Simulation-Based Inference II

Michael Kagan
SLAC

July 20, 2023

SLAC NATIONAL ACCELERATOR
ABORATORY

Density Estimation is Hard in High Dimensions!

Estimating likelihood or posterior in high dimensions is hard!

Solution 1:
-Learn summaries $s(x)$ instead of x directly

Solution 2:
-Don't learn densities

Neural Ratio Estimation

Likelihood Ratio Estimation

Instead of estimating densities, a popular approach is density ratio estimation

$$
\frac{p(x \mid \theta)}{p(x)}, \quad \frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}, \quad \frac{p(x \mid \theta)}{p\left(x \mid \theta_{0}\right)}
$$

Why? In many cases, don't need normalized density.

Likelihood Ratio Estimation

Instead of estimating densities, a popular approach is density ratio estimation

$$
\frac{p(x \mid \theta)}{p(x)}, \quad \frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}, \quad \frac{p(x \mid \theta)}{p\left(x \mid \theta_{0}\right)}
$$

More importantly... We know the most powerful summary statistic to decide between two (simple) hypotheses due to the Neyman-Pearson Lemma

It's the Likelihood ratio:

$$
t(x)=\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}
$$

Likelihood Ratio Estimation

Instead of estimating densities, a popular approach is density ratio estimation

$$
\frac{p(x \mid \theta)}{p(x)}, \quad \frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}, \quad \frac{p(x \mid \theta)}{p\left(x \mid \theta_{0}\right)}
$$

More importantly... We know the most powerful summary statistic to decide between two (simple) hypotheses due to the Neyman-Pearson Lemma

It's the Likelihood ratio:

$$
t(x)=\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)}
$$

Intriguingly, we can estimate this ratio without knowing $\boldsymbol{p}(\boldsymbol{x} \mid \boldsymbol{\theta})$ explicitly!

Likelihood Ratio Trick

Given data x from two classes / hypotheses / θ 's: we assign labels $y=\{0,1\}$
Sufficiently powerful classifier, $f(x)$, trained sufficiently well will approximate

$$
f(x) \approx \frac{1}{1+r^{-1}(x)}
$$

- where $r(x)=\frac{p(x \mid y=1)}{p(x \mid y=0)}$ is the likelihood ratio

Equivalently:

$$
r(x) \approx \frac{f(x)}{1-f(x)}
$$

Rough Derivation

Binary classification problem in ML: Minimize Binary Cross Entropy Loss

$$
w^{*}=\arg \min _{w} \frac{1}{N} \sum_{i=1}^{N} y_{i} \log f_{w}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-f_{w}\left(x_{i}\right)\right)
$$

Want to minimize loss function over dataset w.r.t. model parameters

Rough Derivation

Binary classification problem in ML: Minimize Binary Cross Entropy Loss

$$
w^{*}=\arg \min _{w} \frac{1}{N} \sum_{i=1}^{N} y_{i} \log f_{w}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-f_{w}\left(x_{i}\right)\right)
$$

What are we really doing here?

Using an empirical average:

$$
\int d x d y p(x, y) \rightarrow \frac{1}{N} \Sigma_{i=1}^{N} \text { with samples }\left\{x_{i}, y_{i}\right\} \sim p(x, y)
$$

Parameterizing (and thereby restricting) a class of functions:

$$
\operatorname{All} f(\cdot) \rightarrow\left\{f_{w}(\cdot) ; w \in R^{k}\right\}
$$

Rough Derivation

Ideally, we would minimize loss function over dataset w.r.t. model f(•)

$$
\begin{aligned}
f^{*}(x) & =\arg \min _{f} \mathbb{E}[L(f(x), y)] \\
& =\arg \min _{f} \int p(x, y)[y \log f(x)+(1-y) \log (1-f(x))] d x d y
\end{aligned}
$$

Rough Derivation

Ideally, we would minimize loss function over dataset w.r.t. model f(•)

$$
\begin{aligned}
f^{*}(x) & =\arg \min _{f} \mathbb{E}[L(f(x), y)] \\
& =\arg \min _{f} \int p(x, y)[y \log f(x)+(1-y) \log (1-f(x))] d x d y
\end{aligned}
$$

We can try to solve these kinds of problems using Calculus of Variations!

Rough Derivation

Ideally, we would minimize loss function over dataset w.r.t. model f(•)

$$
\begin{aligned}
f^{*}(x) & =\arg \min _{f} \mathbb{E}[L(f(x), y)] \\
& =\arg \min _{f} \int p(x, y)[y \log f(x)+(1-y) \log (1-f(x))] d x d y
\end{aligned}
$$

Take functional derivative $\frac{\delta}{\delta f}$ and set to zero (minimum), we find:

$$
f^{*}(x)=p(y=1 \mid x)
$$

Rough Derivation

In the infinite statistics limit, the solution to a binary classification problem:

$$
\begin{array}{rlrl}
f^{*}(x) & =p(y=1 \mid x) & & \text { Posterior! } \\
& =\frac{p(x \mid y=1) p(y=1)}{p(x)} & & \text { Bayes Rule } \\
& =\frac{p(x \mid y=1) p(y=1)}{p(x \mid y=1) p(y=1)+p(x \mid y=0) p(y=0)} & & \text { Expand } p(x) \\
& =\frac{1}{1+\frac{p(x \mid y=0)}{p(x \mid y=1)} \frac{p(y=0)}{p(y=1)}}
\end{array}
$$

Rough Derivation

Assuming equal marginal class probabilities $p(y=1)=p(y=0)=0.5$

$$
\begin{array}{rlrl}
f^{*}(x) & =\frac{1}{1+\frac{p(x \mid y=0)}{p(x \mid y=1)}} & & \\
& =\frac{1}{1+e^{-\ln r(x)}} & \text { Likelihood ratio! } \\
& =\sigma(\ln r(x)) & \begin{array}{l}
\text { With } r(x)=\frac{p(x \mid y=1)}{p(x \mid y=0)} \\
\text { Log-Likelihoods are the } \\
\text { logits of the classifier }
\end{array}
\end{array}
$$

Practical note

We found the optimal classifier solution: $f(x)=\sigma(\ln r(x))$

Typical neural network classifier has sigmoid as last computation to estimate class probability:

$$
f(x)=\sigma(z=N N L a y e r s(x))
$$

Practical note

We found the optimal classifier solution: $f(x)=\sigma(\ln r(x))$

Typical neural network classifier has sigmoid as last computation to estimate class probability:

$$
f(x)=\sigma(z=N N L a y e r s(x))
$$

The input to the networks last sigmoid layer is the log-likelihood-ratio
More numerically stable to extract these logit values, than to compute ratios of classifier outputs
$x \sim p\left(x \mid \theta_{1}\right)$
$x \sim p\left(x \mid \theta_{0}\right)$

$$
\hat{r}(x) \approx \frac{p\left(x \mid \theta_{1}\right)}{p\left(x \mid \theta_{0}\right)}
$$

What if we want to test multiple parameters? Amortized Inference

1. Proposal distribution $\pi(\theta)$ 3. Sample batch of events $x \sim p(x \mid \theta)$
2. Sample parameters $\theta \sim \pi(\theta)$
3. Train classifier on batch, repeat

$$
\begin{aligned}
& \theta \sim \pi(\theta) \\
& x \sim p(x \mid \theta)
\end{aligned}
$$

```
00
```


$$
\hat{r}(x \mid \theta) \approx \frac{p(x \mid \theta)}{p\left(x \mid \theta_{0}\right)}
$$

Amortized Inference

Now we have a parameterized neural network

Input θ tells network which classification / ratio estimation problem to solve

Amortized Inference

LHC Example

Neural Ratio Estimation for Bayesian Inference
Density ratio estimation also works well for Bayesian Inference

$$
p(\theta \mid x)=\frac{p(x \mid \theta)}{p(x)} p(\theta)
$$

Neural Ratio Estimation for Bayesian Inference
Density ratio estimation also works well for Bayesian Inference

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x) p(\theta)} p(\theta)
$$

Density ratio estimation also works well for Bayesian Inference

Joint

$$
p(\theta \mid x)=\frac{p(x, \theta)}{p(x) p(\theta)} p(\theta)
$$

Marginals

Using Neural Ratio Estimation (NRE)

Once trained, can sample the posterior $\hat{p}(\theta \mid x)=\hat{r}(x \mid \theta) p(\theta)$ with MCMC

$$
\begin{aligned}
& x_{b}=50 y^{-0.5} \\
& x_{s}=A_{s} e^{-\frac{\left(y-\mu_{s}\right)^{2}}{2(0.05)^{2}}} \\
& x \sim p\left(x \mid A_{s}, \mu_{s}\right)=\operatorname{Pois}\left(x_{b}+x_{s}\right)
\end{aligned}
$$

Coverage Diagnostics

Test if the posterior predicted intervals match the simulator

Simulated samples $x, \theta \sim p(x, \theta)$

Compute 1D quantiles or credible intervals of approx. posterior $\hat{p}(\theta \mid x)$ by sampling posterior

Empirical coverage is the fraction of samples of true θ that is contained in the interval

Coverage Comparisons

Sometimes, we can do more with simulators...

Getting more from Simulators

The likelihood ratio trick \rightarrow Estimate density ratios from samples

Had to do this because the likelihood is intractable:

$$
p(x \mid \theta)=\int d z p(x, z \mid \theta)
$$

Why is this intractable? \rightarrow Often its because of the integral

Example

$x \sim p(x)=\mathcal{N}(0,1)$
$\mu_{y \mid x}=4-x^{2}$
$y \sim p(y \mid x)=\mathcal{N}\left(\mu_{y \mid x}, 1\right)$

Joint:
$p(y, x)=\mathcal{N}\left(y \mid \mu_{y \mid x}, 1\right) \mathcal{N}(x \mid 0,1)$

Marginal?
$p(y)=\int p(y \mid x) p(x) d x$

$p(x, z \mid \theta)$

Often we know the joint \rightarrow it's what we implemented in code!

If we keep track of all the random variables we sampled and their distribution, we can evaluate the probability of a simulation run

We can actually use these joint densities as labels for training

Regression Trick

What model do we learn from MSE regression?

$$
f^{*}(x)=\arg \min _{\hat{f}} \mathbb{E}_{p(x, y)}\left[(y-\hat{f}(x))^{2}\right]
$$

Regression Trick

What model do we learn from MSE regression?

$$
f^{*}(x)=\arg \min _{\hat{f}} \mathbb{E}_{p(x, y)}\left[(y-\hat{f}(x))^{2}\right]
$$

Same as before: Calculus of variations

$$
\frac{\delta}{\delta \hat{f}} \int d x d y p(y \mid x) p(x)\left[(y-\hat{f}(x))^{2}\right]=0
$$

Solution:

$$
f^{*}(x)=\mathbb{E}_{p(y \mid x)}[y]
$$

Solution to a regression is an expected value over the conditional distribution

Regression Trick

Generalizing that result

$$
\begin{aligned}
f^{*}(x) & =\arg \min _{\hat{f}} \mathbb{E}_{p(x, z \mid \theta)}\left[(f(x, z)-\hat{f}(x))^{2}\right] \\
& =\mathbb{E}_{p(z \mid x, \theta)}[f(x, z)]
\end{aligned}
$$

When z is a latent random variable,
Regression trick enables us to marginalize over the latent variable

What if $f(\cdot)$ is the joint likelihood ratio?

Let

$$
f(x, z)=r\left(x, z \mid \theta_{0}, \theta_{1}\right)=\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}
$$

Then

$$
\begin{aligned}
r^{*}(x) & =\arg \min _{\hat{r}} \mathbb{E}_{p\left(x, z \mid \theta_{1}\right)}\left[\left(r\left(x, z \mid \theta_{0}, \theta_{1}\right)-\hat{r}(x)\right)^{2}\right] \\
& =\mathbb{E}_{p\left(z \mid x, \theta_{1}\right)}\left[r\left(x, z \mid \theta_{0}, \theta_{1}\right)\right] \quad \text { OK... but what is this??? }
\end{aligned}
$$

$$
\begin{aligned}
r^{*}(x) & =\mathbb{E}_{p\left(z \mid x, \theta_{1}\right)}\left[r\left(x, z \mid \theta_{0}, \theta_{1}\right)\right] \\
& =\int d z p\left(z \mid x, \theta_{1}\right) r\left(x, z \mid \theta_{0}, \theta_{1}\right) \quad \text { Conditional definition } \\
& =\int d z \frac{p\left(x, z \mid \theta_{1}\right)}{p\left(x \mid \theta_{1}\right)} \frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)} \\
& =\frac{1}{p\left(x \mid \theta_{1}\right)} \int d z p\left(x, z \mid \theta_{0}\right) \quad \text { Marginal definition } \\
& =\frac{p\left(x \mid \theta_{0}\right)}{p\left(x \mid \theta_{1}\right)} \quad \begin{array}{l}
\text { Marginal Likelihood Ratio } \\
\rightarrow \text { No latents! }
\end{array}
\end{aligned}
$$

Regression Trick for Score

This trick also works for the score: $\quad t(x \mid \theta)=\nabla_{\theta} \log p(x \mid \theta)$

$$
\begin{aligned}
t^{*}(x \mid \theta) & =\arg \min _{\hat{t}} \mathbb{E}_{p(x, z \mid \theta)}\left[(t(x, z \mid \theta)-\hat{t}(x \mid \theta))^{2}\right] \\
& =\mathbb{E}_{p(z \mid x, \theta)}[t(x, z \mid \theta)] \\
& =t(x \mid \theta)
\end{aligned}
$$

Regressing on the join score allows use to "marginalize out" latents

And estimate marginal likelihood score!

What's going on here?

Instead of classifying samples to get learn likelihood ratio

What's going on here?

Instead of classifying samples to get learn likelihood ratio

We can use the join density as training targets

Instead of classifying samples to get learn likelihood ratio

We can use the join density as training targets

These are noisy targets, since they jump around due to z in $p(x, z \mid \theta)$

What about the Gradients?

The gradients give us higher order information about for training...
i.e. the slope of the density w.r.t parameters

This is more information, from each data point, to guide learning

Additional labels for training!
Compare with grad or ratio estimate

$$
\hat{t}\left(x \mid \theta_{0}\right)=\left.\nabla_{\theta} \log \hat{r}\left(x \mid \theta, \theta_{1}\right)\right|_{\theta_{1}}
$$

Ratio + Score Regression (RASCAL) Loss

$$
\begin{aligned}
L\left[\hat{r}\left(x \mid \theta_{0}, \theta_{1}\right)\right]=\frac{1}{N} \sum_{\left(x_{e}, z_{e}, y_{e}\right)}[& {\left[y_{e}\left|r\left(x_{e}, z_{e} \mid \theta_{0}, \theta_{1}\right)-\hat{r}\left(x_{e} \mid \theta_{0}, \theta_{1}\right)\right|^{2}\right.} \\
& +\left(1-y_{e}\right)\left|\frac{1}{r\left(x_{e}, z_{e} \mid \theta_{0}, \theta_{1}\right)}-\frac{1}{\hat{r}\left(x_{e} \mid \theta_{0}, \theta_{1}\right)}\right|^{2} \\
& \left.+\alpha\left(1-y_{e}\right)\left|t\left(x_{e}, z_{e} \mid \theta_{0}\right)-\hat{t}\left(x_{e} \mid \theta_{0}\right)\right|^{2}\right]
\end{aligned}
$$

Where: $r\left(x, z \mid \theta_{0}, \theta_{1}\right)=\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}$

$$
\text { And } y_{e}= \begin{cases}1 & \text { if } x, z \sim p\left(x, z \mid \theta_{1}\right) \\ 0 & \text { if } x, z \sim p\left(x, z \mid \theta_{0}\right)\end{cases}
$$

How can we use this in HEP

Likelihood in HEP: $p(x \mid \theta)=\int d z p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta\right)$

$\mathrm{O}(20)$ Fundamental physics parameters θ

O(10) particles

O(100) particles

$\mathrm{O}\left(10^{8}\right)$ detector elements

Likelihood in HEP: $p(x \mid \theta)=\int d z p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta\right)$

Lets look at the ratio of joint probabilities for a fixed x, z

$$
\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}=\frac{p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta_{0}\right)}{p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta_{1}\right)}
$$

Likelihood in HEP: $p(x \mid \theta)=\int d z p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta\right)$

Lets look at the ratio of joint probabilities for a fixed x, z

$$
\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}=\frac{p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta_{0}\right)}{p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta_{1}\right)}
$$

Same parton, hadronization, and observation configuration in numerator and denominator. Only different parameter values

How can we use this in HEP

Likelihood in HEP: $p(x \mid \theta)=\int d z p\left(x \mid z_{h}\right) p\left(z_{h} \mid z_{p}\right) p\left(z_{p} \mid \theta\right)$

Lets look at the ratio of joint probabilities for a fixed x, z

$$
\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}=\frac{p\left(x+z_{k}\right) p\left(z \mid z_{n}\right) p\left(z_{p} \mid \theta_{0}\right)}{p\left(x \mid z_{k}\right) p\left(z_{n} \mid z_{k}\right) p\left(z_{p} \mid \theta_{1}\right)}
$$

Same parton, hadronization, and observation configuration in numerator and denominator. Only different parameter values

At fixed x, z (i.e. fixed simulator evolution and observation), all the particle evolution and measurement process are the same... Cancel out in ratio!

$$
\frac{p\left(x, z \mid \theta_{0}\right)}{p\left(x, z \mid \theta_{1}\right)}=\frac{p\left(z_{p} \mid \theta_{0}\right)}{p\left(z_{p} \mid \theta_{1}\right)} \leadsto \begin{aligned}
& \text { Matrix elements at different } \\
& \text { parameter values }
\end{aligned}
$$

The joint ratio is the ratio of matrix elements at a given parton configuration!

We can evaluate that and use as training target!

In some cases we can evaluate the gradient... more later

Massive Gains in Data Efficiency

Parameterize classifier

Regression trick on r

Regression trick also on gradients

Getting Gradients

Getting gradients requires differentiating arbitrary Matrix Elements
Some matrix elements factorize into a sum of components, each consisting of an analytic function of parameters of interest times a phase space function

$$
|\mathcal{M}|^{2}\left(z_{p} \mid \theta\right)=\sum_{c} w_{c}(\theta) f_{c}\left(z_{p}\right)
$$

Getting Gradients

Getting gradients requires differentiating arbitrary Matrix Elements
Some matrix elements factorize into a sum of components, each consisting of an analytic function of parameters of interest times a phase space function
e.g. $|\mathcal{M}|^{2}\left(z_{p} \mid \theta\right)=\underbrace{1}_{w_{0}(\theta)} \underbrace{\left|\mathcal{M}_{S M}\right|^{2}\left(z_{p}\right)}_{f_{0}\left(z_{p}\right)}+\underbrace{\theta}_{w_{1}(\theta)} \underbrace{2 \operatorname{Re} \mathcal{M}_{S M}^{\dagger}\left(z_{p}\right) \mathcal{M}_{B S M}\left(z_{p}\right)}_{f_{1}\left(z_{p}\right)}+\underbrace{\theta^{2}}_{w_{2}(\theta)} \underbrace{\left|\mathcal{M}_{B S M}\right|^{2}\left(z_{p}\right)}_{f_{2}\left(z_{p}\right)}$

Getting Gradients

Getting gradients requires differentiating arbitrary Matrix Elements

Some matrix elements factorize into a sum of components, each consisting of an analytic function of parameters of interest times a phase space function
e.g. $|\mathcal{M}|^{2}\left(z_{p} \mid \theta\right)=\underbrace{1}_{w_{0}(\theta)} \underbrace{\left|\mathcal{M}_{S M}\right|^{2}\left(z_{p}\right)}_{f_{0}\left(z_{p}\right)}+\underbrace{\theta}_{w_{1}(\theta)} \underbrace{2 \operatorname{Re} \mathcal{M}_{S M}^{\dagger}\left(z_{p}\right) \mathcal{M}_{B S M}\left(z_{p}\right)}_{f_{1}\left(z_{p}\right)}+\underbrace{\theta^{2}}_{w_{2}(\theta)} \underbrace{\left|\mathcal{M}_{B S M}\right|^{2}\left(z_{p}\right)}_{f_{2}\left(z_{p}\right)}$

Often the case for effective field theories, when indirect effects of new physics are parameterized through form factors

In this case, can more easily extract the gradients ∇_{θ} w/o differentiating $f_{i}\left(z_{p}\right)$

This is implemented in MadMiner

If we don't have this factorization, we need a more general tool for differentiating matrix elements with respect to arbitrary parameters

How can we do this? \rightarrow Differentiable Programming

Create a differentiable matrix element simulator by integrating matrix element generator with an automatic differentiation framework

MadJax = MadGraph + JAX AD framework

MadGraph Code Generation

Feynman

 DiagCode Gen

Integ
EvGen

If we don't have this factorization, we need a more general tool for differentiating matrix elements with respect to arbitrary parameters

How can we do this? \rightarrow Differentiable Programming

Create a differentiable matrix element simulator by integrating matrix element generator with an automatic differentiation framework

MadJax = MadGraph + JAX AD framework

Access to phase space and parameter gradients

1. Generation:
```
generate p p > t t~, t > b udsc udscx , t~ > b ~ udsc udscx
```

output madjax generated_ttbar
set auto_update 0

2. Evaluation:

import madjax
$\mathrm{mj}=$ madjax. $\operatorname{MadJax}($ 'generated_ttbar') E_cm = 14000 \#GeV process = 'Matrix_1_gg_ttx_t_budx_tx_bxdux' matrix_element $=$ mj.matrix_element(E_cm, process)
parameters $=\{($ 'mass',6): 173.0\} \#set top mass phasespace_coords $=[0.1] * 14$ \#14D phasespace

val, grad = matrix_element(parameters,phasespace_coords) grad[('mass', 6)] \#gradient wrt top mass

Likelihood Ratio Estimation with MadJax

MadJax enables automatic likelihood-free inference for arbitrary theory parameters (masses, mixings, couplings)

Toy Example: $r\left(x \mid G_{F}\right)$ in $e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}$events

What About Systematic Uncertainties

Systematic Uncertainties

Source of uncertainty	$\mu_{V H(c \bar{c})}$
Total	21.5
Statistical	16.2
Systematics	14.0
Statistical uncertainties	
Data statistics only	13.0
Floating normalisations	7.2
Theoretical and modelling uncertainties	
$V H(\rightarrow c \bar{c})$	2.1
$Z+$ jets	7.7
Top-quark	5.6
$W+$ jets	3.4
Diboson	0.8
$V H(\rightarrow b \bar{b})$	0.8
Multi-Jet	1.0
Simulation statistics	5.1
Experimental uncertainties	
Jets	3.7
Leptons	0.4
$E_{\mathrm{T}}^{\text {miss }}$	
Pile-up and luminosity	
	c-jets
Flavour tagging	b-jets
	light-jets
τ-jets	0.5
	ΔR correction
	Residual non-closure

Nuisance Parameters

Measure / parameterize possible variations over ways data may be generated

$$
x \sim p(x \mid \theta, v)
$$

Parameterized family
of likelihood models $\quad \square$
Nuisance Parameter: Parameterizing variations

Often can constrain from auxiliary measurements: $p\left(x_{\text {aux }} \mid v\right)$ (i.e. from calibrations for reconstructed objects)

Ratio Estimation with Nuisance Parameters

Proposal distribution $\pi(\theta)$, nuisance parameter proposal $\pi(v)$
$\theta \sim \pi(\theta)$
$v \sim \pi(v)$
$x \sim p(x \mid \theta, v)$

$$
\begin{aligned}
& \theta_{0} \\
& v_{0} \sim \pi\left(v_{0}\right) \\
& x \sim p\left(x \mid \theta_{0}, v\right)
\end{aligned}
$$

$$
\hat{r}\left(x \mid \theta, v, v_{0}\right) \approx \frac{p(x \mid \theta, v)}{p\left(x \mid \theta_{0}, v_{0}\right)}
$$

Nuisance Parameters and SBI

In principle, as far as density ratio estimation is concerned, nuisance parameters are just like parameters of interest
\rightarrow Effectively increased the parameter dimensionality
\rightarrow Practically, need more simulated samples to estimate density ratio well

Nuisance Parameters and SBI

In principle, as far as density ratio estimation is concerned, nuisance parameters are just like parameters of interest
\rightarrow Effectively increased the parameter dimensionality
\rightarrow Practically, need more simulated samples to estimate density ratio well

This can be prohibitive, especially for large numbers of nuisance parameters

Can limit our ability to estimate profile likelihood ratio: $\frac{\max _{v} p\left(x \mid \theta_{0}, v\right)}{\max _{\theta, v} p(x \mid \theta, v)}$
Open problem on how best to deal w/ (large numbers of) nuisance params

Learning the Profile Likelihood

Interesting recent work aiming to use SBI to learn profile likelihood directly

2 POI, 1 NP

Wrapping Up

need to write down likelihood

need to do MCMC

With Simulation-Based Inference, we can use neural networks to help avoid data summarization / compression, and preform inference on high dimensional data and parameter spaces

NLE / NPE require density estimation, while neural ratio estimation allows us to use the likelihood ratio trick and train classifiers. NRE can be used for both frequentist and Bayesian inference.

Important to keep in mind model validation and calibration

And there is still the challenge of incorporating large numbers of systematic uncertainties. More generally, it's an open question what to do in SBI when the likelihood is not perfectly specified.

Backup

Example

How Do We Know If The Model Is Good?

Can we Calibrate Models?

Can we correct an approximate ratio $\hat{r}(x \mid \theta)$ if it does not exactly predict the true likelihood ratio?

One method: Back to histograms!

- Treat $\hat{r}(x \mid \theta)$ as a really good summary statistic
- Bin the output values \hat{r}_{i} evaluated into 1D histogram -i.e. 1D density estimation of \hat{r} evaluated on a sample

$$
\hat{r}_{\text {cal }}=\frac{\hat{p}\left(\hat{r}_{\text {raw }} \mid \theta_{0}\right)}{\hat{p}\left(\hat{r}_{\text {raw }} \mid \theta_{1}\right)}
$$

- Perform usual HEP histogram based inference

Challenge:

- Different histograms for each θ may require interpolation

Joint Likelihood Ratio Estimation, Calibration, and Diagnostics

Likelihood-Free Frequentist Inference

