
"
# $!% !



6Likelihood Based Inference
Given data to analyze, 𝑥, that was generated through a random process, 

We develop the likelihood, a model of the data generation process that 
describes the probability of the data given some parameters 𝜃

𝑝 𝑑𝑎𝑡𝑎	 𝑡ℎ𝑒𝑜𝑟𝑦)

Parameters of the model can have meaning, so we want to know what the 
data tells us about the parameters

Think of params as describing our theory (e.g. parameters of Standard Model)



7The Likelihood & Inference

Goal: perform inference on the parameters 𝜃 using the data 𝑥

𝑝(𝑥|𝜃)



8The Likelihood & Inference

Goal: perform inference on the parameters 𝜃 using the data 𝑥

𝑝(𝑥|𝜃)

Frequentist Inference

𝑟 𝑥 𝜃", 𝜃# =
𝑝 𝑥 𝜃#
𝑝(𝑥|𝜃")

Hypothesis testing, confidence 
intervals…



9The Likelihood & Inference

Goal: perform inference on the parameters 𝜃 using the data 𝑥

𝑝(𝑥|𝜃)

Frequentist Inference

𝑟 𝑥 𝜃", 𝜃# =
𝑝 𝑥 𝜃#
𝑝(𝑥|𝜃")

Hypothesis testing, confidence 
intervals…

Bayesian Inference

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝(𝜃)

𝑝(𝑥)

Posterior inference, credible 
intervals…



10The Likelihood & Inference

𝑝(𝑥|𝜃)

In typical statistics, we write down an analytic form for the likelihood

Nice case: Can analytically derive posterior, confidence intervals, etc...

Not as nice: Can’t analytically derive posterior, use sampling (e.g. MCMC), VI, …



11The Likelihood & Inference

𝑝(𝑥|𝜃)

In typical statistics, we write down an analytic form for the likelihood

Nice case: Can analytically derive posterior, confidence intervals, etc...

Not as nice: Can’t analytically derive posterior, use sampling (e.g. MCMC), VI, …

But what if we can’t write down the likelihood? → Simulation-Based Inference*

*sometimes also called Likelihood-Free Inference



12Aside: Implicit vs Explicit Models

Can explicitly evaluate  density

Often available analytically, e.g.
𝑝 𝑥|𝜆 = 	𝐸𝑥𝑝 𝑥 = 𝜆𝑒$%&

Can sample from the distribution
𝑥~𝑝(𝑥|𝜆)

Explicit Models Implicit Models

Don’t know density analytically

Can’t evaluate density 𝑝(𝑥|𝜃)

But can sample from density
𝑥~𝑝(𝑥|𝜃)

Often describe density in code, 
built up mechanistically as a set of 
processes with randomness



13What do we do without the Likelihood?

In science, often we know how to mechanistically describe how the data is 
generated, perhaps involving many random and unobserved processes’

    i.e. we know how to simulate the process!



14What do we do without the Likelihood?
Can implement the data generation process in a stochastic simulator 
• Simulator depends on random process (often internally) to generate an output

Allows us to sample observations given a set of parameters

In this way, we can implicitly define 𝑝 𝑥 𝜃

𝑥 = 𝑆𝐼𝑀 	 , 𝜃 	~	𝑝(𝑥|𝜃)

Image credit: L. Heinrich



15Example

Measurement 
Uncertainty

Slide credit: G. Louppe

𝛼



Example 16

Slide credit: G. Louppe



17Example

Randomness in initial height

Randomness in measurement

Slide credit: G. Louppe

Simulator with unobserved latent random variables



18Example

The simulator defines the likelihood 𝑝(𝑥|𝜃) implicitly  

Slide credit: G. Louppe

𝑥 = 𝑑𝑎𝑡𝑎
𝜃 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠



19Summarizing the Components
Parameters of the model = 𝜃 
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Unobserved latent random variable = 𝑧
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22Summarizing the Components
Parameters of the model = 𝜃 

Unobserved latent random variable = 𝑧

Use simulator to generate observations = 𝑥

Probability of a simulation run depends 
jointly on observation and latent variables

𝑝(𝑥, 𝑧|𝜃)



23Summarizing the Components
Parameters of the model = 𝜃 

Unobserved latent random variable = 𝑧

Use simulator to generate observations = 𝑥

Probability of a simulation run depends 
jointly on observation and latent variables

𝑝(𝑥, 𝑧|𝜃)

But we only observe 𝑥, so likelihood we 
need is marginalized over latent variables

𝑝 𝑥 𝜃 = ∫ 𝑝 𝑥, 𝑧 𝜃 𝑑𝑧



24Summarizing the Components
Parameters of the model = 𝜃 

Unobserved latent random variable = 𝑧

Use simulator to generate observations = 𝑥

Probability of a simulation run depends 
jointly on observation and latent variables

𝑝(𝑥, 𝑧|𝜃)

But we only observe 𝑥, so likelihood we 
need is marginalized over latent variables

𝑝 𝑥 𝜃 = ∫ 𝑝 𝑥, 𝑧 𝜃 𝑑𝑧

Simulator defines and samples this likelihood implicitly: 𝑥2 = 𝑆𝐼𝑀 𝜃 	~	𝑝(𝑥|𝜃)



25Simulators, Prediction, and Inference

Image credit: S. Mishra-Sharma



26Simulators Across Science

Image credit: G. Louppe



27A Field Driven by Theory and Simulation



28What is the likelihood at the LHC?

𝑝 	 ) ?
100M detector elements SM / BSM parameters

Given the (B)SM theory parameters, what do the detectors read out?



29Data Generation Process

O(20) Fundamental 
physics parameters 𝜃



30Data Generation Process

 𝑝(𝑧&|𝜃)

O(10) particlesO(20) Fundamental 
physics parameters 𝜃

Matrix Element



31Data Generation Process

O(100) particlesO(10) particlesO(20) Fundamental 
physics parameters 𝜃

 𝑝(𝑧'|𝑧&)𝑝(𝑧&|𝜃)

Evolution
(parton shower, hadronization)



32Data Generation Process

O(108) detector elementsO(100) particlesO(10) particlesO(20) Fundamental 
physics parameters 𝜃

 𝑝(𝑥|𝑧')𝑝(𝑧'|𝑧&)𝑝(𝑧&|𝜃)

Detector Interaction



33Data Generation Process

O(108) detector elementsO(100) particlesO(10) particlesO(20) Fundamental 
physics parameters 𝜃

 𝑝 𝑥 𝜃 = ∫ 𝑑𝑧	𝑝(𝑥|𝑧')𝑝(𝑧'|𝑧&)𝑝(𝑧&|𝜃)

MANY unobserved random processes (histories of how data came to be)

Only observe 𝒙 at end of the process → must integrate out unobserved stuff



34Data Generation Process

O(108) detector elementsO(100) particlesO(10) particlesO(20) Fundamental 
physics parameters 𝜃

 𝑝 𝑥 𝜃 = ∫ 𝑑𝑧	𝑝(𝑥|𝑧')𝑝(𝑧'|𝑧&)𝑝(𝑧&|𝜃)

Integral is mathematically intractable



35What do we do with samples of 𝑥	~	𝑝(𝑥|𝜃) ?

Generate lots of samples → Can use samples to approximate things!

Calculate useful statistics
•Mean, variance, …

Density estimation

Can compare with observed data and 
use for inference



36We do this all the time at the LHC!
Choose a good 1D summary statistic that is sensitive to the parameter

Make Histogram → Density estimation    ⟹   Estimate likelihood for inference

This is an example of Simulation Based Inference!



37

Simulation-based Inference



38Simulation-Based Inference
When we don’t have a tractable 
likelihood, but have a “good” simulator

Given:
• Simulator that can generate samples

𝑥"~𝑝(𝑥"|𝜃")

•Observed data
𝑥#$%~𝑝(𝑥#$%|𝜃&'())

Image credit: G. Louppe

Estimate Likelihood ratio

𝑟 𝑥|𝜃", 𝜃3 =
𝑝 𝑥456 𝜃#
𝑝 𝑥456 𝜃"

Or Posterior (also given prior 𝑝(𝜃))

𝑝 𝜃 𝑥456 =
𝑝 𝑥456 𝜃 𝑝(𝜃)

𝑝(𝑥456)



39Simplest Method: Density Estimation in Low Dimensions

Estimate likelihoods using histograms or 
kernel density estimator (KDE)

Choose feature that discriminate hypotheses

Challenge
•Histograms / KDE don’t scale to high-dims
• Typically use 1D density

• Can be big (lossy) compression of information

 At LHC, compress ℝ*+! → ℝ* 



40Simplest Method: Density Estimation in Low Dimensions

Estimate likelihoods using histograms or 
kernel density estimator (KDE)

Choose feature that discriminate hypotheses

Challenge
•Histograms / KDE don’t scale to high-dims
• Typically use 1D density

• Can be big (lossy) compression of information

 At LHC, compress ℝ*+! → ℝ* Sometimes can be smart about 
choice of feature… 
 e.g. use NN output score



41Approximate Bayesian Computation (ABC)

A method to sample approximate posterior

Idea:
Keep 𝜃’s that produce samples 𝑥 
close to the observed 𝑥456

Challenge: 
•Often very inefficient and approximate: 

       In high-dims, unlikely to simulate 𝑥 ≈ 𝑥#$%

•Often use summary statistic 𝑠(𝑥):
       Which summary to use?

Sample 𝜃~𝑝(𝜃)

Sample 𝑥~𝑝(𝑥|𝜃)

𝑥 − 𝑥"#$ < 𝜖 ?

Keep 𝜃 Reject 𝜃



42Simulation-Based Inference with ML
Use simulator to train neural network to approximate likelihood, posterior, or 
likelihood ratio.  Then use neural net for inference on observed data

PNAS, 2020

https://www.pnas.org/doi/10.1073/pnas.1912789117


43Simulation-Based Inference with ML

Simulator / Forward model

𝑥~𝑝(𝑥|𝜃)

Measured data

𝑦

Proposal / Prior distribution

𝜋(𝜃)

Likelihood ratio estimation

𝑟! 𝑥 𝜃, 𝜃" ≈
𝑝(𝑥|𝜃)
𝑝(𝑥|𝜃")

Likelihood estimation
𝑞!(𝑥|𝜃) ≈ 𝑝(𝑥|𝜃)

Posterior estimation
𝑞!(𝜃|𝑥) ≈ 𝑝(𝜃|𝑥) ∝ 𝑝 𝑥 𝜃 𝜋(𝜃)

Posterior / 
Confidence intervals

Neural Net

Evaluate model
on measured data

Review: K. Cranmer, J. Brehmer, G. Louppe, PNAS (2020)

https://www.pnas.org/content/117/48/30055


44Main Types of Neural SBI
Neural Ratio Estimation (NRE):

• Estimate the density ratio 7 𝑥 𝜃
7(8)

 or 7 𝑥 𝜃+
7(8|9%)

 using neural network classifier

• Can be used for Frequentist inference
• Can be used to draw samples from posterior with sampling algorithm
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Neural Ratio Estimation (NRE):

• Estimate the density ratio 7 𝑥 𝜃
7(8)

 or 7 𝑥 𝜃+
7(8|9%)

 using neural network classifier

• Can be used for Frequentist inference
• Can be used to draw samples from posterior with sampling algorithm

Neural Likelihood Estimation (NLE):
• Estimate the likelihood 𝑝(𝑥|𝜃) using a normalizing flow
• Can be used to draw samples from posterior with sampling algorithm



46Main Types of Neural SBI
Neural Ratio Estimation (NRE):

• Estimate the density ratio 7 𝑥 𝜃
7(8)

 or 7 𝑥 𝜃+
7(8|9%)

 using neural network classifier

• Can be used for Frequentist inference
• Can be used to draw samples from posterior with sampling algorithm

Neural Likelihood Estimation (NLE):
• Estimate the likelihood 𝑝(𝑥|𝜃) using a normalizing flow
• Can be used to draw samples from posterior with sampling algorithm

Neural Posterior Estimation (NPE):
• Estimate the posterior 𝑝(𝜃|𝑥) using a normalizing flow
• Can draw samples posterior samples directly



47NPE and NLE

We need to estimate densities for NPE and NLE

Choose a flexible density estimator: 𝑞!(⋅)  → Normalizing Flow 

𝑝 𝜃 𝑥 =
𝑝 𝑥	 𝜃)𝑝(𝜃)

𝑝(𝑥)

Neural Likelihood Estimation (NLE)
Neural Posterior Estimation (NPE)



48Normalizing Flows 

Series of easily invertible bijections:       𝑥 = 𝑓(𝑧)
Can both generate events and evaluate density

Image credit: G. Kanwar

𝑝& 𝒙 = 𝑝' 𝒛 det
𝜕𝑓 𝒛
𝑑𝒛

()

𝑥

𝑝(𝑥)𝑝(𝑧)

𝑓(𝑧)

𝑓

arXiv:1912.02762

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf
https://arxiv.org/abs/1912.02762


49Conditional Neural Posterior Density Estimation

Image credit: S. Mishra-Sharma



50Training NPE

min
(
𝔼&($) 𝐾𝐿 𝑝 𝜃 𝑥 	||	𝑞( 𝜃 𝑥

	

	 = min
(
𝔼&($)𝔼&(%|$) log

𝑝 𝜃 𝑥
𝑞( 𝜃 𝑥

	
	
	 = 	min

(
𝔼&($,%) − log 𝑞( 𝜃 𝑥 + 𝑐𝑜𝑛𝑠𝑡-./.0	(



51Training Neural Posterior Estimation (NPE)

min
(
𝔼&($) 𝐾𝐿 𝑝 𝜃 𝑥 	||	𝑞( 𝜃 𝑥

	

	 = min
(
𝔼&($)𝔼&(%|$) log

𝑝 𝜃 𝑥
𝑞( 𝜃 𝑥

	
	
	 = 	min

(
𝔼&($,%) − log 𝑞( 𝜃 𝑥 + 𝑐𝑜𝑛𝑠𝑡-./.0	(

Amortize: 
Want model to work for different possible 𝑥 
   → Take expected value over 𝑥



52Training Neural Posterior Estimation (NPE)

min
(
𝔼&($) 𝐾𝐿 𝑝 𝜃 𝑥 	||	𝑞( 𝜃 𝑥

	

	 = min
(
𝔼&($)𝔼&(%|$) log

𝑝 𝜃 𝑥
𝑞( 𝜃 𝑥

	
	
	 = 	min

(
𝔼&($,%) − log 𝑞( 𝜃 𝑥 + 𝑐𝑜𝑛𝑠𝑡-./.0	(



53Training Neural Posterior Estimation (NPE)

min
(
𝔼&($) 𝐾𝐿 𝑝 𝜃 𝑥 	||	𝑞( 𝜃 𝑥

	

	 = min
(
𝔼&($)𝔼&(%|$) log

𝑝 𝜃 𝑥
𝑞( 𝜃 𝑥

	
	
	 = 	min

(
𝔼&($,%) − log 𝑞( 𝜃 𝑥 + 𝑐𝑜𝑛𝑠𝑡-./.0	(



54Using Neural Posterior Estimation (NPE)

Once trained, we can sample the model 𝑞H(𝜃|𝑥456) directly

𝑥! = 50𝑦"#.% 

𝑥& = 𝐴&	𝑒
" #$%& '

' (.(* '  

𝑥~𝑝 𝑥 𝐴&, 𝜇& = 𝑃𝑜𝑖𝑠(𝑥! + 𝑥&)

Example from: S. Mishra-Sharma

Posterior
𝑞*(𝐴$, 𝜇$|𝑥)



55Using Neural Posterior Estimation (NPE)

Once trained, we can sample the model 𝑞H(𝜃|𝑥456) directly

Challenges:

•Must retrain if we change prior

• If prior and posterior are very 
different, may not learn density well 
because most simulated samples carry 
little information about posterior

• In high dimensions, can be hard to 
learn density & require many samples



56Training Neural Likelihood Estimation (NLE)

min
(
𝔼&(%) 𝐾𝐿 𝑝 𝑥 𝜃 	||	𝑞( 𝑥 𝜃

	

	 = min
(
𝔼&(%)𝔼&($|%) log

𝑝 𝑥 𝜃
𝑞( 𝑥 𝜃

	
	
	 = 	min

(
𝔼&($,%) − log 𝑞( 𝑥 𝜃 + 𝑐𝑜𝑛𝑠𝑡-./.0	(



57Using Neural Likelihood Estimation (NLE)

Using NLE is more complicated…

For Frequentist inference, we could evaluate: 𝑟 𝑥 = M(&|N!)
M(&|N")

	

      But as we will see soon… there is another (easier) way to estimate the ratio

For Bayesian inference, we want: 𝑞 𝜃 𝑥 ∝ 𝑞H 𝑥 𝜃 𝑝(𝜃)

       To estimate this posterior, need to sample this (unnormalized) distribution



58

Interlude: (Brief) Introduction to Sampling Methods



59Rejection Sampling

Want to sample  𝑝 𝑥 = ?𝑝(𝑥)/𝑍    (normalization 𝑍 not required)

Image Credit: P. Henning

Algorithm:
• Choose 𝑞(𝑥) such that 𝑐𝑞 𝑥 ≥ 2𝑝(𝑥)
• Sample 𝑥%~𝑞(𝑥%)
• Sample 𝑢	~	Uniform[0, 𝑐𝑞 𝑥% ]
• Reject if 𝑢 > 2𝑝(𝑥)



60Rejection Sampling

Want to sample  𝑝 𝑥 = ?𝑝(𝑥)/𝑍    (normalization 𝑍 not required)

Image Credit: P. Henning

Algorithm:
• Choose 𝑞(𝑥) such that 𝑐𝑞 𝑥 ≥ 2𝑝(𝑥)
• Sample 𝑥%~𝑞(𝑥%)
• Sample 𝑢	~	Uniform[0, 𝑐𝑞 𝑥% ]
• Reject if 𝑢 > 2𝑝(𝑥)

Challenges:
• If 𝑞(𝑥) very different from 2𝑝(𝑥), 

rejection rate is high

• Rejection rate can rise exponentially 
with dimension of 𝑥



61Importance Sampling

∫ 𝑓 𝑥 𝑝 𝑥 𝑑𝑥 = ∫ 𝑓 𝑥
𝑝 𝑥
𝑞 𝑥

𝑞 𝑥 𝑑𝑥

	

	 ≈
1
𝑁F

O

𝑓 𝑥6
𝑝 𝑥6
𝑞 𝑥6

	≡
1
𝑁F

O

𝑓 𝑥6 𝑤6 Where 𝑥&~𝑞(𝑥)

Algorithm:
• Choose proposal 𝑞(𝑥) 
• Sample 𝑥%~𝑞(𝑥)

• Compute importance weight 𝑤% =
7 8+
; 8+

•Weight event by 𝑤% in computations



62Importance Sampling

∫ 𝑓 𝑥 𝑝 𝑥 𝑑𝑥 = ∫ 𝑓 𝑥
𝑝 𝑥
𝑞 𝑥

𝑞 𝑥 𝑑𝑥

	

	 ≈
1
𝑁F

O

𝑓 𝑥6
𝑝 𝑥6
𝑞 𝑥6

	≡
1
𝑁F

O

𝑓 𝑥6 𝑤6 Where 𝑥&~𝑞(𝑥)

Algorithm:
• Choose proposal 𝑞(𝑥) 
• Sample 𝑥%~𝑞(𝑥)

• Compute importance weight 𝑤% =
7 8+
; 8+

•Weight event by 𝑤% in computations

Challenges:
• If 𝑞(𝑥) ≪ 𝑝(𝑥) then 𝑤% → ∞

• If 𝑞(𝑥) very different from 𝑝(𝑥), 
large variance:    var;(𝑓

7
;
)

Happens frequently in high dims



63Markov Chains

Joint distribution of sequence [𝑥", … 𝑥P] has the Markov Property if

𝑝 𝑥2Q" 𝑥2, 𝑥2$", … , 𝑥" = 𝑝(𝑥2Q"|𝑥2)

The sequence is called a Markov Chain



64Metropolis-Hastings (MH) Markov Chain Monte Carlo (MCMC)

Want to sample a (possibly un-normalized) distribution 𝑝(𝑥)

We’ll build a Markov Chain of samples {𝑥R}

Transition to a new sample with a transition probability 𝑞(𝑥RQ"|𝑥R)

Samples will no longer be independent

The distribution of sample 𝑥R will approach 𝑝 𝑥  as 𝑡 → ∞

• i.e. the equilibrium or stationary distribution of the chain will be 𝑝(𝑥)



65Metropolis-Hastings

Want to sample from 𝑝 𝑥  (possibly un-normalized)

Choose proposal distribution 𝑞(𝑥′|𝑥R) 
• For example, 𝑞 𝑥< 𝑥& = 𝒩(𝑥<|𝑥& , 𝜎&)

Algorithm:
•Given current sample 𝑥&
•Draw proposal 𝑥<~𝑞(𝑥<|𝑥&)
• Evaluate

𝑎 = min 1,
𝑝(𝑥<)
𝑝(𝑥&)

𝑞(𝑥&|𝑥<)
𝑞(𝑥<|𝑥&)

• Accept with probability 𝑎:	 𝑥&=* ← 𝑥′
• Stay with probability 1 − 𝑎:	 𝑥&=* ← 𝑥&

MH is performing a (biased) random walk



66Metropolis-Hastings

Want to sample from 𝑝 𝑥  (possibly un-normalized)

Choose proposal distribution 𝑞(𝑥′|𝑥R) 
• For example, 𝑞 𝑥< 𝑥& = 𝒩(𝑥<|𝑥& , 𝜎&)

Algorithm:
•Given current sample 𝑥&
•Draw proposal 𝑥<~𝑞(𝑥<|𝑥&)
• Evaluate

𝑎 = min 1,
𝑝(𝑥<)
𝑝(𝑥&)

𝑞(𝑥&|𝑥<)
𝑞(𝑥<|𝑥&)

• Accept with probability 𝑎:	 𝑥&=* ← 𝑥′
• Stay with probability 1 − 𝑎:	 𝑥&=* ← 𝑥&

Challenges:
• Requires a warm-up period before 

chain sufficiently converges to 
sampling from 𝑝(𝑥)

•Depending on structure of 𝑝(𝑥), can 
be difficult for proposal to find a 
new sample with high 𝑎

• If 𝑝(𝑥) has “islands”, hard to traverse



67Only Touched the Surface

Many Other Sampling Algorithms
•Hamiltonian Monte Carlo

•No-U-Turn Sampler

•Nested Sampling

• Sequential Monte Carlo

•….

Interesting area of work, encourage you to check it out!
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End Interlude



69A note on Sequential NPE / NLE

If the prior distribution is very different from the posterior

•Many of the simulations will be in low density regions of the posterior

• Both NPE and NLE will use a lot of capacity of the neural network to learn about 
low density regions of the posterior / likelihood

•Ultimately this can lead to bad posterior approximations

To tackle this problem, Sequential versions of NPE / NLE has been proposed, 
to train the model in stages, where later stages use current posterior as a 
proposal for simulation
•Don’t have time to cover here, but worth having a read!



70Density Estimation is Hard in High Dimensions!

Estimating likelihood or 
posterior in high 
dimensions is hard!

Solution 1:
•Learn summaries 𝑠(𝑥) 
instead of 𝑥 directly

Solution 2:
•Don’t learn densities

2301.06575

https://arxiv.org/abs/2301.06575


71Summary

Simulation-based inference is a set of methods for doing parameter inference 
when the likelihood is intractable, but we can simulate the process to 
generate simulated data

Situation arises frequently in science, where we have high fidelity simulators

So far we looked at Neural Likelihood and Posterior estimation, which 
required using density estimation techniques, e.g. Normalizing Flows

Next time, we will look at Neural Ratio Estimation
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Backup



73The Problem with Rejection Sampling

Slide Credit: P. Henning


