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2Last Time

Simulator / Forward model

𝑥~𝑝(𝑥|𝜃)

Measured data

𝑦

Proposal / Prior distribution

Slide adapted from J. Macke

𝜋(𝜃)

Likelihood ratio estimation

𝑟! 𝑥 𝜃, 𝜃" ≈
𝑝(𝑥|𝜃)
𝑝(𝑥|𝜃")

Likelihood estimation
𝑞!(𝑥|𝜃) ≈ 𝑝(𝑥|𝜃)

Posterior estimation
𝑞!(𝜃|𝑥) ≈ 𝑝(𝜃|𝑥) ∝ 𝑝 𝑥 𝜃 𝜋(𝜃)

Posterior / 
Confidence intervals

Neural Net

Evaluate model
on measured data

Review: K. Cranmer, J. Brehmer, G. Louppe, PNAS (2020)

https://www.pnas.org/content/117/48/30055
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Simulator / Forward model
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Measured data

𝑦
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𝜋(𝜃)

Likelihood ratio estimation

𝑟! 𝑥 𝜃, 𝜃" ≈
𝑝(𝑥|𝜃)
𝑝(𝑥|𝜃")

Likelihood estimation
𝑞!(𝑥|𝜃) ≈ 𝑝(𝑥|𝜃)

Posterior estimation
𝑞!(𝜃|𝑥) ≈ 𝑝(𝜃|𝑥) ∝ 𝑝 𝑥 𝜃 𝜋(𝜃)

Posterior / 
Confidence intervals

Neural Density 
Estimation

Evaluate model
on measured data

Review: K. Cranmer, J. Brehmer, G. Louppe, PNAS (2020)

https://www.pnas.org/content/117/48/30055


4Density Estimation is Hard in High Dimensions!

Estimating likelihood or 
posterior in high 
dimensions is hard!

Solution 1:
•Learn summaries 𝑠(𝑥) 
instead of 𝑥 directly

Solution 2:
•Don’t learn densities

2301.06575

https://arxiv.org/abs/2301.06575


5

Neural Ratio Estimation



6Likelihood Ratio Estimation

Instead of estimating densities, a popular approach is density ratio estimation

𝑝 𝑥 𝜃
𝑝 𝑥

,
𝑝 𝑥 𝜃*
𝑝(𝑥|𝜃+)

,
𝑝 𝑥 𝜃
𝑝(𝑥|𝜃*)

Why?  In many cases, don’t need normalized density. 



7Likelihood Ratio Estimation

Instead of estimating densities, a popular approach is density ratio estimation

𝑝 𝑥 𝜃
𝑝 𝑥

,
𝑝 𝑥 𝜃*
𝑝(𝑥|𝜃+)

,
𝑝 𝑥 𝜃
𝑝(𝑥|𝜃*)

More importantly… We know the most powerful summary statistic to decide 
between two (simple) hypotheses due to the Neyman-Pearson Lemma

It’s the Likelihood ratio: 𝑡 𝑥 =
𝑝 𝑥 𝜃*
𝑝(𝑥|𝜃+)



8Likelihood Ratio Estimation

Instead of estimating densities, a popular approach is density ratio estimation

𝑝 𝑥 𝜃
𝑝 𝑥

,
𝑝 𝑥 𝜃*
𝑝(𝑥|𝜃+)

,
𝑝 𝑥 𝜃
𝑝(𝑥|𝜃*)

More importantly… We know the most powerful summary statistic to decide 
between two (simple) hypotheses due to the Neyman-Pearson Lemma

It’s the Likelihood ratio: 

Intriguingly, we can estimate this ratio without knowing 𝒑(𝒙|𝜽) explicitly!

𝑡 𝑥 =
𝑝 𝑥 𝜃*
𝑝(𝑥|𝜃+)



9Likelihood Ratio Trick

Given data 𝑥 from two classes / hypotheses / 𝜃’s:   we assign labels 𝑦 = {0, 1}

Sufficiently powerful classifier, 𝑓(𝑥), trained sufficiently well will approximate

     𝑓 𝑥 ≈ +
+,-!"(.)

      

•where 𝑟 𝑥 = - 𝑥 𝑦 = 1
- 𝑥 𝑦 = 0  is the likelihood ratio

Equivalently:  𝑟 𝑥 ≈ / .
+0/(.)



10Rough Derivation

Binary classification problem in ML: Minimize Binary Cross Entropy Loss

𝑤∗ = argmin
2

1
𝑁
=
34+

5

𝑦3 log 𝑓2 𝑥3 + 1 − 𝑦3 log 1 − 𝑓2 𝑥3

Want to minimize loss function over dataset w.r.t. model parameters 



11Rough Derivation

Binary classification problem in ML: Minimize Binary Cross Entropy Loss

𝑤∗ = argmin
2

1
𝑁
=
34+

5

𝑦3 log 𝑓2 𝑥3 + 1 − 𝑦3 log 1 − 𝑓2 𝑥3

What are we really doing here?

Using an empirical average: 
    ∫ 𝑑𝑥𝑑𝑦	𝑝 𝑥, 𝑦 → +

5 Σ34+
5 			with	samples	 𝑥3, 𝑦3 ~𝑝(𝑥, 𝑦)

Parameterizing (and thereby restricting) a class of functions: 
		 	 	 	 All	𝑓 ⋅ → 	 {𝑓2 ⋅ 	; 	 𝑤 ∈ 𝑅6}



12Rough Derivation

Ideally, we would minimize loss function over dataset w.r.t. model  f(⋅)

𝑓∗ 𝑥 = argmin
/
𝔼[𝐿 𝑓 𝑥 , 𝑦 ]

	
	 = argmin

/
∫ 𝑝 𝑥, 𝑦 𝑦 log 𝑓 𝑥 + 1 − 𝑦 log 1 − 𝑓 𝑥 𝑑𝑥𝑑𝑦



13Rough Derivation

Ideally, we would minimize loss function over dataset w.r.t. model  f(⋅)

𝑓∗ 𝑥 = argmin
/
𝔼[𝐿 𝑓 𝑥 , 𝑦 ]

	
	 = argmin

/
∫ 𝑝 𝑥, 𝑦 𝑦 log 𝑓 𝑥 + 1 − 𝑦 log 1 − 𝑓 𝑥 𝑑𝑥𝑑𝑦

We can try to solve these kinds of problems 
using Calculus of Variations!



14Rough Derivation

Ideally, we would minimize loss function over dataset w.r.t. model  f(⋅)

𝑓∗ 𝑥 = argmin
/
𝔼[𝐿 𝑓 𝑥 , 𝑦 ]

	
	 = argmin

/
∫ 𝑝 𝑥, 𝑦 𝑦 log 𝑓 𝑥 + 1 − 𝑦 log 1 − 𝑓 𝑥 𝑑𝑥𝑑𝑦

Take functional derivative 77/ and set to zero (minimum), we find:

𝒇∗ 𝒙 = 𝒑(𝒚 = 𝟏|𝒙)



15Rough Derivation

In the infinite statistics limit, the solution to a binary classification problem:

𝑓∗ 𝑥 = 𝑝 𝑦 = 1 𝑥
	

	 =
𝑝 𝑥 𝑦 = 1 𝑝 𝑦 = 1

𝑝(𝑥)
	

	 =
𝑝 𝑥 𝑦 = 1 𝑝 𝑦 = 1

𝑝 𝑥 𝑦 = 1 𝑝 𝑦 = 1 + 𝑝 𝑥 𝑦 = 0 𝑝(𝑦 = 0)
	

	 =
1

1 + 𝑝 𝑥 𝑦 = 0
𝑝(𝑥|𝑦 = 1)

𝑝 𝑦 = 0
𝑝(𝑦 = 1)

Posterior!

Bayes Rule

Expand 𝑝(𝑥)



16Rough Derivation

Assuming equal marginal class probabilities 𝑝 𝑦 = 1 = 𝑝 𝑦 = 0 = 0.5

𝑓∗ 𝑥 =
1

1 + 𝑝 𝑥 𝑦 = 0
𝑝 𝑥 𝑦 = 1

	

	 =
1

1 + 𝑒0 89 -(.)
	
	 = 𝜎(ln 𝑟 𝑥 )

Likelihood ratio! 

With 𝑟 𝑥 = ! 𝑥 𝑦 = 1
! 𝑥 𝑦 = 0

Log-Likelihoods are the 
   logits of the classifier 



17Practical note

We found the optimal classifier solution: 𝑓 𝑥 = 𝜎(ln 𝑟 𝑥 )

Typical neural network classifier has sigmoid as last computation to estimate 
class probability:

 𝑓 𝑥 = 𝜎 𝑧 = 𝑁𝑁𝐿𝑎𝑦𝑒𝑟𝑠 𝑥 𝑧 𝜎(𝑧) ℒ



18Practical note

We found the optimal classifier solution: 𝑓 𝑥 = 𝜎(ln 𝑟 𝑥 )

Typical neural network classifier has sigmoid as last computation to estimate 
class probability:

 𝑓 𝑥 = 𝜎 𝑧 = 𝑁𝑁𝐿𝑎𝑦𝑒𝑟𝑠 𝑥 𝑧 𝜎(𝑧) ℒ

ln 𝑟 𝑥

The input to the networks last sigmoid layer is the log-likelihood-ratio

More numerically stable to extract these logit values,  than to compute ratios 
of classifier outputs



19Two-Classes

𝑥	~	𝑝(𝑥|𝜃+)

𝑥	~	𝑝(𝑥|𝜃*)

𝑟̂ 𝑥 ≈
𝑝 𝑥 𝜃+
𝑝(𝑥|𝜃*)



20What if we want to test multiple parameters? Amortized Inference

1. Proposal distribution 𝜋(𝜃)
2. Sample parameters 𝜃~𝜋(𝜃)

3. Sample batch of events 𝑥~𝑝 𝑥 𝜃
4. Train classifier on batch, repeat

𝜃~𝜋(𝜃)
 𝑥	~	𝑝(𝑥|𝜃)

𝑟̂ 𝑥|𝜃 ≈
𝑝 𝑥 𝜃
𝑝(𝑥|𝜃*)

𝜃*
 𝑥	~	𝑝(𝑥|𝜃*)



21Amortized Inference

Now we have a parameterized neural network

Input 𝜃 tells network which classification / ratio estimation problem to solve 

𝑟̂ 𝑥|𝜃 ≈
𝑝 𝑥 𝜃
𝑝(𝑥|𝜃*)

Neural Network
𝑥

𝜃



22Amortized Inference



23LHC Example

arXiv:1805.00020

https://arxiv.org/abs/1805.00020


24Neural Ratio Estimation for Bayesian Inference

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃
𝑝 𝑥 𝑝(𝜃)

Density ratio estimation also works well for Bayesian Inference



25Neural Ratio Estimation for Bayesian Inference

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝(𝜃)
𝑝 𝑥 𝑝(𝜃) 𝑝(𝜃)

Density ratio estimation also works well for Bayesian Inference



26Neural Ratio Estimation for Bayesian Inference
Density ratio estimation also works well for Bayesian Inference

𝑝 𝜃 𝑥 =
𝑝(𝑥, 𝜃)
𝑝 𝑥 𝑝(𝜃) 𝑝(𝜃)

Joint

Marginals



27Neural Ratio Estimation for Bayesian Inference

𝑥, 𝜃	~	𝑝 𝑥 𝜃 𝑝(𝜃)

𝑥	~	𝑝(𝑥)
𝜃	~	𝑝(𝜃)

𝑟̂ 𝑥|𝜃 ≈
𝑝 𝑥 𝜃
𝑝(𝑥)

Joint

Marginals
𝑝̂ 𝜃|𝑥 = 𝑟̂ 𝑥 𝜃 𝑝 𝜃
	 ≈ 𝑝(𝜃|𝑥)



28Using Neural Ratio Estimation (NRE)

Once trained, can sample the posterior 𝑝̂ 𝜃|𝑥 = 𝑟̂ 𝑥 𝜃 𝑝(𝜃)	with MCMC

𝑥! = 50𝑦"#.% 

𝑥& = 𝐴&	𝑒
" #$%& '

' (.(* '  

𝑥~𝑝 𝑥 𝐴&, 𝜇& = 𝑃𝑜𝑖𝑠(𝑥! + 𝑥&)



29Coverage Diagnostics

Test if the posterior predicted 
intervals match the simulator

Simulated samples 𝑥, 𝜃~𝑝(𝑥, 𝜃)

Compute 1D quantiles or credible 
intervals of approx. posterior 𝑝̂(𝜃|𝑥) 
by sampling posterior

Empirical coverage is the fraction of 
samples of true 𝜃 that is contained in 
the interval

Conservative

Overconfident

𝜃

De
ns

ity

Figure credit: arXiv:2209.01845

https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2209.01845


30Coverage Comparisons

arXiv:2110.06581

https://arxiv.org/abs/2110.06581


31

Sometimes, we can do more with simulators…



32Getting more from Simulators

The likelihood ratio trick → Estimate density ratios from samples

Had to do this because the likelihood is intractable: 

𝑝 𝑥 𝜃 = ∫ 𝑑𝑧	𝑝 𝑥, 𝑧 𝜃

Why is this intractable? → Often its because of the integral



33Example

𝑥	~	𝑝 𝑥 = 	𝒩 0, 1

𝜇>|. = 4 − 𝑥?

𝑦	~	𝑝 𝑦 𝑥 = 𝒩(𝜇>|., 1)

Joint: 
𝑝 𝑦, 𝑥 = 𝒩 𝑦	 𝜇>|., 1)𝒩 𝑥	 0,1)

Marginal? 
𝑝 𝑦 = ∫ 𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥 



34The Joint Density

Often we know the joint →  it’s what we implemented in code!

If we keep track of all the random variables we sampled and their 
distribution, we can evaluate the probability of a simulation run

We can actually use these joint densities as labels for training

𝑝(𝑥, 𝑧|𝜃)



35Regression Trick

What model do we learn from MSE regression?

𝑓∗ 𝑥 = argmin
@/
𝔼A .,> 𝑦 − g𝑓 𝑥

?



36Regression Trick

What model do we learn from MSE regression?

𝑓∗ 𝑥 = argmin
@/
𝔼A .,> 𝑦 − g𝑓 𝑥

?

Same as before: Calculus of variations

𝛿
𝛿 g𝑓

∫ 𝑑𝑥𝑑𝑦𝑝 𝑦 𝑥 𝑝 𝑥 𝑦 − g𝑓 𝑥
?
= 0

Solution:
𝑓∗ 𝑥 = 𝔼A >|. [𝑦] Solution to a regression

is an expected value over
the conditional distribution



37Regression Trick

Generalizing that result

𝑓∗ 𝑥 = argmin
@/
𝔼A .,C|D 𝑓(𝑥, 𝑧) − g𝑓 𝑥

?

	
	 = 𝔼A C|.,D 𝑓(𝑥, 𝑧)

When 𝑧 is a latent random variable, 
Regression trick enables us to marginalize over the latent variable



38What if 𝑓(⋅) is the joint likelihood ratio?

Let
    𝑓 𝑥, 𝑧 = 𝑟 𝑥, 𝑧 𝜃*, 𝜃+ = A(.,C|D#)

A(.,C|D")
  

Then

𝑟∗ 𝑥 = argmin
-̂
𝔼A .,C|D" 𝑟(𝑥, 𝑧|𝜃*, 𝜃+) − 𝑟̂ 𝑥

?

	
	
	 = 𝔼A C|.,D" 𝑟(𝑥, 𝑧|𝜃*, 𝜃+) OK… but what is this???



39What if 𝑓(⋅) is the joint likelihood ratio?

𝑟∗ 𝑥 = 𝔼A C|.,D" 𝑟(𝑥, 𝑧|𝜃*, 𝜃+)
	
	 = ∫ 𝑑𝑧	𝑝 𝑧 𝑥, 𝜃+ 𝑟 𝑥, 𝑧 𝜃*, 𝜃+
	

	 = ∫ 𝑑𝑧
𝑝 𝑥, 𝑧 𝜃+
𝑝 𝑥 𝜃+

𝑝 𝑥, 𝑧 𝜃*
𝑝 𝑥, 𝑧 𝜃+

	

	 =
1

𝑝 𝑥 𝜃+
∫ 𝑑𝑧	𝑝 𝑥, 𝑧 𝜃*

	

	 =
𝑝(𝑥|𝜃*)
𝑝 𝑥 𝜃+

Conditional definition

Marginal definition

Marginal Likelihood Ratio
   → No latents!



40Regression Trick for Score

This trick also works for the score:    𝑡 𝑥 𝜃 = ∇D log 𝑝 𝑥 𝜃

𝑡∗ 𝑥 𝜃 = argmin
@F
𝔼A 𝑥, 𝑧 𝜃 𝑡 𝑥, 𝑧 𝜃 − 𝑡̂ 𝑥 𝜃

?

	
	 = 𝔼A 𝑧 𝑥, 𝜃 𝑡(𝑥, 𝑧|𝜃)
	
	 = 𝑡(𝑥|𝜃)	

Regressing on the join score allows use to “marginalize out” latents

And estimate marginal likelihood score!



41What’s going on here?

Instead of classifying samples to 
get learn likelihood ratio

Figure credit: L. Heinrich



42What’s going on here?

Instead of classifying samples to 
get learn likelihood ratio

We can use the join density as 
training targets

Figure credit: L. Heinrich

Data Space 𝑥



43What’s going on here?

Instead of classifying samples to 
get learn likelihood ratio

We can use the join density as 
training targets

These are noisy targets, since they 
jump around due to 𝑧 in 𝑝(𝑥, 𝑧|𝜃)

The regression will average over 
this “noise” to get marginal

Figure credit: L. Heinrich

Data Space 𝑥



44What about the Gradients?

The gradients give us higher order 
information about for training…

i.e. the slope of the density w.r.t 
parameters

This is more information, from each 
data point, to guide learning

Additional labels for training!

Compare with grad or ratio estimate
𝑡̂ 𝑥 𝜃* = ∇D log 	 j𝑟̂ 𝑥 𝜃, 𝜃+ D"

	
Figure credit: L. Heinrich



45Ratio + Score Regression (RASCAL) Loss

1805.12244, 1805.00020

Where:  𝑟 𝑥, 𝑧 𝜃*, 𝜃+ = A(.,C|D#)
A(.,C|D")

 

And  𝑦G = k
1	 if	𝑥, 𝑧~𝑝(𝑥, 𝑧|𝜃+)
0	 if	𝑥, 𝑧~𝑝(𝑥, 𝑧|𝜃*)

https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00020


46How can we use this in HEP

Likelihood in HEP:  𝑝 𝑥 𝜃 = ∫ 𝑑𝑧	𝑝(𝑥|𝑧H)𝑝(𝑧H|𝑧A)𝑝(𝑧A|𝜃)

O(108) detector elementsO(100) particlesO(10) particlesO(20) Fundamental 
physics parameters 𝜃



47How can we use this in HEP

Likelihood in HEP:  𝑝 𝑥 𝜃 = ∫ 𝑑𝑧	𝑝(𝑥|𝑧H)𝑝(𝑧H|𝑧A)𝑝(𝑧A|𝜃)

Lets look at the ratio of joint probabilities for a fixed 𝑥, 𝑧

𝑝 𝑥, 𝑧 𝜃*
𝑝(𝑥, 𝑧|𝜃+)

=
𝑝 𝑥 𝑧H 𝑝 𝑧H 𝑧A 𝑝 𝑧A 𝜃*
𝑝 𝑥 𝑧H 𝑝 𝑧H 𝑧A 𝑝 𝑧A 𝜃+



48How can we use this in HEP

Likelihood in HEP:  𝑝 𝑥 𝜃 = ∫ 𝑑𝑧	𝑝(𝑥|𝑧H)𝑝(𝑧H|𝑧A)𝑝(𝑧A|𝜃)

Lets look at the ratio of joint probabilities for a fixed 𝑥, 𝑧

𝑝 𝑥, 𝑧 𝜃*
𝑝(𝑥, 𝑧|𝜃+)

=
𝑝 𝑥 𝑧H 𝑝 𝑧H 𝑧A 𝑝 𝑧A 𝜃*
𝑝 𝑥 𝑧H 𝑝 𝑧H 𝑧A 𝑝 𝑧A 𝜃+

Same parton, hadronization, and observation configuration in numerator and 
denominator. Only different parameter values



49How can we use this in HEP

Likelihood in HEP:  𝑝 𝑥 𝜃 = ∫ 𝑑𝑧	𝑝(𝑥|𝑧H)𝑝(𝑧H|𝑧A)𝑝(𝑧A|𝜃)

Lets look at the ratio of joint probabilities for a fixed 𝑥, 𝑧

𝑝 𝑥, 𝑧 𝜃*
𝑝(𝑥, 𝑧|𝜃+)

=
𝑝 𝑥 𝑧H 𝑝 𝑧H 𝑧A 𝑝 𝑧A 𝜃*
𝑝 𝑥 𝑧H 𝑝 𝑧H 𝑧A 𝑝 𝑧A 𝜃+

Same parton, hadronization, and observation configuration in numerator and 
denominator. Only different parameter values

At fixed 𝑥, 𝑧 (i.e. fixed simulator evolution and observation), all the particle 
evolution and measurement process are the same… Cancel out in ratio! 



50How can we use this in HEP

𝑝 𝑥, 𝑧 𝜃*
𝑝(𝑥, 𝑧|𝜃+)

=
𝑝 𝑧A 𝜃*
𝑝 𝑧A 𝜃+

The joint ratio is the ratio of matrix elements at a given parton configuration!

We can evaluate that and use as training target!

In some cases we can evaluate the gradient… more later

Matrix elements at different
parameter values



51Mining Gold

arXiv:1805.12244

https://arxiv.org/abs/1805.12244


52Massive Gains in Data Efficiency

arXiv:1805.12244

Parameterize classifier

Regression trick on 𝑟

Regression trick also on gradients

https://arxiv.org/abs/1805.12244


53Getting Gradients
Getting gradients requires differentiating arbitrary Matrix Elements

Some matrix elements factorize into a sum of components, each consisting of 
an analytic function of parameters of interest times a phase space function



54Getting Gradients
Getting gradients requires differentiating arbitrary Matrix Elements

Some matrix elements factorize into a sum of components, each consisting of 
an analytic function of parameters of interest times a phase space function

e.g.



55Getting Gradients

Often the case for effective field theories, when indirect effects of new 
physics are parameterized through form factors

In this case, can more easily extract the gradients ∇D w/o differentiating 𝑓3(𝑧A)

This is implemented in MadMiner

Getting gradients requires differentiating arbitrary Matrix Elements

Some matrix elements factorize into a sum of components, each consisting of 
an analytic function of parameters of interest times a phase space function

e.g.

https://arxiv.org/abs/1907.10621


56MadJax

If we don’t have this factorization, we need a more general tool for 
differentiating matrix elements with respect to arbitrary parameters

How can we do this?  → Differentiable Programming (see L. Heinrich lectures)

Create a differentiable matrix element simulator 
by integrating matrix element generator with an 
automatic differentiation framework

MadJax = MadGraph + JAX AD framework

MadGraph Code Generation

JAX

arXiv:2203.00057

https://arxiv.org/abs/2203.00057


57MadJax

If we don’t have this factorization, we need a more general tool for 
differentiating matrix elements with respect to arbitrary parameters

How can we do this?  → Differentiable Programming (see L. Heinrich lectures)

Create a differentiable matrix element simulator 
by integrating matrix element generator with an 
automatic differentiation framework

MadJax = MadGraph + JAX AD framework

Access to phase space and parameter gradients

arXiv:2203.00057

https://arxiv.org/abs/2203.00057


58Usage

𝜎(
𝑀
!
)

𝜎(𝑀!)

𝜕𝜎
𝜕𝑀!

𝑀!

arXiv:2203.00057

https://arxiv.org/abs/2203.00057


59Likelihood Ratio Estimation with MadJax

MadJax enables automatic likelihood-free inference for arbitrary theory 
parameters (masses, mixings, couplings)

Toy Example: 𝑟 𝑥 𝐺") in 𝑒#𝑒$ → 𝑍 → 𝜇#𝜇$ events 

Faster Convergence
with MadJax

arXiv:2203.00057

https://arxiv.org/abs/2203.00057
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What About Systematic Uncertainties



61Systematic Uncertainties

arXiv:2201.11428

https://arxiv.org/abs/2201.11428


62Nuisance Parameters

Measure / parameterize possible variations over ways data may be generated

𝑥	~	𝑝(𝑥|𝜃, 𝜈)

Often can constrain from auxiliary measurements:  𝑝(𝑥NO.|𝜈) 
(i.e. from calibrations for reconstructed objects)

Parameterized family 
of likelihood models

Nuisance Parameter:
Parameterizing variations



63Ratio Estimation with Nuisance Parameters

Proposal distribution 𝜋(𝜃), nuisance parameter proposal 𝜋(𝜈)

𝜃~𝜋 𝜃
 𝜈~𝜋(𝜈)
 𝑥	~	𝑝(𝑥|𝜃, 𝜈)

𝑟̂ 𝑥|𝜃, 𝜈, 𝜈* ≈
𝑝 𝑥 𝜃, 𝜈
𝑝(𝑥|𝜃*, 𝜈*)

𝜃*
 𝜈*~𝜋(𝜈*)
 𝑥	~	𝑝(𝑥|𝜃*, 𝜈)



64Nuisance Parameters and SBI

In principle, as far as density ratio estimation is concerned, 
nuisance parameters are just like parameters of interest

→ Effectively increased the parameter dimensionality
→ Practically, need more simulated samples to estimate density ratio well



65Nuisance Parameters and SBI

In principle, as far as density ratio estimation is concerned, 
nuisance parameters are just like parameters of interest

→ Effectively increased the parameter dimensionality
→ Practically, need more simulated samples to estimate density ratio well

This can be prohibitive, especially for large numbers of nuisance parameters

Can limit our ability to estimate profile likelihood ratio:  
PQR
)

A 𝑥 𝜃*, 𝜈
PQR
*,)

A 𝑥 𝜃, 𝜈

Open problem on how best to deal w/ (large numbers of) nuisance params



66Learning the Profile Likelihood

2203.13079

Interesting recent work aiming to use SBI to learn profile likelihood directly

https://arxiv.org/abs/2203.13079
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Wrapping Up
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Image credit: S. Mishra-Sharma



69Summary

With Simulation-Based Inference, we can use neural networks to help avoid 
data summarization / compression, and preform inference on high 
dimensional data and parameter spaces

NLE / NPE require density estimation, while neural ratio estimation allows us 
to use the likelihood ratio trick and train classifiers. NRE can be used for both 
frequentist and Bayesian inference.

Important to keep in mind model validation and calibration

And there is still the challenge of incorporating large numbers of systematic 
uncertainties. More generally, it’s an open question what to do in SBI when 
the likelihood is not perfectly specified.
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Backup



71Example

arXiv:2011.14923

https://arxiv.org/abs/2011.14923
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How Do We Know If The Model Is Good?



73Can we Calibrate Models?

Can we correct an approximate ratio 𝑟̂(𝑥|𝜃) if it does 
not exactly predict the true likelihood ratio?

One method: Back to histograms!
• Treat 𝑟̂(𝑥|𝜃) as a really good summary statistic

• Bin the output values 𝑟̂. evaluated into 1D histogram
– i.e.  1D density estimation of 𝑟̂ evaluated on a sample

𝑟̂'() =
𝑝̂(𝑟̂*(+|𝜃#)
𝑝̂(𝑟̂*(+|𝜃,)

• Perform usual HEP histogram based inference

Challenge:
•Different histograms for each 𝜃 may require interpolation

1506.02169 , 1805.00020

https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1805.00020


74Joint Likelihood Ratio Estimation, Calibration, and Diagnostics

arXiv:2107.03920

https://arxiv.org/abs/2107.03920

