
Variational Quantum Algorithms

MITP Summer School Lecture Michael Spannowsky July 2023 116

Protein-folding and Levinthal’s Paradox
• Elongated proteins fold to same state within
microseconds

• Some proteins have 3 conformations 300

• Levinthal’s Paradox (1969):
Sequential sampling of states would take
longer than lifetime of Universe (even if
only nanoseconds per state spent)

• Solution: No sequential sampling, but
rapid descend into the potential minimum.
In proteins due to protein folding
intermediates

Solution of mathematical problem can
be found quickly if encoded in ground

state of complex system

Optimisation = Life

MITP Summer School Lecture Michael Spannowsky July 2023 117

Variational Quantum Eigensolver (VQE)

• Initially proposed to find ground state of quantum system

3.6 Important Quantum Algorithms 137

Fig. 3.18 Principle of a variational circuit. A variational circuit is a quantum circuit that depends
on parameters and a cost function that evaluates the expected measurement for a given set of
parameters. The computational problem is encoded in the cost, so that lowering the cost improves
the performance of the algorithm. Usually, training is done iteratively, and in every step the cost
function is consulted to find better parameters θ

3.6.5 Variational Quantum Algorithms

Quantum algorithms like amplitude amplification and linear algebra routines rely
on fault-tolerant quantum computations based on a large number of qubits. In other
words, they are unsuitable for the first generation of quantum computers consist-
ing of up to a hundred qubits and with only a tolerance for very few gates before
noise drowns any computational result. As a response, a new class of algorithms
has been developed: so-called variational quantum algorithms. Instead of a fixed
sequence of gates, these algorithms are defined by an ansatz W , a pattern that pre-
scribes which gates are applied to which qubits. The ansatz is a template that can be
repeated several times in layers and adapted to different numbers of qubits. The name
“variational” stems from the fact that some of the gates in the ansatz—often Pauli
rotations introduced in Eqs. (3.45)–(3.47)—depend on free tunable parameters. The
parameters can be chosen by a classical optimisation routine that optimises a cost
function derived from a given problem (see Fig. 3.18). Oftentimes, optimisation is
implemented by a feedback-type scheme that reminds of neural network training. As
such, a variational circuit is therefore more precisely a family of algorithms defined
by W (θ), from which the optimisation chooses an optimal candidate.

Here, we will introduce two important examples from the class of variational
algorithms. The first example, the variational eigensolver, stems from the physics-
inspired problem of finding minimum energy eigenstates of Hamiltonians. The sec-
ond example, the so-called quantum approximate optimisation algorithm or QAOA,
aims at solving combinatorial optimisation problems, and uses a specific ansatz for
the variational circuit inspired by a technique called adiabatic quantum computing.

3.6.5.1 Variational Quantum Eigensolvers

Variational algorithms were initially proposed as a prescription to find ground
states—that is, lowest energy eigenstates—of quantum systems. The variational
principle of quantum mechanics tells us that the ground state |ψ〉 minimises the• QM tells us that the ground state

of the Hamiltonian, i.e. the energy

minimises the expectation value
138 3 Quantum Computing

expectation
〈ψ|H |ψ〉, (3.112)

of the Hamiltonian H of the system. The idea of Variational Quantum Eigensolvers
(VQEs) [48] is to use a parametrised ansatz W (θ) to prepare a state |ψ(θ)〉 = W (θ).
Instead of finding the ground state |ψ〉, we find the parameters θ that minimise the
above expectation (and hence the energy of the system). In other words, we use the
expectation of the Hamiltonian as the cost

C(θ) = 〈ψ(θ)|H |ψ(θ)〉 (3.113)

in a variational quantum algorithm. The best approximation |ψ(θ∗)〉 to the ground
state given an ansatz |ψ(θ)〉 minimises Eq. (3.112) over all sets of parameters θ.

In most implementations of variational quantum eigensolvers, the quantum com-
puter is used to estimate C(θ) for iteratively improved candidate parameters θ. The
iterative optimisation can be done on a classical processor with techniques that we
will discuss in Sect. 5.3.

An important question in variational quantum eigensolvers is how we can imple-
ment H as an observable, since for generalHamiltonians this can involve a prohibitive
number of measurements. To see this, consider the following example:

Example 3.11 (Estimation of energy expectation) Consider the Hamiltonian H of a
26 = 64 dimensional Hilbert space, i.e., |ψ(θ)〉 can be expressed by a 64-dimensional
amplitude vector and describes a system of 6 qubits. Assume H has a −1 at the
13th diagonal entry and zeros elsewhere, in other words, the ground state of the
Hamiltonian is the 13th basis state of the 6-qubit system. The expectation value
〈ψ(θ)|H |ψ(θ)〉 is then effectively the probability of measuring the 13th computa-
tional basis state,multiplied by (−1). Naively, to determine this probabilitywewould
have to measure the state |ψ(θ)〉 repeatedly in the computational basis and divide
the number of times we observe the 13th basis state by the total number of measure-
ments. For a uniform superposition, we need the order of 2n measurements to do
this, which is infeasible for larger systems and defies the use of a quantum device
altogether.

Luckily, in many practical cases H can be written as a weighted sum of local (i.e.,
1- or 2-qubit) observables Hj ,

H =
J∑

j=1

h j Hj , (3.114)

with h j ∈ R ∀ j = 1, . . . , J . In fact, the Hamiltonian can always be written as a sum
over Pauli operators,

H =
n∑

i=1

∑

α∈{x,y,z,1}
hiασi

α +
n∑

i, j=1

∑

α,β∈{x,y,z,1}
hi jα,βσi

ασ j
β + · · · , (3.115)

• Note, H is time independent. Idea is to parametrise the state preparation

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

34

using an ansatz such that

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

34

138 3 Quantum Computing

expectation
〈ψ|H |ψ〉, (3.112)

of the Hamiltonian H of the system. The idea of Variational Quantum Eigensolvers
(VQEs) [48] is to use a parametrised ansatz W (θ) to prepare a state |ψ(θ)〉 = W (θ).
Instead of finding the ground state |ψ〉, we find the parameters θ that minimise the
above expectation (and hence the energy of the system). In other words, we use the
expectation of the Hamiltonian as the cost

C(θ) = 〈ψ(θ)|H |ψ(θ)〉 (3.113)

in a variational quantum algorithm. The best approximation |ψ(θ∗)〉 to the ground
state given an ansatz |ψ(θ)〉 minimises Eq. (3.112) over all sets of parameters θ.

In most implementations of variational quantum eigensolvers, the quantum com-
puter is used to estimate C(θ) for iteratively improved candidate parameters θ. The
iterative optimisation can be done on a classical processor with techniques that we
will discuss in Sect. 5.3.

An important question in variational quantum eigensolvers is how we can imple-
ment H as an observable, since for generalHamiltonians this can involve a prohibitive
number of measurements. To see this, consider the following example:

Example 3.11 (Estimation of energy expectation) Consider the Hamiltonian H of a
26 = 64 dimensional Hilbert space, i.e., |ψ(θ)〉 can be expressed by a 64-dimensional
amplitude vector and describes a system of 6 qubits. Assume H has a −1 at the
13th diagonal entry and zeros elsewhere, in other words, the ground state of the
Hamiltonian is the 13th basis state of the 6-qubit system. The expectation value
〈ψ(θ)|H |ψ(θ)〉 is then effectively the probability of measuring the 13th computa-
tional basis state,multiplied by (−1). Naively, to determine this probabilitywewould
have to measure the state |ψ(θ)〉 repeatedly in the computational basis and divide
the number of times we observe the 13th basis state by the total number of measure-
ments. For a uniform superposition, we need the order of 2n measurements to do
this, which is infeasible for larger systems and defies the use of a quantum device
altogether.

Luckily, in many practical cases H can be written as a weighted sum of local (i.e.,
1- or 2-qubit) observables Hj ,

H =
J∑

j=1

h j Hj , (3.114)

with h j ∈ R ∀ j = 1, . . . , J . In fact, the Hamiltonian can always be written as a sum
over Pauli operators,

H =
n∑

i=1

∑

α∈{x,y,z,1}
hiασi

α +
n∑

i, j=1

∑

α,β∈{x,y,z,1}
hi jα,βσi

ασ j
β + · · · , (3.115)

instead of ground state, we find parameters
that minimise cost function

138 3 Quantum Computing

expectation
〈ψ|H |ψ〉, (3.112)

of the Hamiltonian H of the system. The idea of Variational Quantum Eigensolvers
(VQEs) [48] is to use a parametrised ansatz W (θ) to prepare a state |ψ(θ)〉 = W (θ).
Instead of finding the ground state |ψ〉, we find the parameters θ that minimise the
above expectation (and hence the energy of the system). In other words, we use the
expectation of the Hamiltonian as the cost

C(θ) = 〈ψ(θ)|H |ψ(θ)〉 (3.113)

in a variational quantum algorithm. The best approximation |ψ(θ∗)〉 to the ground
state given an ansatz |ψ(θ)〉 minimises Eq. (3.112) over all sets of parameters θ.

In most implementations of variational quantum eigensolvers, the quantum com-
puter is used to estimate C(θ) for iteratively improved candidate parameters θ. The
iterative optimisation can be done on a classical processor with techniques that we
will discuss in Sect. 5.3.

An important question in variational quantum eigensolvers is how we can imple-
ment H as an observable, since for generalHamiltonians this can involve a prohibitive
number of measurements. To see this, consider the following example:

Example 3.11 (Estimation of energy expectation) Consider the Hamiltonian H of a
26 = 64 dimensional Hilbert space, i.e., |ψ(θ)〉 can be expressed by a 64-dimensional
amplitude vector and describes a system of 6 qubits. Assume H has a −1 at the
13th diagonal entry and zeros elsewhere, in other words, the ground state of the
Hamiltonian is the 13th basis state of the 6-qubit system. The expectation value
〈ψ(θ)|H |ψ(θ)〉 is then effectively the probability of measuring the 13th computa-
tional basis state,multiplied by (−1). Naively, to determine this probabilitywewould
have to measure the state |ψ(θ)〉 repeatedly in the computational basis and divide
the number of times we observe the 13th basis state by the total number of measure-
ments. For a uniform superposition, we need the order of 2n measurements to do
this, which is infeasible for larger systems and defies the use of a quantum device
altogether.

Luckily, in many practical cases H can be written as a weighted sum of local (i.e.,
1- or 2-qubit) observables Hj ,

H =
J∑

j=1

h j Hj , (3.114)

with h j ∈ R ∀ j = 1, . . . , J . In fact, the Hamiltonian can always be written as a sum
over Pauli operators,

H =
n∑

i=1

∑

α∈{x,y,z,1}
hiασi

α +
n∑

i, j=1

∑

α,β∈{x,y,z,1}
hi jα,βσi

ασ j
β + · · · , (3.115)

use as cost function

• One of the biggest challenges of VQE is to encode the physical system’s
Hamiltonian. Fortunately, H can often be expressed as sum of local operators

138 3 Quantum Computing

expectation
〈ψ|H |ψ〉, (3.112)

of the Hamiltonian H of the system. The idea of Variational Quantum Eigensolvers
(VQEs) [48] is to use a parametrised ansatz W (θ) to prepare a state |ψ(θ)〉 = W (θ).
Instead of finding the ground state |ψ〉, we find the parameters θ that minimise the
above expectation (and hence the energy of the system). In other words, we use the
expectation of the Hamiltonian as the cost

C(θ) = 〈ψ(θ)|H |ψ(θ)〉 (3.113)

in a variational quantum algorithm. The best approximation |ψ(θ∗)〉 to the ground
state given an ansatz |ψ(θ)〉 minimises Eq. (3.112) over all sets of parameters θ.

In most implementations of variational quantum eigensolvers, the quantum com-
puter is used to estimate C(θ) for iteratively improved candidate parameters θ. The
iterative optimisation can be done on a classical processor with techniques that we
will discuss in Sect. 5.3.

An important question in variational quantum eigensolvers is how we can imple-
ment H as an observable, since for generalHamiltonians this can involve a prohibitive
number of measurements. To see this, consider the following example:

Example 3.11 (Estimation of energy expectation) Consider the Hamiltonian H of a
26 = 64 dimensional Hilbert space, i.e., |ψ(θ)〉 can be expressed by a 64-dimensional
amplitude vector and describes a system of 6 qubits. Assume H has a −1 at the
13th diagonal entry and zeros elsewhere, in other words, the ground state of the
Hamiltonian is the 13th basis state of the 6-qubit system. The expectation value
〈ψ(θ)|H |ψ(θ)〉 is then effectively the probability of measuring the 13th computa-
tional basis state,multiplied by (−1). Naively, to determine this probabilitywewould
have to measure the state |ψ(θ)〉 repeatedly in the computational basis and divide
the number of times we observe the 13th basis state by the total number of measure-
ments. For a uniform superposition, we need the order of 2n measurements to do
this, which is infeasible for larger systems and defies the use of a quantum device
altogether.

Luckily, in many practical cases H can be written as a weighted sum of local (i.e.,
1- or 2-qubit) observables Hj ,

H =
J∑

j=1

h j Hj , (3.114)

with h j ∈ R ∀ j = 1, . . . , J . In fact, the Hamiltonian can always be written as a sum
over Pauli operators,

H =
n∑

i=1

∑

α∈{x,y,z,1}
hiασi

α +
n∑

i, j=1

∑

α,β∈{x,y,z,1}
hi jα,βσi

ασ j
β + · · · , (3.115)

3.6 Important Quantum Algorithms 139

Fig. 3.19 Principle of a
variational quantum
eigensolver. In the
variational quantum
eigensolver, the observable is
the Hamiltonian of the
system. For many problems
of interest, the Hamiltonian
decomposes into a linear
combination of local
Hamiltonian terms, which
can be measured separately,
and the expectations
summed classically

and the expectation value becomes a sum of expectations,

〈H〉 =
∑

i,α

hiα〈σi
α〉 +

∑

i, jα,β

hi jα,β〈σi
ασ j

β〉 + · · · , (3.116)

where i, j runs over the qubits that the Pauli operator acts on, while the subscripts
define the Pauli operator (and σ1 is the identity). From this representation, we see
that the energy expectation becomes efficient to estimate if the Hamiltonian can be
written as a sum of only a few (i.e., tractably many) terms, each involving only a
few Pauli operators. This is common in quantum chemistry, where Hamiltonians
describe electronic systems under Born-Oppenheimer approximation, as well as in
many-body physics and the famous Ising and Heisenberg models [48].

With this decomposition, the overall cost is given by a sum

C(θ) =
J∑

j=1

h j 〈ψ(θ)|Hj |ψ(θ)〉 (3.117)

of the estimates of local expectation values 〈ψ(θ)|Hj |ψ(θ)〉. The local estimates
are multiplied by the coefficients h j and summed up on the classical device (see
Fig. 3.19). If the number of local terms in the objective function is small enough,
i.e., it only grows polynomially with the number of qubits, estimating the energy
expectation through measurements from the quantum device is qubit-efficient.

Generally speaking, variational quantum eigensolvers minimise the expectation
value of an observable, here the Hamiltonian, using a hybrid classical-quantum algo-
rithm that linearly combines the results of different quantum measurements (given a
single-circuit ansatz).

Pauli operators

MITP Summer School Lecture Michael Spannowsky July 2023 118

Quantum Machine Learning

with a Variational Quantum Circuit

[Blance, MS ’20]

[Farhi, Neven ’18]

[Schuld et al ’20]

[McClean et al ’16]

MITP Summer School Lecture Michael Spannowsky July 2023 119

Quantum Machine Learning

with a Variational Quantum Circuit

state preparation

e.g. angle encoding

n corresponds
to # features

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

C(⇥) = �

X

i

pi F (|�iB0 , ⇢̂B0) (225)

⌦ (226)

� (227)

16

MITP Summer School Lecture Michael Spannowsky July 2023 120

Expressibility of model and encoding

5.2 Which Functions Do Variational Quantum Models Express? 187

Fig. 5.7 Quantum models as sum of trigonometric functions. If data features are encoded via
gates of the form e−i xi G , quantummodels are linear combinations of functions e−i xiω with frequen-
cies ω ∈ Ω determined by the generator G. Since quantum models have real-valued outputs, these
functions can be expressed as linear combinations of sine and cosine functions cos(ωxi), sin(ωxi).
The sketch above shows a quantum model that takes a single feature, and whose model function is
a sum of sine functions of three different frequencies

up with very limited model classes that variational circuits can express, and therefore
learn, even if the variational circuit is arbitrarily deep and wide.

This insight is important for the theoretical study of quantum models, because
it opens up the world of Fourier analysis to quantum machine learning. It also has
important practical implications, for example, that the encoding controls the expres-
sivity of quantum models, or that we have to be mindful of their periodicity when
pre-scaling the data. Finally, it may hint at applications that quantum models might
be particularly suited for.

5.2.1 Quantum Models as Linear Combinations of Periodic
Functions

Wewill first state the main result as a general theorem (based on [13]), and then draw
several conclusions as well as analyse a practical example. For the sake of generality,
we consider circuits that alternate encoding gates and parametrised unitaries

U (x, θ) = WN+1(θ)
N∏

i=1

Si (xi)Wi (θi). (5.20)

This can be interpreted as a more general version of the circuit shown in Fig.5.2,
where the gates T1, . . . , TN+1 are made trainable.

The feature-encoding gates Si (xi) have the form

Si (xi) = e−i xi Gi , i = 1, . . . , N , (5.21)

where we assume without loss of generality that Gi is a diagonal operator
diag(λi

1, . . . ,λ
i
d), where d is the dimension of the Hilbert space. If this is not the

• Most encodings result in sum of trigonometric functions,
e.g. angle encoding, time evolution encoding

• Fourier series is universal approximator, but problem is that for many
encoding strategies quantum models are linear combinations of functions
composed of very few frequencies

• If encoding gates are not rich enough -> model limited irrespective of
width or depth in variational circuit

➡ Encoding controls expressivity of model
(circuit expressivity != model expressivity)

➡ Fourier analysis for VQC (mindful about pre-scaling)

➡ Can hint on where VQC models are particularly useful

MITP Summer School Lecture Michael Spannowsky July 2023 121

Specifically, for many (angle, time-evolution,…) encoding gates are of form

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

L (491)

S(x) = e�ixG (492)

34

For Pauli operators output can be expressed as Fourier series

(universal approximator, dependent on number of frequencies)

See 2008.08605
trigonometric structure from

data encoding

A, B, C coefficients from
parametrised circuit W

MITP Summer School Lecture Michael Spannowsky July 2023 122

encoding
multiple
times

encoding
in parallel

1907.02085

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

Simple example for 1-qubit system and 1 encoding operation:

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

L (491)

S(x) = e�ixG (492)

x 2 (493)

34

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

take

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

L (491)

S(x) = e�ixG (492)

x 2 (493)

W1(✓1) (494)

Rx(x)W (✓) (495)

W (✓)Rx(x) (496)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

L (491)

S(x) = e�ixG (492)

x 2 (493)

W1(✓1) (494)

Rx(x)W (✓) (495)

W (✓)Rx(x) (496)

34

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

190 5 Variational Circuits as Machine Learning Models

This can potentially help for the study of optimisation landscapes and trainabil-
ity [14].

5.2.2 An Example: The Pauli-Rotation Encoding

Let us now illustrate Theorem 5.1 with our standard example of a Pauli encoding
from Sect. 5.1.3. For this we consider the model

fθ(x) = 〈0|U †(x, θ)σzU (x, θ)|0〉 with X = R (5.29)

and
U (x, θ) = W2(θ2)Rx (x)W1(θ1), (5.30)

where W2(θ2) = 1 and W2(θ2) = Rot(θ1, θ2, θ3). Since Rx (x) = e−i x2 σx and G =
σx/2 is not diagonal, we can use the eigenvalue decomposition to write

σx = V (
1
2
σz)V †, (5.31)

and absorb the 2 × 2 unitaries V , V † into W1 and W2. According to Eq. (5.22), we
get

Ω = {−1, 0, 1}, (5.32)

which are all values one can form from subtracting two values in {± 1
2 } from each

other. The quantum model can therefore be expressed as

fθ(x) =
1∑

n=−1

cneinx (5.33)

= c−1e−i x + c0 + c1eix (5.34)

= c0 + 2Re(c1) cos(x)+ 2Im(c1) sin(x), (5.35)

which is a Fourier series of a single frequency ω = 1. Such a Fourier series can be
written as a sine function of a fixed frequency, and we immediately recognise the
structure from Eq. (5.13).

Finally, we can analyse what happens if we repeat the encoding above. Consider
now the same model as above, but with

U (x, θ) = WL+1(θL+1)

L∏

l=1

S(x)Wl(θl). (5.36)

Model output

• The encoding of data, using e.g. angle or
time-evolution encoding, results in a
trigonometric structure of the model’s
output.

• Complex enough (potentially repeated)
encoding results in modes with different
frequencies -> universal approximator

MITP Summer School Lecture Michael Spannowsky July 2023 123

Quantum Machine Learning

with a Variational Quantum Circuit

3.2. Structure of a Variational Quantum Classifier 75

Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.

2-layer Variational Quantum Circuit

3.2. Structure of a Variational Quantum Classifier 73

unitary gate

Ry(◊) =

Q

cca
cos(◊/2) ≠sin(◊/2)

sin(◊/2) cos(◊/2)

R

ddb . (3.2.4)

3.2.2 Model Circuit

Given a prepared state, |xÍ, the model circuit, U(w), maps |xÍ to a vector |ÂÍ =

U(w)|xÍ. In turn, U(w) consists of a series of unitary gates and can be decomposed

as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (3.2.5)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters,

and lmax is the maximum number of layers. These are constructed from a set of single

and two-qubit gates which will evolve the state |xÍ. The gates include parameters

that will be trained during the optimisation of the network. A single qubit gate can

be written as a 2 ◊ 2 unitary matrix with the form

G(–, —, “, „) = ei„

Q

cca
ei—cos(–) ei“sin(–)

≠e≠i“sin(–) e≠i—cos(–)

R

ddb . (3.2.6)

We can neglect ei„ as it only gives rise to a global phase that has no measurable

e�ect. Thus, the parameters –, —, and “ are all that is needed to parametrise a

single qubit gate.

The circuit we use in our model in shown is Fig. 3.2. This is constructed using a

rotation gate, R, and CNOT1. The rotation gate is a single qubit gate that is applied

1 The controlled-NOT (CNOT) gate is a quantum register that can be used to entangle and
disentangle quantum states. The matrix representation of a CNOT gate is

CNOT =

Q

cca

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R

ddb .

3.2. Structure of a Variational Quantum Classifier 73

unitary gate

Ry(◊) =

Q

cca
cos(◊/2) ≠sin(◊/2)

sin(◊/2) cos(◊/2)

R

ddb . (3.2.4)

3.2.2 Model Circuit

Given a prepared state, |xÍ, the model circuit, U(w), maps |xÍ to a vector |ÂÍ =

U(w)|xÍ. In turn, U(w) consists of a series of unitary gates and can be decomposed

as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (3.2.5)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters,

and lmax is the maximum number of layers. These are constructed from a set of single

and two-qubit gates which will evolve the state |xÍ. The gates include parameters

that will be trained during the optimisation of the network. A single qubit gate can

be written as a 2 ◊ 2 unitary matrix with the form

G(–, —, “, „) = ei„

Q

cca
ei—cos(–) ei“sin(–)

≠e≠i“sin(–) e≠i—cos(–)

R

ddb . (3.2.6)

We can neglect ei„ as it only gives rise to a global phase that has no measurable

e�ect. Thus, the parameters –, —, and “ are all that is needed to parametrise a

single qubit gate.

The circuit we use in our model in shown is Fig. 3.2. This is constructed using a

rotation gate, R, and CNOT1. The rotation gate is a single qubit gate that is applied

1 The controlled-NOT (CNOT) gate is a quantum register that can be used to entangle and
disentangle quantum states. The matrix representation of a CNOT gate is

CNOT =

Q

cca

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R

ddb .

model circuit trainable
parameters

prepared
state

quantum system which can be parametrised by

| i = ↵|0i + �|1i = cos
✓

2
|0i + ei'sin

✓

2
|1i =

✓
cos ✓2

sin ✓
2e

i�

◆
. (2.2)

The state of Eq. (2.2) can be visualised as a vector on the Bloch sphere. By performing op-

erations on a qubit one rotates the vector on the Bloch sphere. Circuits can be constructed

to act on numerous qubits, where a 2-qubit state can be described as a tensor product of

two 1-qubit states

| i = ↵00|00i + ↵01|01i + ↵10|10i + ↵11|11i . (2.3)

The model circuit is constructed from gates that evolve the input state. The circuit

is based on unitary operations and depends on external parameters which will be adjusted

during training.

Finally, the postprocessing step measures the state. Traditionally, we measure the

output of the first qubit. This step will also include any classical postprocessing we may

wish to include.

2.1 State Preparation

Before applying the model circuit of our classifier, we use a state preparation circuit Sx to

encode the input data into a quantum state. Sx acts on the initial state |�i

x 7! Sx|�i = Sx|0i⌦n = |xi , (2.4)

where |�i = |0i⌦n. The number of qubits n is defined by the number of features in our

dataset.

The parametrisation of the encoding can a↵ect the decision boundaries of the classifier

and can therefore be chosen in a form that suits the problem at hand [44]. Here, we use

the so-called angle encoding

|xi =
nO

i=1

cos(xi)|0i + sin(xi)|1i , (2.5)

where x = (x0, ...xN)T . Practically, this amounts to using the input data, x, as angles in

a unitary quantum gate. We take the state preparation circuit as the unitary gate

Ry(✓) =

cos(✓/2) -sin(✓/2)

sin(✓/2) cos(✓/2)

!
. (2.6)

2.2 Model Circuit

Given a prepared state, |xi, the model circuit, U(w), maps |xi to another vector | i =

U(w)|xi. In turn U(w) consists of a series of unitary gates and can be decomposed as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (2.7)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters, and

lmax is the maximum number of layers. These are constructed from a set of single and

– 5 –

with

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

C(⇥) = �

X

i

pi F (|�iB0 , ⇢̂B0) (225)

⌦ (226)

� (227)

U1 (228)

U2 (229)

16

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

C(⇥) = �

X

i

pi F (|�iB0 , ⇢̂B0) (225)

⌦ (226)

� (227)

U1 (228)

U2 (229)

16

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

C(⇥) = �

X

i

pi F (|�iB0 , ⇢̂B0) (225)

⌦ (226)

� (227)

U1 (228)

U2 (229)

R(↵,�, �) (230)

16

Rotation + CNOT -> Entanglement
MITP Summer School Lecture Michael Spannowsky July 2023 124

Quantum Machine Learning

with a Variational Quantum Circuit

• Entangled state shares information across qubits

74 Chapter 3. Classification Using a Variational Quantum Classifier

to both qubits in our system. This gate is designed to rotate our state based on a

set of learnable parameters w = (–, —, “)

R(–, —, “) = RZ(“)RY (—)RZ(–)

=

Q

cca
e≠i(–+“)cos(—/2) ≠e≠i(–≠“)sin(—/2)

e≠i(–≠“)sin(—/2) ei(–+“)cos(—/2)

R

ddb

(3.2.7)

The angles of Eq. (3.2.7) are a subset of all trainable parameters of the model and

make up the parameters in the weight vector w œ Rn◊3◊l, where n is the number

of qubits and l is the number of layers in our network. This object, w, will contain

some of the parameters that will be learned during training time. While the number

of qubits will mirror the number of features in our dataset, the number of layers in

the network, l, is a hyperparameter we can tune. In the circuit centric design we are

using, the number of qubits is held constant, however, the model could be extended

for a more flexible network design [94].

Each layer in our model contains two CNOT gates - a standard 2-qubit gate in

quantum computing with no learnable parameters. These gates flip the state of

a qubit based on the value of another control bit. Each gate in the layer uses a

di�erent qubit as the control bit.

3.2.3 Measurement and Postprocessing

After applying U(w) to the initial state we need to measure its output. We do this

by applying the Pauli Z operator on the first qubit and taking the expectation value

E(‡z) = È0|Sx(x)†U(w)†ÔU(w)Sx(x)|0Í = fi(w, x) , (3.2.8)

where Ô = ‡z ¢ I¢(n≠1). To obtain an estimate, we run the circuit repeatedly. The

number of repetitions we do is known as the number of shots S.

Classical postprocessing is applied to the expectation value of the circuit before

returning a final classifier output. Like in a classical neural network approach, the

74 Chapter 3. Classification Using a Variational Quantum Classifier

to both qubits in our system. This gate is designed to rotate our state based on a

set of learnable parameters w = (–, —, “)

R(–, —, “) = RZ(“)RY (—)RZ(–)

=

Q

cca
e≠i(–+“)cos(—/2) ≠e≠i(–≠“)sin(—/2)

e≠i(–≠“)sin(—/2) ei(–+“)cos(—/2)

R

ddb

(3.2.7)

The angles of Eq. (3.2.7) are a subset of all trainable parameters of the model and

make up the parameters in the weight vector w œ Rn◊3◊l, where n is the number

of qubits and l is the number of layers in our network. This object, w, will contain

some of the parameters that will be learned during training time. While the number

of qubits will mirror the number of features in our dataset, the number of layers in

the network, l, is a hyperparameter we can tune. In the circuit centric design we are

using, the number of qubits is held constant, however, the model could be extended

for a more flexible network design [94].

Each layer in our model contains two CNOT gates - a standard 2-qubit gate in

quantum computing with no learnable parameters. These gates flip the state of

a qubit based on the value of another control bit. Each gate in the layer uses a

di�erent qubit as the control bit.

3.2.3 Measurement and Postprocessing

After applying U(w) to the initial state we need to measure its output. We do this

by applying the Pauli Z operator on the first qubit and taking the expectation value

E(‡z) = È0|Sx(x)†U(w)†ÔU(w)Sx(x)|0Í = fi(w, x) , (3.2.8)

where Ô = ‡z ¢ I¢(n≠1). To obtain an estimate, we run the circuit repeatedly. The

number of repetitions we do is known as the number of shots S.

Classical postprocessing is applied to the expectation value of the circuit before

returning a final classifier output. Like in a classical neural network approach, the

for

• Evaluate expectation value of qubits to construct loss

for supervised S vs B classification one qubit sufficient

3.2. Structure of a Variational Quantum Classifier 75

Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.

• Quantum network output:

• Changing operator and loss => VQE, VQT, … (simulate QFT)

MITP Summer School Lecture Michael Spannowsky July 2023 125

Simple example:

5.1 How to Interpret a Quantum Circuit as a Model 183

〈x | (|ψ(θ)〉〈ψ(θ)|) |x〉 with basis encoding and a measurement M = |ψ(θ)〉〈ψ(θ)|.
Hence, a lot of the insights from one design apply to the other as well.

Unsupervised probabilistic quantum models are also known as Born machines
[11]. The name stems on the one hand from the Born rule that links quantum states
to probabilities, and on the other hand from Boltzmann machines introduced in
Sect. 2.5.2.4.

As a last remark, note that probabilistic quantum models are naturally generative
models (see Sect. 2.2.2) since their implementation on a quantum computer produces
samples. It may in fact not be easy to compute explicit probabilities for a data sample
on paper, or to estimate it on a quantum computer—the number of measurement
samples to estimate probabilities grows in general exponentially with the number of
qubits. This is whywhat we defined as probabilistic quantummodels is often directly
referred to as “generative models” in the quantum machine learning literature.

5.1.3 An Example: Variational Quantum Classifier

As an illustration, we will now interpret a simple single-qubit variational quantum
circuit as a deterministic quantum classifier that maps a scalar input x ∈ R to a scalar
output.Wewill explicitly compute themodel function fθ(x) that the circuit gives rise
to, an exercise that can be rather instructive to understand that a variational quantum
model is just a specific kind of function family.

The circuit we consider consist of a Pauli-X rotation to encode the input x , a gen-
eral single-qubit rotation Rot(θ1, θ2, θ3) parametrised by the three trainable angles
θ1, θ2, θ3, as well as a Pauli-Z measurement:

|0〉 Rx (x) Rot(θ1, θ2, θ3) σz . (5.12)

The resulting quantum machine learning model is given by

fθ(x) = 〈0|Rx (x)†Rot(θ1, θ2, θ3)†σzRot(θ1, θ2, θ3)Rx (x)|0〉. (5.13)

Let us first consider the data encoding (see also Fig. 5.4). The Pauli-X rotation
maps x ∈ R to the state |φ(x)〉 ∈ H, where H is the two-dimensional Hilbert space
of a single qubit. Using the definition of a Pauli-X rotation, the resulting amplitude
vector in computational basis is given by

|φ(x)〉 = Rx (x)|0〉 =
(

cos(x2) −i sin(x2)
−i sin(x2) cos(x2)

) (
1
0

)
=

(
cos(x2)

−i sin(x2)

)
. (5.14)

Applying the general rotation defined in Eq. (3.48) to this state yields

5.1 How to Interpret a Quantum Circuit as a Model 183

〈x | (|ψ(θ)〉〈ψ(θ)|) |x〉 with basis encoding and a measurement M = |ψ(θ)〉〈ψ(θ)|.
Hence, a lot of the insights from one design apply to the other as well.

Unsupervised probabilistic quantum models are also known as Born machines
[11]. The name stems on the one hand from the Born rule that links quantum states
to probabilities, and on the other hand from Boltzmann machines introduced in
Sect. 2.5.2.4.

As a last remark, note that probabilistic quantum models are naturally generative
models (see Sect. 2.2.2) since their implementation on a quantum computer produces
samples. It may in fact not be easy to compute explicit probabilities for a data sample
on paper, or to estimate it on a quantum computer—the number of measurement
samples to estimate probabilities grows in general exponentially with the number of
qubits. This is whywhat we defined as probabilistic quantummodels is often directly
referred to as “generative models” in the quantum machine learning literature.

5.1.3 An Example: Variational Quantum Classifier

As an illustration, we will now interpret a simple single-qubit variational quantum
circuit as a deterministic quantum classifier that maps a scalar input x ∈ R to a scalar
output.Wewill explicitly compute themodel function fθ(x) that the circuit gives rise
to, an exercise that can be rather instructive to understand that a variational quantum
model is just a specific kind of function family.

The circuit we consider consist of a Pauli-X rotation to encode the input x , a gen-
eral single-qubit rotation Rot(θ1, θ2, θ3) parametrised by the three trainable angles
θ1, θ2, θ3, as well as a Pauli-Z measurement:

|0〉 Rx (x) Rot(θ1, θ2, θ3) σz . (5.12)

The resulting quantum machine learning model is given by

fθ(x) = 〈0|Rx (x)†Rot(θ1, θ2, θ3)†σzRot(θ1, θ2, θ3)Rx (x)|0〉. (5.13)

Let us first consider the data encoding (see also Fig. 5.4). The Pauli-X rotation
maps x ∈ R to the state |φ(x)〉 ∈ H, where H is the two-dimensional Hilbert space
of a single qubit. Using the definition of a Pauli-X rotation, the resulting amplitude
vector in computational basis is given by

|φ(x)〉 = Rx (x)|0〉 =
(

cos(x2) −i sin(x2)
−i sin(x2) cos(x2)

) (
1
0

)
=

(
cos(x2)

−i sin(x2)

)
. (5.14)

Applying the general rotation defined in Eq. (3.48) to this state yields

gives the model output

5.1 How to Interpret a Quantum Circuit as a Model 183

〈x | (|ψ(θ)〉〈ψ(θ)|) |x〉 with basis encoding and a measurement M = |ψ(θ)〉〈ψ(θ)|.
Hence, a lot of the insights from one design apply to the other as well.

Unsupervised probabilistic quantum models are also known as Born machines
[11]. The name stems on the one hand from the Born rule that links quantum states
to probabilities, and on the other hand from Boltzmann machines introduced in
Sect. 2.5.2.4.

As a last remark, note that probabilistic quantum models are naturally generative
models (see Sect. 2.2.2) since their implementation on a quantum computer produces
samples. It may in fact not be easy to compute explicit probabilities for a data sample
on paper, or to estimate it on a quantum computer—the number of measurement
samples to estimate probabilities grows in general exponentially with the number of
qubits. This is whywhat we defined as probabilistic quantummodels is often directly
referred to as “generative models” in the quantum machine learning literature.

5.1.3 An Example: Variational Quantum Classifier

As an illustration, we will now interpret a simple single-qubit variational quantum
circuit as a deterministic quantum classifier that maps a scalar input x ∈ R to a scalar
output.Wewill explicitly compute themodel function fθ(x) that the circuit gives rise
to, an exercise that can be rather instructive to understand that a variational quantum
model is just a specific kind of function family.

The circuit we consider consist of a Pauli-X rotation to encode the input x , a gen-
eral single-qubit rotation Rot(θ1, θ2, θ3) parametrised by the three trainable angles
θ1, θ2, θ3, as well as a Pauli-Z measurement:

|0〉 Rx (x) Rot(θ1, θ2, θ3) σz . (5.12)

The resulting quantum machine learning model is given by

fθ(x) = 〈0|Rx (x)†Rot(θ1, θ2, θ3)†σzRot(θ1, θ2, θ3)Rx (x)|0〉. (5.13)

Let us first consider the data encoding (see also Fig. 5.4). The Pauli-X rotation
maps x ∈ R to the state |φ(x)〉 ∈ H, where H is the two-dimensional Hilbert space
of a single qubit. Using the definition of a Pauli-X rotation, the resulting amplitude
vector in computational basis is given by

|φ(x)〉 = Rx (x)|0〉 =
(

cos(x2) −i sin(x2)
−i sin(x2) cos(x2)

) (
1
0

)
=

(
cos(x2)

−i sin(x2)

)
. (5.14)

Applying the general rotation defined in Eq. (3.48) to this state yields

data encoding

184 5 Variational Circuits as Machine Learning Models

Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections

|ψ(x, θ)〉 = Rot(θ1, θ2, θ3)|φ(x)〉

=
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) cos(

x
2)+ iei(−

θ1
2 + θ3

2) sin(θ2
2) sin(

x
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) cos(

x
2) − iei(

θ1
2 + θ3

2) cos(θ2
2) sin(

x
2)

)

.

Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of

184 5 Variational Circuits as Machine Learning Models

Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections

|ψ(x, θ)〉 = Rot(θ1, θ2, θ3)|φ(x)〉

=
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) cos(

x
2)+ iei(−

θ1
2 + θ3

2) sin(θ2
2) sin(

x
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) cos(

x
2) − iei(

θ1
2 + θ3

2) cos(θ2
2) sin(

x
2)

)

.

Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of

parametrised
rotation

184 5 Variational Circuits as Machine Learning Models

Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections

|ψ(x, θ)〉 = Rot(θ1, θ2, θ3)|φ(x)〉

=
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) cos(

x
2)+ iei(−

θ1
2 + θ3

2) sin(θ2
2) sin(

x
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) cos(

x
2) − iei(

θ1
2 + θ3

2) cos(θ2
2) sin(

x
2)

)

.

Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of

model output

What happens on the Bloch-Sphere

MITP Summer School Lecture Michael Spannowsky July 2023 126

Classifier from simple example:
5.1 How to Interpret a Quantum Circuit as a Model 185

y =
{
1 if fθ(x) > 0
−1 else

. (5.16)

Furthermore, one could define the numeric value of the probability of measuring
the qubit in state |0〉or |1〉 itself as themodel output,making it a probabilistic classifier
that we called a “density estimator” in Sect. 2.2.2. The probability is directly related
to the expectation of the Pauli-Z observable,

p(1) = fθ(x)+ 1
2

, p0 = 1 − p1, (5.17)

and can be computed by merely shifting and rescaling the result.

5.1.4 An Example: Variational Generator

The second example demonstrates a simple implementation of an unsupervised prob-
abilistic quantummodel inspired byBoltzmannmachines (see, for example,Ref. [4]).
Consider the bars and stripes dataset of black-and-white 2 × 2 images as shown in
Fig. 5.6. The image can be encoded into the computational basis states of 4 qubits
via basis encoding. For example, a 2 × 2 image with pixels (w,w, b, b) can be rep-
resented by the basis state |0011〉. These four qubits form the “visible layer”. We
use another 3 qubits which are “hidden”, which means that they remain unmeasured.
Hence, there is an injective mapping between computational basis state of the full 7
qubits and the images.

The quantum circuit of the generativemodel starts in state |0000000〉 and applies a
variational unitaryW (θ) on all qubits to get final state |ψ(θ)〉 = W (θ)|0000000〉. (If
we want to implement a quantummodel inspired by a restrictiveBoltzmannmachine
we could impose additional restrictions on W to only entangle hidden and visible
qubits). We then measure the state of the first four qubits using four Pauli-Z mea-
surements. A single measurement results in four eigenvalues in {−1, 1}, one for each
qubit. For example, we may measure the result (1, 1,−1,−1), which corresponds
to the computational basis state |0011〉, and hence to the image (w,w, b, b) from
above. Overall, the variational quantum circuit implements the probabilistic model

p(x) = |〈x |ψ(θ)〉|2, x ∈ {0, 1}⊗4. (5.18)

The hidden qubits add computational power to the model by increasing the degrees
of freedom in W (θ).

For this small example we can easily construct the state which maximises the
uniform probability of observing a bars-or-stripes image. If there were no hidden
units at all, this would be the state

for binary classifier define e.g.

for probabilistic classifier
(density estimator)

5.1 How to Interpret a Quantum Circuit as a Model 185

y =
{
1 if fθ(x) > 0
−1 else

. (5.16)

Furthermore, one could define the numeric value of the probability of measuring
the qubit in state |0〉or |1〉 itself as themodel output,making it a probabilistic classifier
that we called a “density estimator” in Sect. 2.2.2. The probability is directly related
to the expectation of the Pauli-Z observable,

p(1) = fθ(x)+ 1
2

, p0 = 1 − p1, (5.17)

and can be computed by merely shifting and rescaling the result.

5.1.4 An Example: Variational Generator

The second example demonstrates a simple implementation of an unsupervised prob-
abilistic quantummodel inspired byBoltzmannmachines (see, for example,Ref. [4]).
Consider the bars and stripes dataset of black-and-white 2 × 2 images as shown in
Fig. 5.6. The image can be encoded into the computational basis states of 4 qubits
via basis encoding. For example, a 2 × 2 image with pixels (w,w, b, b) can be rep-
resented by the basis state |0011〉. These four qubits form the “visible layer”. We
use another 3 qubits which are “hidden”, which means that they remain unmeasured.
Hence, there is an injective mapping between computational basis state of the full 7
qubits and the images.

The quantum circuit of the generativemodel starts in state |0000000〉 and applies a
variational unitaryW (θ) on all qubits to get final state |ψ(θ)〉 = W (θ)|0000000〉. (If
we want to implement a quantummodel inspired by a restrictiveBoltzmannmachine
we could impose additional restrictions on W to only entangle hidden and visible
qubits). We then measure the state of the first four qubits using four Pauli-Z mea-
surements. A single measurement results in four eigenvalues in {−1, 1}, one for each
qubit. For example, we may measure the result (1, 1,−1,−1), which corresponds
to the computational basis state |0011〉, and hence to the image (w,w, b, b) from
above. Overall, the variational quantum circuit implements the probabilistic model

p(x) = |〈x |ψ(θ)〉|2, x ∈ {0, 1}⊗4. (5.18)

The hidden qubits add computational power to the model by increasing the degrees
of freedom in W (θ).

For this small example we can easily construct the state which maximises the
uniform probability of observing a bars-or-stripes image. If there were no hidden
units at all, this would be the state

184 5 Variational Circuits as Machine Learning Models

Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections

|ψ(x, θ)〉 = Rot(θ1, θ2, θ3)|φ(x)〉

=
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) cos(

x
2)+ iei(−

θ1
2 + θ3

2) sin(θ2
2) sin(

x
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) cos(

x
2) − iei(

θ1
2 + θ3

2) cos(θ2
2) sin(

x
2)

)

.

Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of

184 5 Variational Circuits as Machine Learning Models

Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections

|ψ(x, θ)〉 = Rot(θ1, θ2, θ3)|φ(x)〉

=
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) cos(

x
2)+ iei(−

θ1
2 + θ3

2) sin(θ2
2) sin(

x
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) cos(

x
2) − iei(

θ1
2 + θ3

2) cos(θ2
2) sin(

x
2)

)

.

Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of

184 5 Variational Circuits as Machine Learning Models

Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections

|ψ(x, θ)〉 = Rot(θ1, θ2, θ3)|φ(x)〉

=
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) cos(

x
2)+ iei(−

θ1
2 + θ3

2) sin(θ2
2) sin(

x
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) cos(

x
2) − iei(

θ1
2 + θ3

2) cos(θ2
2) sin(

x
2)

)

.

Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of

model output for fix angles decision boundary for fix input

MITP Summer School Lecture Michael Spannowsky July 2023 127

Quantum Machine Learning

with a Variational Quantum Circuit

• Hybrid approach (QC to calculate exp. value, CC to optimise U operator)

• Loss function

76 Chapter 3. Classification Using a Variational Quantum Classifier

3.3 Optimisation

As alluded to above, during training we aim to find values of w and b to optimise a

given loss function. This is analogous to a traditional neural network. In both cases,

the methods of optimisation you can perform are similar. For a quantum neural

network and a traditional neural network, we perform a forward pass of the model

and calculate a loss function. Then, we can backpropagate through the network

and update the trainable parameters. This is the equivalent of the third pillar of

machine learning, mentioned in Section 3.1.

During training we have chosen to use mean squared error (MSE) as the loss function1.

The allows us to measure a distance between the truth and our model’s predictions,

represented by the value of the function

L = 1
n

nÿ

i=1

Ë
ytruth

i ≠ f(w, b, xi)
È2

. (3.3.1)

We train our model using vanilla gradient descent and quantum gradient descent [103].

The latter is a quantum optimisation algorithm designed to be performed on a hybrid

network such as the model we have proposed.

3.3.1 Backpropagation

To perform backpropagation for a network with adjustable parameters ◊ = (w, b)

we must compute the gradient ˆ

ˆ◊
f . This is equivalent to computing the change of

the output of the network when varying ◊. The gradient over a quantum circuit

can be calculated using the parameter-shift rules [108,109]. Being able to calculate

gradients for a quantum circuit opens up the possibility of using gradient descent

methods to train our variational quantum circuit. The methodology is identical to

how optimisation and training techniques are performed on classical neural networks.

1As discussed in Chapter 1.1, the binary cross-entropy is a preferred measure for the loss function.
In this case, we find that the choice of BCE or MSE leads to similar results. As a result, we choose
to follow the choice for the loss function of Refs. [95,107]. On testing the di�erence, we find that
either loss function results in a model performance of around 70% accuracy.

label (signal, bkg), supervised learning

• Quantum gradient descent - for fast convergence

[Blance, MS ’20]
Fubiny-Study metric underlies geometric
structure of VQC parameter space:

3.4. Analysis Setup 79

invariant metric. Similar to how the Fisher Information Matrix is used to promote

the gradient descent method to the natural gradient descent method, the Fubini-

Study metric g (derived and elaborated on in Appendix A) exploits the geometric

structure of the variational quantum classifier’s parameter space to establish the

quantum gradient descent method. Here, the optimisation algorithm reads [103]

◊t+1 = ◊t ≠ ÷g+
OL(◊) , (3.3.5)

where g+ is the pseudo-inverse of the Fubini-Study metric. We implement this using

the Python package PennyLane [114]. This allows us to find the steepest descent in

the parameter space of the quantum states. The approach of Eq. (3.3.5) is designed

to optimise the parameters of the quantum variational circuit only, i.e. the quantum

gates with trainable parameters w = (–, —, “). To perform a full optimisation of

our hybrid model, we need to consider the classical components of our model -

the bias term. Thus, we propose to optimise our weights using quantum gradient

descent (3.3.6) while using vanilla gradient descent for the classical bias term b. By

calculating both gradients at each optimisation step,

◊w

t+1 = ◊w

t ≠ ÷g+
O

wL(◊) ,

◊b

t+1 = ◊b

t ≠ ÷ObL(◊) , (3.3.6)

we can be sure that our entire range of parameters is optimised simultaneously.

3.4 Analysis Setup

Our analysis will be performed using background and signal samples consisting of

pp æ tt̄ events and pp æ Z Õ
æ tt̄ events, respectively. These events are generated

using the same method as found in Chapter 2.2.

The analysis is based exclusively on the transverse momentum of one b-jet, pT,b1 ,

and the event’s missing energy, /ET . We show the distributions of these observables

[Cheng ’10]

[Abbas et al ’20]

MITP Summer School Lecture Michael Spannowsky July 2023 128

• Backpropagation to adjust trainable parameters - as for classical NN

Training VQC

• Calculation of derivatives of cost function

5.2 Which Functions Do Variational Quantum Models Express? 191

As remarked in the previous section, Eq. (5.33) becomes a sumover a single extended
Fourier spectrum

Ω = {−L , . . . , 0, . . . L}, (5.37)

which are all values one can form from summing L differences of any two values in
{± 1

2 }. The quantum model with repeated encoding can therefore be expressed as a
Fourier series of degree L ,

fθ(x) =
L∑

n=−L

cneinx . (5.38)

Asymptotically for L → ∞, quantummodelswithPauli-rotation encoding can there-
fore have arbitrarily rich frequency spectra. Of course, whether they express arbi-
trarily expressive models—or equivalently, whether they can realise all sets of coef-
ficients {cn}—depends on the variational circuit architecture.

5.3 Training Variational Quantum Models

Training a variational quantummodelmeans to find the parameters θwhichminimise
a data-dependent cost function as introduced in Sect. 2.3.3. Here, we will look at
the most common way to train quantum models: by making use of a technique from
deep learning called automatic differentiation. This method is particularly suited for
the training of deterministic models, but can be applied to probabilistic models via
methods such as generative adversarial training as well (see Sect. 5.3.4).

Automatic differentiation is a programming paradigm in which for a program-
matic implementation of a differentiable function fθ, methods to compute partial
derivatives of the form ∂µ fθ are automatically provided. For example, when coding
up a neural network of a specific architecture, the framework knows without further
information how to execute the backpropagation algorithm from Sect. 2.5.2.2.

Essentially, one can think of automatic differentiation as an application of the
chain rule. Consider a cost function C(θ) which depends on a model f that in turn
depends on parameters θ. The partial derivative ∂µC of the cost with respect to µ ∈ θ
can be written as

∂µC(θ) = ∂C
∂ fθ

∂ fθ
∂µ

. (5.39)

By virtue of implementing the two functions C(θ) and fθ, the computational frame-
work knows how to compute both ∂C

∂ fθ
and ∂ fθ

∂µ .

In the training of variational circuits, ∂C
∂ fθ

is still a classical computation, and could
in principle be dealt with by classical automatic differentiation libraries. However,
since fθ is the result of a quantum computation, we need to find a way to compute
∂ fθ
∂µ , or the partial derivative of a quantum computation with respect to one of its

classical

calculation

model output result of
quantum computation

how to calculate ?

5.2 Which Functions Do Variational Quantum Models Express? 191

As remarked in the previous section, Eq. (5.33) becomes a sumover a single extended
Fourier spectrum

Ω = {−L , . . . , 0, . . . L}, (5.37)

which are all values one can form from summing L differences of any two values in
{± 1

2 }. The quantum model with repeated encoding can therefore be expressed as a
Fourier series of degree L ,

fθ(x) =
L∑

n=−L

cneinx . (5.38)

Asymptotically for L → ∞, quantummodelswithPauli-rotation encoding can there-
fore have arbitrarily rich frequency spectra. Of course, whether they express arbi-
trarily expressive models—or equivalently, whether they can realise all sets of coef-
ficients {cn}—depends on the variational circuit architecture.

5.3 Training Variational Quantum Models

Training a variational quantummodelmeans to find the parameters θwhichminimise
a data-dependent cost function as introduced in Sect. 2.3.3. Here, we will look at
the most common way to train quantum models: by making use of a technique from
deep learning called automatic differentiation. This method is particularly suited for
the training of deterministic models, but can be applied to probabilistic models via
methods such as generative adversarial training as well (see Sect. 5.3.4).

Automatic differentiation is a programming paradigm in which for a program-
matic implementation of a differentiable function fθ, methods to compute partial
derivatives of the form ∂µ fθ are automatically provided. For example, when coding
up a neural network of a specific architecture, the framework knows without further
information how to execute the backpropagation algorithm from Sect. 2.5.2.2.

Essentially, one can think of automatic differentiation as an application of the
chain rule. Consider a cost function C(θ) which depends on a model f that in turn
depends on parameters θ. The partial derivative ∂µC of the cost with respect to µ ∈ θ
can be written as

∂µC(θ) = ∂C
∂ fθ

∂ fθ
∂µ

. (5.39)

By virtue of implementing the two functions C(θ) and fθ, the computational frame-
work knows how to compute both ∂C

∂ fθ
and ∂ fθ

∂µ .

In the training of variational circuits, ∂C
∂ fθ

is still a classical computation, and could
in principle be dealt with by classical automatic differentiation libraries. However,
since fθ is the result of a quantum computation, we need to find a way to compute
∂ fθ
∂µ , or the partial derivative of a quantum computation with respect to one of its

192 5 Variational Circuits as Machine Learning Models

Fig. 5.8 Training hybrid computations. Quantum machine learning pipelines rarely just consist of
quantum models only. Instead, classical and quantum processing work together, one processing the
outputs of the other. As a result, it is fruitful to think of training quantum models always as training
a hybrid computation

variational parameters. By providing such partial derivatives, quantum computing
can fit seamlessly into powerful hybrid machine learning pipelines like those built
with PyTorch and TensorFlow, and be trained in conjunction with classical models
(see Fig. 5.8).

After providing some basics of gradients, Sect. 5.3.2 will present some excit-
ing results on how to retrieve gradients—collections of partial derivatives—from a
quantum computer withminimal overhead. Section5.3.3will then explainwhy under
some circumstances, gradient-based training may not be possible due to the “barren
plateaus” problem, in which almost all gradients in the optimisation landscape are
close to zero. Finally, Sect. 5.3.4 will have a look at an example for the training of
generative quantummodels. All three areas are very active research areas in quantum
machine learning as well as in the more general variational circuit literature, and the
presentation in this book can therefore only give a very basic overview.

5.3.1 Gradients of Quantum Computations

The gradient of a scalar-valued function fθ : RN → R is the vector filled with the
partial derivatives with respect to its parameters θ = {θ1, . . . , θK },

∇ fθ =




∂θ1 fθ
...

∂θK fθ



 , (5.40)

where ∂z = ∂
∂z . If the model output is a map f : RN → RD , the derivatives are

captured by the Jacobian, which contains the gradients for each output in its columns,

J[fθ] =




∂θ1(fθ)1 . . . ∂θ1(fθ)D

...
. . .

...

∂θK (fθ)1 . . . ∂θK (fθ)D



 . (5.41)

• If such partial derivative is calculable, hybrid approach straightforward

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

L (491)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

| (✓)i = W (✓) |0i (490)

L (491)

34

MITP Summer School Lecture Michael Spannowsky July 2023 129

Gradients for VQC outputs

• The flatter the gradient, the more precisely
the function has to be evaluated

5.3 Training Variational Quantum Models 193

Fig. 5.9 The finite-difference method approximates a gradient with the linear function determined
by function evaluations at two points with distance ∆θ (here for a one-dimensional parameter
space). The precision ε for each function evaluation C(θ) has to be smaller for small gradients (left)
than for large ones (right)

Wewill sometimes conflate partial derivatives, gradients and Jacobians with the term
“gradients”.

Of course, one could always approximate the partial derivative of a quantummodel
fθ that depends on a parameter µ ∈ θ numerically using the famous finite-difference
method,

∂ fθ
∂µ

≈ fθ − fθ+∆θ

‖∆θ‖ . (5.42)

Here, ∆θ is the parameter set in which µ has been exchanged by µ+ ∆µ, where
∆µ is an infinitesimal shift. This is a linear approximation of the model between
two different points. However, finite differences are problematic in a context where
each function evaluation can only be estimated with an error. As shown in Fig.5.9,
the smaller the gradient, the more precision we need in estimating the cost function,
and the more repetitions of the algorithm are required (see also [15]). Numerical
finite-differences methods are therefore particularly difficult in situations when the
minimum has to be approximated closely, when the optimisation landscape hasmany
saddle points, and where the algorithm produces measurements with a high variance.
This creates a problem for the use of finite differences for near-termquantummachine
learning.

Hence, having access to the analytical, exact gradient is important. But also that is
not so simple. Let us assume for simplicity in the following that the quantum model
only depends on a single parameter µ which only affects a single gate G(µ), and
write VG(µ)W as the variational circuit of the model fµ. With

|ψ〉 = W |0〉, (5.43)

B = V †MV, (5.44)

the deterministic quantum model reads

5.3 Training Variational Quantum Models 193

Fig. 5.9 The finite-difference method approximates a gradient with the linear function determined
by function evaluations at two points with distance ∆θ (here for a one-dimensional parameter
space). The precision ε for each function evaluation C(θ) has to be smaller for small gradients (left)
than for large ones (right)

Wewill sometimes conflate partial derivatives, gradients and Jacobians with the term
“gradients”.

Of course, one could always approximate the partial derivative of a quantummodel
fθ that depends on a parameter µ ∈ θ numerically using the famous finite-difference
method,

∂ fθ
∂µ

≈ fθ − fθ+∆θ

‖∆θ‖ . (5.42)

Here, ∆θ is the parameter set in which µ has been exchanged by µ+ ∆µ, where
∆µ is an infinitesimal shift. This is a linear approximation of the model between
two different points. However, finite differences are problematic in a context where
each function evaluation can only be estimated with an error. As shown in Fig.5.9,
the smaller the gradient, the more precision we need in estimating the cost function,
and the more repetitions of the algorithm are required (see also [15]). Numerical
finite-differences methods are therefore particularly difficult in situations when the
minimum has to be approximated closely, when the optimisation landscape hasmany
saddle points, and where the algorithm produces measurements with a high variance.
This creates a problem for the use of finite differences for near-termquantummachine
learning.

Hence, having access to the analytical, exact gradient is important. But also that is
not so simple. Let us assume for simplicity in the following that the quantum model
only depends on a single parameter µ which only affects a single gate G(µ), and
write VG(µ)W as the variational circuit of the model fµ. With

|ψ〉 = W |0〉, (5.43)

B = V †MV, (5.44)

the deterministic quantum model reads

• Finite difference method (FDM) always possible

FDM increasingly problematic for small gradients

• Another problem - single gate quantum circuit with

194 5 Variational Circuits as Machine Learning Models

fµ = 〈ψ|G†(µ)BG(µ)|ψ〉. (5.45)

By linearity of the expectation, the partial derivative ∂µ fµ is the sum of two terms,

∂µ〈ψ|G†(µ)BG(µ)|ψ〉 = 〈ψ|G†B(∂µG)|ψ〉 + 〈ψ|(∂µG)†BG|ψ〉. (5.46)

The crucial point here is that each term itself is not a quantum expectation value,
since the bra and ket states are not the same. Even more, we do not have guarantees
that ∂µG is unitary. Hence, it is unclear how to compute the partial derivative of a
quantum computation by using a quantum computation.

Luckily, in many situations, one can show that the partial derivative of a quantum
expectation can be computed by evaluating the model itself a few times—usually
twice—but at different points in parameter space.Wewill introduce such “parameter-
shift rules” next.

5.3.2 Parameter-Shift Rules

Parameter-shift rules refer to a family of rules that express the partial derivative of a
quantum expectation with respect to a gate parameter as a linear combination of the
same expectation, but with the parameter “shifted” (Fig. 5.10):

Definition 5.4 (Parameter-shift rule) Let fµ = 〈M〉µ be a quantum expectation
value that depends on a classical parameter µ. A parameter-shift rule is an iden-
tity of the form

∂µ fµ =
∑

i

ai fµ+si , (5.47)

where {ai } and {si } are real scalar values.
While this reminds of a finite-difference rule, the gradient is not approximated, but
exact, and the shifts si are not necessarily small. Of course, in practice a quantum
computer can only ever estimate an expectation value, which means that parameter-
shift rules allow us to compute an estimation of the analytic gradient, whereas finite
difference allows us to compute an estimation of the approximate gradient.

While there were several early ideas of how to compute quantum gradients in this
manner (see [2, 15, 16]), a breakthrough paper by Mitarai et al. [17] introduced the
most prominent kind of parameter-shift rule, which was generalised by [18]. We will
follow the particularly succinct presentation in [19]. The rule applies to gates G(µ)
generated by a Hamiltonian G with G2 = 1, for which

G(µ) = e−iµG = cos(µ)1 − i sin(µ)G (5.48)

194 5 Variational Circuits as Machine Learning Models

fµ = 〈ψ|G†(µ)BG(µ)|ψ〉. (5.45)

By linearity of the expectation, the partial derivative ∂µ fµ is the sum of two terms,

∂µ〈ψ|G†(µ)BG(µ)|ψ〉 = 〈ψ|G†B(∂µG)|ψ〉 + 〈ψ|(∂µG)†BG|ψ〉. (5.46)

The crucial point here is that each term itself is not a quantum expectation value,
since the bra and ket states are not the same. Even more, we do not have guarantees
that ∂µG is unitary. Hence, it is unclear how to compute the partial derivative of a
quantum computation by using a quantum computation.

Luckily, in many situations, one can show that the partial derivative of a quantum
expectation can be computed by evaluating the model itself a few times—usually
twice—but at different points in parameter space.Wewill introduce such “parameter-
shift rules” next.

5.3.2 Parameter-Shift Rules

Parameter-shift rules refer to a family of rules that express the partial derivative of a
quantum expectation with respect to a gate parameter as a linear combination of the
same expectation, but with the parameter “shifted” (Fig. 5.10):

Definition 5.4 (Parameter-shift rule) Let fµ = 〈M〉µ be a quantum expectation
value that depends on a classical parameter µ. A parameter-shift rule is an iden-
tity of the form

∂µ fµ =
∑

i

ai fµ+si , (5.47)

where {ai } and {si } are real scalar values.
While this reminds of a finite-difference rule, the gradient is not approximated, but
exact, and the shifts si are not necessarily small. Of course, in practice a quantum
computer can only ever estimate an expectation value, which means that parameter-
shift rules allow us to compute an estimation of the analytic gradient, whereas finite
difference allows us to compute an estimation of the approximate gradient.

While there were several early ideas of how to compute quantum gradients in this
manner (see [2, 15, 16]), a breakthrough paper by Mitarai et al. [17] introduced the
most prominent kind of parameter-shift rule, which was generalised by [18]. We will
follow the particularly succinct presentation in [19]. The rule applies to gates G(µ)
generated by a Hamiltonian G with G2 = 1, for which

G(µ) = e−iµG = cos(µ)1 − i sin(µ)G (5.48)

5.3 Training Variational Quantum Models 193

Fig. 5.9 The finite-difference method approximates a gradient with the linear function determined
by function evaluations at two points with distance ∆θ (here for a one-dimensional parameter
space). The precision ε for each function evaluation C(θ) has to be smaller for small gradients (left)
than for large ones (right)

Wewill sometimes conflate partial derivatives, gradients and Jacobians with the term
“gradients”.

Of course, one could always approximate the partial derivative of a quantummodel
fθ that depends on a parameter µ ∈ θ numerically using the famous finite-difference
method,

∂ fθ
∂µ

≈ fθ − fθ+∆θ

‖∆θ‖ . (5.42)

Here, ∆θ is the parameter set in which µ has been exchanged by µ+ ∆µ, where
∆µ is an infinitesimal shift. This is a linear approximation of the model between
two different points. However, finite differences are problematic in a context where
each function evaluation can only be estimated with an error. As shown in Fig.5.9,
the smaller the gradient, the more precision we need in estimating the cost function,
and the more repetitions of the algorithm are required (see also [15]). Numerical
finite-differences methods are therefore particularly difficult in situations when the
minimum has to be approximated closely, when the optimisation landscape hasmany
saddle points, and where the algorithm produces measurements with a high variance.
This creates a problem for the use of finite differences for near-termquantummachine
learning.

Hence, having access to the analytical, exact gradient is important. But also that is
not so simple. Let us assume for simplicity in the following that the quantum model
only depends on a single parameter µ which only affects a single gate G(µ), and
write VG(µ)W as the variational circuit of the model fµ. With

|ψ〉 = W |0〉, (5.43)

B = V †MV, (5.44)

the deterministic quantum model reads
not clear if unitary each term not quantum

expectation value
Can use shift rule and apply entire model twice!

MITP Summer School Lecture Michael Spannowsky July 2023 130

194 5 Variational Circuits as Machine Learning Models

fµ = 〈ψ|G†(µ)BG(µ)|ψ〉. (5.45)

By linearity of the expectation, the partial derivative ∂µ fµ is the sum of two terms,

∂µ〈ψ|G†(µ)BG(µ)|ψ〉 = 〈ψ|G†B(∂µG)|ψ〉 + 〈ψ|(∂µG)†BG|ψ〉. (5.46)

The crucial point here is that each term itself is not a quantum expectation value,
since the bra and ket states are not the same. Even more, we do not have guarantees
that ∂µG is unitary. Hence, it is unclear how to compute the partial derivative of a
quantum computation by using a quantum computation.

Luckily, in many situations, one can show that the partial derivative of a quantum
expectation can be computed by evaluating the model itself a few times—usually
twice—but at different points in parameter space.Wewill introduce such “parameter-
shift rules” next.

5.3.2 Parameter-Shift Rules

Parameter-shift rules refer to a family of rules that express the partial derivative of a
quantum expectation with respect to a gate parameter as a linear combination of the
same expectation, but with the parameter “shifted” (Fig. 5.10):

Definition 5.4 (Parameter-shift rule) Let fµ = 〈M〉µ be a quantum expectation
value that depends on a classical parameter µ. A parameter-shift rule is an iden-
tity of the form

∂µ fµ =
∑

i

ai fµ+si , (5.47)

where {ai } and {si } are real scalar values.
While this reminds of a finite-difference rule, the gradient is not approximated, but
exact, and the shifts si are not necessarily small. Of course, in practice a quantum
computer can only ever estimate an expectation value, which means that parameter-
shift rules allow us to compute an estimation of the analytic gradient, whereas finite
difference allows us to compute an estimation of the approximate gradient.

While there were several early ideas of how to compute quantum gradients in this
manner (see [2, 15, 16]), a breakthrough paper by Mitarai et al. [17] introduced the
most prominent kind of parameter-shift rule, which was generalised by [18]. We will
follow the particularly succinct presentation in [19]. The rule applies to gates G(µ)
generated by a Hamiltonian G with G2 = 1, for which

G(µ) = e−iµG = cos(µ)1 − i sin(µ)G (5.48)

Parameter-shift Rules

194 5 Variational Circuits as Machine Learning Models

fµ = 〈ψ|G†(µ)BG(µ)|ψ〉. (5.45)

By linearity of the expectation, the partial derivative ∂µ fµ is the sum of two terms,

∂µ〈ψ|G†(µ)BG(µ)|ψ〉 = 〈ψ|G†B(∂µG)|ψ〉 + 〈ψ|(∂µG)†BG|ψ〉. (5.46)

The crucial point here is that each term itself is not a quantum expectation value,
since the bra and ket states are not the same. Even more, we do not have guarantees
that ∂µG is unitary. Hence, it is unclear how to compute the partial derivative of a
quantum computation by using a quantum computation.

Luckily, in many situations, one can show that the partial derivative of a quantum
expectation can be computed by evaluating the model itself a few times—usually
twice—but at different points in parameter space.Wewill introduce such “parameter-
shift rules” next.

5.3.2 Parameter-Shift Rules

Parameter-shift rules refer to a family of rules that express the partial derivative of a
quantum expectation with respect to a gate parameter as a linear combination of the
same expectation, but with the parameter “shifted” (Fig. 5.10):

Definition 5.4 (Parameter-shift rule) Let fµ = 〈M〉µ be a quantum expectation
value that depends on a classical parameter µ. A parameter-shift rule is an iden-
tity of the form

∂µ fµ =
∑

i

ai fµ+si , (5.47)

where {ai } and {si } are real scalar values.
While this reminds of a finite-difference rule, the gradient is not approximated, but
exact, and the shifts si are not necessarily small. Of course, in practice a quantum
computer can only ever estimate an expectation value, which means that parameter-
shift rules allow us to compute an estimation of the analytic gradient, whereas finite
difference allows us to compute an estimation of the approximate gradient.

While there were several early ideas of how to compute quantum gradients in this
manner (see [2, 15, 16]), a breakthrough paper by Mitarai et al. [17] introduced the
most prominent kind of parameter-shift rule, which was generalised by [18]. We will
follow the particularly succinct presentation in [19]. The rule applies to gates G(µ)
generated by a Hamiltonian G with G2 = 1, for which

G(µ) = e−iµG = cos(µ)1 − i sin(µ)G (5.48)

We can calculate the partial derivative for quantum exp. value as

194 5 Variational Circuits as Machine Learning Models

fµ = 〈ψ|G†(µ)BG(µ)|ψ〉. (5.45)

By linearity of the expectation, the partial derivative ∂µ fµ is the sum of two terms,

∂µ〈ψ|G†(µ)BG(µ)|ψ〉 = 〈ψ|G†B(∂µG)|ψ〉 + 〈ψ|(∂µG)†BG|ψ〉. (5.46)

The crucial point here is that each term itself is not a quantum expectation value,
since the bra and ket states are not the same. Even more, we do not have guarantees
that ∂µG is unitary. Hence, it is unclear how to compute the partial derivative of a
quantum computation by using a quantum computation.

Luckily, in many situations, one can show that the partial derivative of a quantum
expectation can be computed by evaluating the model itself a few times—usually
twice—but at different points in parameter space.Wewill introduce such “parameter-
shift rules” next.

5.3.2 Parameter-Shift Rules

Parameter-shift rules refer to a family of rules that express the partial derivative of a
quantum expectation with respect to a gate parameter as a linear combination of the
same expectation, but with the parameter “shifted” (Fig. 5.10):

Definition 5.4 (Parameter-shift rule) Let fµ = 〈M〉µ be a quantum expectation
value that depends on a classical parameter µ. A parameter-shift rule is an iden-
tity of the form

∂µ fµ =
∑

i

ai fµ+si , (5.47)

where {ai } and {si } are real scalar values.
While this reminds of a finite-difference rule, the gradient is not approximated, but
exact, and the shifts si are not necessarily small. Of course, in practice a quantum
computer can only ever estimate an expectation value, which means that parameter-
shift rules allow us to compute an estimation of the analytic gradient, whereas finite
difference allows us to compute an estimation of the approximate gradient.

While there were several early ideas of how to compute quantum gradients in this
manner (see [2, 15, 16]), a breakthrough paper by Mitarai et al. [17] introduced the
most prominent kind of parameter-shift rule, which was generalised by [18]. We will
follow the particularly succinct presentation in [19]. The rule applies to gates G(µ)
generated by a Hamiltonian G with G2 = 1, for which

G(µ) = e−iµG = cos(µ)1 − i sin(µ)G (5.48)

194 5 Variational Circuits as Machine Learning Models

fµ = 〈ψ|G†(µ)BG(µ)|ψ〉. (5.45)

By linearity of the expectation, the partial derivative ∂µ fµ is the sum of two terms,

∂µ〈ψ|G†(µ)BG(µ)|ψ〉 = 〈ψ|G†B(∂µG)|ψ〉 + 〈ψ|(∂µG)†BG|ψ〉. (5.46)

The crucial point here is that each term itself is not a quantum expectation value,
since the bra and ket states are not the same. Even more, we do not have guarantees
that ∂µG is unitary. Hence, it is unclear how to compute the partial derivative of a
quantum computation by using a quantum computation.

Luckily, in many situations, one can show that the partial derivative of a quantum
expectation can be computed by evaluating the model itself a few times—usually
twice—but at different points in parameter space.Wewill introduce such “parameter-
shift rules” next.

5.3.2 Parameter-Shift Rules

Parameter-shift rules refer to a family of rules that express the partial derivative of a
quantum expectation with respect to a gate parameter as a linear combination of the
same expectation, but with the parameter “shifted” (Fig. 5.10):

Definition 5.4 (Parameter-shift rule) Let fµ = 〈M〉µ be a quantum expectation
value that depends on a classical parameter µ. A parameter-shift rule is an iden-
tity of the form

∂µ fµ =
∑

i

ai fµ+si , (5.47)

where {ai } and {si } are real scalar values.
While this reminds of a finite-difference rule, the gradient is not approximated, but
exact, and the shifts si are not necessarily small. Of course, in practice a quantum
computer can only ever estimate an expectation value, which means that parameter-
shift rules allow us to compute an estimation of the analytic gradient, whereas finite
difference allows us to compute an estimation of the approximate gradient.

While there were several early ideas of how to compute quantum gradients in this
manner (see [2, 15, 16]), a breakthrough paper by Mitarai et al. [17] introduced the
most prominent kind of parameter-shift rule, which was generalised by [18]. We will
follow the particularly succinct presentation in [19]. The rule applies to gates G(µ)
generated by a Hamiltonian G with G2 = 1, for which

G(µ) = e−iµG = cos(µ)1 − i sin(µ)G (5.48)

With real and and the shift not necessarily being small. Gradient is exact!

finite difference computes estimation of approximate gradient

parameter shift computes estimation of the analytic gradient (of exp val)

All unitaries of Pauli rotations and their tensor
products can be expressed as

194 5 Variational Circuits as Machine Learning Models

fµ = 〈ψ|G†(µ)BG(µ)|ψ〉. (5.45)

By linearity of the expectation, the partial derivative ∂µ fµ is the sum of two terms,

∂µ〈ψ|G†(µ)BG(µ)|ψ〉 = 〈ψ|G†B(∂µG)|ψ〉 + 〈ψ|(∂µG)†BG|ψ〉. (5.46)

The crucial point here is that each term itself is not a quantum expectation value,
since the bra and ket states are not the same. Even more, we do not have guarantees
that ∂µG is unitary. Hence, it is unclear how to compute the partial derivative of a
quantum computation by using a quantum computation.

Luckily, in many situations, one can show that the partial derivative of a quantum
expectation can be computed by evaluating the model itself a few times—usually
twice—but at different points in parameter space.Wewill introduce such “parameter-
shift rules” next.

5.3.2 Parameter-Shift Rules

Parameter-shift rules refer to a family of rules that express the partial derivative of a
quantum expectation with respect to a gate parameter as a linear combination of the
same expectation, but with the parameter “shifted” (Fig. 5.10):

Definition 5.4 (Parameter-shift rule) Let fµ = 〈M〉µ be a quantum expectation
value that depends on a classical parameter µ. A parameter-shift rule is an iden-
tity of the form

∂µ fµ =
∑

i

ai fµ+si , (5.47)

where {ai } and {si } are real scalar values.
While this reminds of a finite-difference rule, the gradient is not approximated, but
exact, and the shifts si are not necessarily small. Of course, in practice a quantum
computer can only ever estimate an expectation value, which means that parameter-
shift rules allow us to compute an estimation of the analytic gradient, whereas finite
difference allows us to compute an estimation of the approximate gradient.

While there were several early ideas of how to compute quantum gradients in this
manner (see [2, 15, 16]), a breakthrough paper by Mitarai et al. [17] introduced the
most prominent kind of parameter-shift rule, which was generalised by [18]. We will
follow the particularly succinct presentation in [19]. The rule applies to gates G(µ)
generated by a Hamiltonian G with G2 = 1, for which

G(µ) = e−iµG = cos(µ)1 − i sin(µ)G (5.48)

5.3 Training Variational Quantum Models 195

Fig. 5.10 Partial derivative of an expectation using a 2-term parameter-shift rule. To compute the
partial derivative ∂µ〈M〉, we can often take the linear combination of two expectation values. In
each expectation value, the original gate parameter is shifted by a constant amount s

holds. Such gates include the important Pauli rotations, as well as their tensor prod-
ucts, and it is well known that any parametrised unitary could be expressed using
these building blocks.

WithEq. (5.48), the unitary conjugation of themeasurement in Eq. (5.53) becomes

K (µ) = G†(µ)BG(µ) = A + B cos(µ)+ C sin(µ), (5.49)

where the operators A, B,C are independent of the parameter µ. Trigonometric
identities lead to

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.50)

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.51)

for s $= kπ, k ∈ Z. With this, we get

∂µK (µ) = K (µ+ s) − (µ − s)
2 sin(s)

, (5.52)

which leads to

∂µ fµ = 1
2 sin(s)

(
〈ψ|G†(µ+ s)BG(µ+ s)|ψ〉 − 〈ψ|G†(µ − s)BG(µ − s)|ψ〉

)

(5.53)

= 1
2 sin(s)

(
fµ+s − fµ−s

)
, (5.54)

a parameter-shift rule of the form given in Eq. (5.47). In practice, s is often chosen
as π/2 to set the numerator to 1/2. The finite-difference rule emerges from s → 0.
Parameter-shift rules can be chained to compute higher order derivatives such as
the Hessian as well as the Fubini-Study metric tensor of a quantum model [19].

5.3 Training Variational Quantum Models 195

Fig. 5.10 Partial derivative of an expectation using a 2-term parameter-shift rule. To compute the
partial derivative ∂µ〈M〉, we can often take the linear combination of two expectation values. In
each expectation value, the original gate parameter is shifted by a constant amount s

holds. Such gates include the important Pauli rotations, as well as their tensor prod-
ucts, and it is well known that any parametrised unitary could be expressed using
these building blocks.

WithEq. (5.48), the unitary conjugation of themeasurement in Eq. (5.53) becomes

K (µ) = G†(µ)BG(µ) = A + B cos(µ)+ C sin(µ), (5.49)

where the operators A, B,C are independent of the parameter µ. Trigonometric
identities lead to

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.50)

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.51)

for s $= kπ, k ∈ Z. With this, we get

∂µK (µ) = K (µ+ s) − (µ − s)
2 sin(s)

, (5.52)

which leads to

∂µ fµ = 1
2 sin(s)

(
〈ψ|G†(µ+ s)BG(µ+ s)|ψ〉 − 〈ψ|G†(µ − s)BG(µ − s)|ψ〉

)

(5.53)

= 1
2 sin(s)

(
fµ+s − fµ−s

)
, (5.54)

a parameter-shift rule of the form given in Eq. (5.47). In practice, s is often chosen
as π/2 to set the numerator to 1/2. The finite-difference rule emerges from s → 0.
Parameter-shift rules can be chained to compute higher order derivatives such as
the Hessian as well as the Fubini-Study metric tensor of a quantum model [19].

5.3 Training Variational Quantum Models 195

Fig. 5.10 Partial derivative of an expectation using a 2-term parameter-shift rule. To compute the
partial derivative ∂µ〈M〉, we can often take the linear combination of two expectation values. In
each expectation value, the original gate parameter is shifted by a constant amount s

holds. Such gates include the important Pauli rotations, as well as their tensor prod-
ucts, and it is well known that any parametrised unitary could be expressed using
these building blocks.

WithEq. (5.48), the unitary conjugation of themeasurement in Eq. (5.53) becomes

K (µ) = G†(µ)BG(µ) = A + B cos(µ)+ C sin(µ), (5.49)

where the operators A, B,C are independent of the parameter µ. Trigonometric
identities lead to

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.50)

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.51)

for s $= kπ, k ∈ Z. With this, we get

∂µK (µ) = K (µ+ s) − (µ − s)
2 sin(s)

, (5.52)

which leads to

∂µ fµ = 1
2 sin(s)

(
〈ψ|G†(µ+ s)BG(µ+ s)|ψ〉 − 〈ψ|G†(µ − s)BG(µ − s)|ψ〉

)

(5.53)

= 1
2 sin(s)

(
fµ+s − fµ−s

)
, (5.54)

a parameter-shift rule of the form given in Eq. (5.47). In practice, s is often chosen
as π/2 to set the numerator to 1/2. The finite-difference rule emerges from s → 0.
Parameter-shift rules can be chained to compute higher order derivatives such as
the Hessian as well as the Fubini-Study metric tensor of a quantum model [19].

5.3 Training Variational Quantum Models 195

Fig. 5.10 Partial derivative of an expectation using a 2-term parameter-shift rule. To compute the
partial derivative ∂µ〈M〉, we can often take the linear combination of two expectation values. In
each expectation value, the original gate parameter is shifted by a constant amount s

holds. Such gates include the important Pauli rotations, as well as their tensor prod-
ucts, and it is well known that any parametrised unitary could be expressed using
these building blocks.

WithEq. (5.48), the unitary conjugation of themeasurement in Eq. (5.53) becomes

K (µ) = G†(µ)BG(µ) = A + B cos(µ)+ C sin(µ), (5.49)

where the operators A, B,C are independent of the parameter µ. Trigonometric
identities lead to

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.50)

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.51)

for s $= kπ, k ∈ Z. With this, we get

∂µK (µ) = K (µ+ s) − (µ − s)
2 sin(s)

, (5.52)

which leads to

∂µ fµ = 1
2 sin(s)

(
〈ψ|G†(µ+ s)BG(µ+ s)|ψ〉 − 〈ψ|G†(µ − s)BG(µ − s)|ψ〉

)

(5.53)

= 1
2 sin(s)

(
fµ+s − fµ−s

)
, (5.54)

a parameter-shift rule of the form given in Eq. (5.47). In practice, s is often chosen
as π/2 to set the numerator to 1/2. The finite-difference rule emerges from s → 0.
Parameter-shift rules can be chained to compute higher order derivatives such as
the Hessian as well as the Fubini-Study metric tensor of a quantum model [19].

5.3 Training Variational Quantum Models 195

Fig. 5.10 Partial derivative of an expectation using a 2-term parameter-shift rule. To compute the
partial derivative ∂µ〈M〉, we can often take the linear combination of two expectation values. In
each expectation value, the original gate parameter is shifted by a constant amount s

holds. Such gates include the important Pauli rotations, as well as their tensor prod-
ucts, and it is well known that any parametrised unitary could be expressed using
these building blocks.

WithEq. (5.48), the unitary conjugation of themeasurement in Eq. (5.53) becomes

K (µ) = G†(µ)BG(µ) = A + B cos(µ)+ C sin(µ), (5.49)

where the operators A, B,C are independent of the parameter µ. Trigonometric
identities lead to

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.50)

∂ cos(µ)
∂µ

= cos(µ+ s) − cos(µ − s)
2 sin(s)

(5.51)

for s $= kπ, k ∈ Z. With this, we get

∂µK (µ) = K (µ+ s) − (µ − s)
2 sin(s)

, (5.52)

which leads to

∂µ fµ = 1
2 sin(s)

(
〈ψ|G†(µ+ s)BG(µ+ s)|ψ〉 − 〈ψ|G†(µ − s)BG(µ − s)|ψ〉

)

(5.53)

= 1
2 sin(s)

(
fµ+s − fµ−s

)
, (5.54)

a parameter-shift rule of the form given in Eq. (5.47). In practice, s is often chosen
as π/2 to set the numerator to 1/2. The finite-difference rule emerges from s → 0.
Parameter-shift rules can be chained to compute higher order derivatives such as
the Hessian as well as the Fubini-Study metric tensor of a quantum model [19].

often chosen However computationally costly (evaluate circuit twice)

MITP Summer School Lecture Michael Spannowsky July 2023 131

Barren Plateaus

• Area in loss landscape where gradients are close to zero

• Optimisation is slow and expensive, requiring high accuracy in
evaluating gradient to avoid random walking

Barren Plateaus often arise if quantum model is overly
expressive and Hilbert spaces are large

Important task for efficient
learning is the choice of model,
i.e. as expressive as necessary
while as small as possible

198 5 Variational Circuits as Machine Learning Models

Fig. 5.11 Illustration of the barren plateaus problem. The functions fθ = 〈M〉θ (here θ = (θ1, θ2))
that are expectations of quantum circuits consisting of uniformly sampled unitaries before and/or
after the parameter-encoding gates become flatter with larger Hilbert spaces. This is a problem if
the cost function depends on f , since the cost’s gradients vanish. In other words, for wide random
circuits, the optimisation landscape becomes featureless

of variational circuits. Hence, in the following, we will ignore the data encoding in
deterministic models. Furthermore, since vanishing gradients are independently zero
for every partial derivative, we will continue to consider expectations of the form
fµ = 〈0|W (µ)†MW (µ)|0〉, where µ can be interpreted as one of many variational
parameters θ.

Since a barren plateau is indicated by a vanishing variance of the gradient, we are
interested in the quantity

Var[∂µ f] = 〈
(
∂µ f

)2〉W − 〈∂µ f 〉2W . (5.57)

Themain idea of the original proof is to sampleW—ormore precisely, the parts ofW
applied before and after the parameter-encoding gateG(µ)—fromaHaar distribution.
Since the variance is a second moment, the result is not only valid for Haar-random
distributed unitaries, but applies to 2-designs, whose expectations behave like Haar
distributed unitaries up to second order:

Definition 5.5 (t-design) A a t-design is a distribution {pk,Wk} over unitaries W
with probabilities pk such that the average over polynomials of up to t’th degree in
the elements of the unitary and its conjugate transpose are equal to averages over the
Haar measure µ(W) of the unitary group,

∑

k

pkW⊗t
k ρ (W †

k)
⊗t =

∫
W⊗tρ (W †)⊗t dµ(W). (5.58)

Individual gradient steps in
exponentially large
parameter and Hilbert
space becomes less relevant

MITP Summer School Lecture Michael Spannowsky July 2023 132

Some ways to avoid Barren plateaus

MITP Summer School Lecture Michael Spannowsky July 2023 133

• BEINIT Avoid Barren Plateaus in Variational Quantum Algorithms
➡A strategy that initialises the parameters of a unitary gate by drawing from

a beta distribution. The hyperparameters of the beta distribution are
estimated from the data.

➡To further prevent barren plateau during training, a perturbation is added at
every gradient descent step.

➡This framework significantly reduces the possibility of a complex quantum
neural network getting stuck in a barren plateau.

• Avoiding Barren Plateaus using classical shadows

[Kulshrestha, Safro ’22]

[Sack, Medina,
Michailidis et al ’22]

Optimising the loss landscape

3.3. Optimisation 77

The parameter-shift rules provide the relation

ˆ

ˆ◊
f = r

5
f(◊ + s) ≠ f(◊ ≠ s)

6
, (3.3.2)

where the shift s = fi/4r. The value of r is an arbitrary normalisation factor which

we choose in our implementation to be r = 1/21. From Eq. (3.3.2) we can calculate

gradients over quantum gates by shifting their parameters. As the di�culty of

calculating ˆ

ˆ◊
f has been reduced to simply probing the quantum circuit at di�erent

parameter points, it is now possible to evaluate the gradient fast and e�ciently on

a quantum device.

3.3.2 From Classical to Quantum Gradient Descent

The geometry of the parameter space has a direct impact on the reliability and

e�ciency of an optimisation algorithm [110]. Therefore, a suitable choice of optim-

isation strategy is a key performance factor for a variational quantum circuit. It is an

open question as to what is the best form of parameter space to use and whether the

use of a traditional Euclidean geometry is appropriate for variational models [111].

For our problem, we propose to augment the vanilla gradient descent method, often

used in classical neural networks, with a quantum gradient descent method [103].

In vanilla gradient descent, the network parameters ◊t, at each iteration step t, are

updated to ◊t+1. The goal is to choose the parameters ◊t+1 such that the loss function

L(◊) is minimised. One approach is to update ◊t in the direction of the steepest

decline, ≠OL(◊), weighted by a learning rate ÷

◊t+1 = ◊t ≠ ÷OL(◊). (3.3.3)

However, this optimisation is performed on the geometry of an l2 vector space, which

will influence the performance of our model and how new parameters are found.

1The rule is similar to the traditional finite di�erences (FD) method of finding a derivative.
However, unlike the parameter-shift rules, FD is an approximation. Also, parameter-shift requires
a shift of fi/2 while the shift in a FD setup must be << 1.

78 Chapter 3. Classification Using a Variational Quantum Classifier

While all parameters are updated with the same step size, the rate at which the loss

function changes for each model parameter can vary by large amounts. By using

this form of gradient descent it is possible to miss the global minimum in the space

of the loss function.

An improvement would be to change the coordinate system to ensure the loss function

changes consistently with each step, for each parameter. Alternatively, one could

find a method that was invariant under re-parametrisation.

One way to address this problem is to use natural gradient descent, which makes

use of the Fisher Information Matrix [112, 113]. This is a classical extension to

vanilla gradient descent method. The parameters of a network (the weights and

biases) exist on a parameter space that has a Riemannian geometry. The Fisher

Information Matrix is the metric that defines this space. Since this metric includes

information on the geometric structure of the Riemannian space of the network

parameters, its inclusion into the gradient descent optimisation leads the network

to learn more e�ectively. In addition, it is invariant under re-parametrisation, and

thus advantageous in finding an e�ective parametrisation.

Algorithmically, natural gradient descent can be written as

◊t+1 = ◊t ≠ ÷F ≠1
OL(◊) , (3.3.4)

where F is the Fisher Information Matrix. In each optimisation step, the paramet-

ers are updated in the direction of steepest descent of the information geometry

rather than the Euclidean geometry. The inclusion of F ≠1 in Eq. (3.3.4) generally

improves the performance of the optimisation algorithm. In most classical deep

neural networks, calculating the inverse of a large matrix becomes prohibitively

expensive because of the computations involved. However, in our hybrid network,

which benefits from a small model size, it follows that the parameter space will also

be small. Thus, our aim is to use a quantum optimisation equivalent of this method

that we can use on variational circuits.

The parameter space of quantum states has a geometry that can be described by an

3.4. Analysis Setup 79

invariant metric. Similar to how the Fisher Information Matrix is used to promote

the gradient descent method to the natural gradient descent method, the Fubini-

Study metric g (derived and elaborated on in Appendix A) exploits the geometric

structure of the variational quantum classifier’s parameter space to establish the

quantum gradient descent method. Here, the optimisation algorithm reads [103]

◊t+1 = ◊t ≠ ÷g+
OL(◊) , (3.3.5)

where g+ is the pseudo-inverse of the Fubini-Study metric. We implement this using

the Python package PennyLane [114]. This allows us to find the steepest descent in

the parameter space of the quantum states. The approach of Eq. (3.3.5) is designed

to optimise the parameters of the quantum variational circuit only, i.e. the quantum

gates with trainable parameters w = (–, —, “). To perform a full optimisation of

our hybrid model, we need to consider the classical components of our model -

the bias term. Thus, we propose to optimise our weights using quantum gradient

descent (3.3.6) while using vanilla gradient descent for the classical bias term b. By

calculating both gradients at each optimisation step,

◊w

t+1 = ◊w

t ≠ ÷g+
O

wL(◊) ,

◊b

t+1 = ◊b

t ≠ ÷ObL(◊) , (3.3.6)

we can be sure that our entire range of parameters is optimised simultaneously.

3.4 Analysis Setup

Our analysis will be performed using background and signal samples consisting of

pp æ tt̄ events and pp æ Z Õ
æ tt̄ events, respectively. These events are generated

using the same method as found in Chapter 2.2.

The analysis is based exclusively on the transverse momentum of one b-jet, pT,b1 ,

and the event’s missing energy, /ET . We show the distributions of these observables

3.4. Analysis Setup 79

invariant metric. Similar to how the Fisher Information Matrix is used to promote

the gradient descent method to the natural gradient descent method, the Fubini-

Study metric g (derived and elaborated on in Appendix A) exploits the geometric

structure of the variational quantum classifier’s parameter space to establish the

quantum gradient descent method. Here, the optimisation algorithm reads [103]

◊t+1 = ◊t ≠ ÷g+
OL(◊) , (3.3.5)

where g+ is the pseudo-inverse of the Fubini-Study metric. We implement this using

the Python package PennyLane [114]. This allows us to find the steepest descent in

the parameter space of the quantum states. The approach of Eq. (3.3.5) is designed

to optimise the parameters of the quantum variational circuit only, i.e. the quantum

gates with trainable parameters w = (–, —, “). To perform a full optimisation of

our hybrid model, we need to consider the classical components of our model -

the bias term. Thus, we propose to optimise our weights using quantum gradient

descent (3.3.6) while using vanilla gradient descent for the classical bias term b. By

calculating both gradients at each optimisation step,

◊w

t+1 = ◊w

t ≠ ÷g+
O

wL(◊) ,

◊b

t+1 = ◊b

t ≠ ÷ObL(◊) , (3.3.6)

we can be sure that our entire range of parameters is optimised simultaneously.

3.4 Analysis Setup

Our analysis will be performed using background and signal samples consisting of

pp æ tt̄ events and pp æ Z Õ
æ tt̄ events, respectively. These events are generated

using the same method as found in Chapter 2.2.

The analysis is based exclusively on the transverse momentum of one b-jet, pT,b1 ,

and the event’s missing energy, /ET . We show the distributions of these observables

classical gradient descent (GD):

weights

bias

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2| 1i |
2 (196)

U (197)

Û (198)

D
Û
E

=

h |U | i

h | i
(199)

H =
mX

j=1

Hj (200)

eiHt =

0

@
mY

j=1

e�iHjt/r

1

A
r

+O(m2t2/r) (201)

✓1 (202)

✓2 (203)

L(✓1, ✓2) (204)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2| 1i |
2 (196)

U (197)

Û (198)

D
Û
E

=

h |U | i

h | i
(199)

H =
mX

j=1

Hj (200)

eiHt =

0

@
mY

j=1

e�iHjt/r

1

A
r

+O(m2t2/r) (201)

✓1 (202)

✓2 (203)

L(✓1, ✓2) (204)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2| 1i |
2 (196)

U (197)

Û (198)

D
Û
E

=

h |U | i

h | i
(199)

H =
mX

j=1

Hj (200)

eiHt =

0

@
mY

j=1

e�iHjt/r

1

A
r

+O(m2t2/r) (201)

✓1 (202)

✓2 (203)

L(✓1, ✓2) (204)

14Fisher Information Matrix F promotes
gradient descent to natural gradient descent (Riemannian geometry):

VQC parameters
Fubiny-Study metric underlies
geometric structure of VQC
parameter space (complex
projective Hilbert Spaces):

quantum gradient descent (QDC):

[Blance, MS ’20][Stokes, Izaac, Killoran, Carleo ’20]

MITP Summer School Lecture Michael Spannowsky July 2023 134

Gate quantum machine learning in action3.6. Conclusions 83

1 11 21 30
Epoch

0.8

0.9

1.0

1.1

1.2

1.3

T
ra

in
in

g
L
os

s

NN � GD

VQC � GD

VQC � QGD

(a) (b)

Figure 3.5: Comparison of the averaged training history for 15 runs
of the QVC models trained with quantum gradient des-
cent, QVC models trained using vanilla gradient descent
and the classical NN models. Figure (a) show models
trained with 1500 samples and Figure (b) shows models
trained with 500 samples.

(a) (b)

Figure 3.6: (a) Output of a QVC model trained with quantum gradi-
ent descent and (b) ROC curve for a QVC model trained
with quantum gradient descent, a QVC model trained
with vanilla gradient descent and the classical NN.

3.6 Conclusions

Classification of rare signal events from standard model background is an important

part of machine learning algorithms in collider phenomenology. Recently, more e�ort

has been dedicated to the development of novel techniques to find correlations in

3.6. Conclusions 83

(a)

1 11 21 30
Epoch

0.8

0.9

1.0

1.1

1.2

1.3

T
ra

in
in

g
L
os

s

NN � GD

VQC � GD

VQC � QGD

(b)

Figure 3.5: Comparison of the averaged training history for 15 runs
of the QVC models trained with quantum gradient des-
cent, QVC models trained using vanilla gradient descent
and the classical NN models. Figure (a) show models
trained with 1500 samples and Figure (b) shows models
trained with 500 samples.

(a) (b)

Figure 3.6: (a) Output of a QVC model trained with quantum gradi-
ent descent and (b) ROC curve for a QVC model trained
with quantum gradient descent, a QVC model trained
with vanilla gradient descent and the classical NN.

3.6 Conclusions

Classification of rare signal events from standard model background is an important

part of machine learning algorithms in collider phenomenology. Recently, more e�ort

has been dedicated to the development of novel techniques to find correlations in

84 Chapter 3. Classification Using a Variational Quantum Classifier

Device Accuracy (%)
PennyLane default.qubit 72.6
ibmq_qasm_simulator 72.6
ibmqx2 71.4

Table 3.1: Test set results from model trained with quantum gradi-
ent descent sent to PennyLanes in-built simulator, IBM
Q simulator and IBM Q Yorktown (ibmqx2).

high-dimensional parameter spaces. In this chapter, we present a novel quantum-

classical hybrid neural network. Models such as the one developed make up part

of what is known as quantum machine learning (QML). This is the emerging field

aimed at applying quantum computing benefits to machine learning. By applying

the power of quantum computing to machine learning, it is hoped that one can create

classification techniques which will increase sensitivity in new physics searches.

The model proposed here is based on a variational quantum classifier. Variational

quantum classifiers are in many ways analogous to classical neural networks. An

advantage that a VQC classifier provides over a classical neural network is its small

model size. The model shown here uses a quantum algorithm equivalent to natural

gradient descent. Typically, due to the need to invert large matrices, natural gradient

descent is computationally prohibitive when training neural networks. However,

thanks to the model-size advantage of the VQC, we can make use of quantum

gradient descent to optimise our network.

We combine the use of quantum gradient descent to optimise the quantum gate

parameters in the model with classical gradient descent to optimise the classical

bias term. This model was used to perform a Z Õ resonance search. We compared

the performance of this model against a purely classical neural network and a VQC

optimised with standard gradient descent. The hybrid approach proved successful

in maximising the learning outcome. The hybrid approach learns faster than an

equivalent classical neural network or the classically trained VQC. Even on small

data samples the hybrid VQC still retains a high classification ability. While we

applied this methodology to generated data, we believe this approach can prove

3.6. Conclusions 83

(a) (b)

Figure 3.5: Comparison of the averaged training history for 15 runs
of the QVC models trained with quantum gradient des-
cent, QVC models trained using vanilla gradient descent
and the classical NN models. Figure (a) show models
trained with 1500 samples and Figure (b) shows models
trained with 500 samples.

(a)

0 0.2 0.4 0.6 0.8 1.0
Background Rejection

0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
E

�
ci

en
cy

VQC � QGD AUC = 0.794

VQC � GD AUC = 0.773

NN � GD AUC = 0.738

(b)

Figure 3.6: (a) Output of a QVC model trained with quantum gradi-
ent descent and (b) ROC curve for a QVC model trained
with quantum gradient descent, a QVC model trained
with vanilla gradient descent and the classical NN.

3.6 Conclusions

Classification of rare signal events from standard model background is an important

part of machine learning algorithms in collider phenomenology. Recently, more e�ort

has been dedicated to the development of novel techniques to find correlations in

1500 training events 500 events

QC device vs simulator

[Blance, MS ’20]

• Applied to vs

(a) (b)

Figure 3: Distribution of signal and background of the (a) pT of the hardest b-jet and the

(b) missing energy.

4 Analysis Setup

The background and signal samples used here consist of pp ! tt̄ events and pp ! Z 0 ! tt̄

events, respectively. The background events have been generated with a centre-of-mass

energy of 14 TeV. When the top quarks are decayed we have forced one quark to have

a hadronic decay while the other has a leptonic decay. A heavy new boson, Z 0 [54], is

used as signal, with a mass of 2 TeV and a width chosen to be 89.6 GeV [55]. Similar

to the background one top quark decays hadronically and the other leptonically. For all

events, a cut of pT > 500 GeV is placed on the transverse momentum of the top quarks.

All events are generated using MadGraph5 aMC@NLO [53] while the parton showering

and hadronisation is performed with Pythia 8.2.

Using the Cambridge-Aachen algorithm [60] the hadrons and the non-isolated leptons

are clustered into jets with radius R = 1.0. This is based on work using fat jets to

reconstruct highly boosted top quarks [56–59]. Using FastJet [61] the kT algorithm is

implemented to recluster the hardest two fat jets into jets with radius R = 0.2. Based

on proximity to a B-meson, jets are b-tagged while requiring them to have a transverse

momentum pT > 30 GeV. We also demand any isolated leptons to have a transverse

momentum pT > 10 GeV.

The selection of these events is then based on numerous criteria. For the two fat jets

in an event, one must contain at least one b-jet while the other must contain at least two

light jets and one b-jet. The events must also contain a minimum of one isolated lepton

and are required to have a scalar-summed transverse momentum of HT > 1 TeV.

In the following, the analysis performed is exclusively based on the transverse momen-

tum of one b-jet (pT,b1) and the event’s missing energy (/ET). We show these observable’s

distributions in Figure 3 and heatmaps in Figure 4.

Our data x is normalised using min-max scaling such that xscaled 2 [0,⇡]. This allows

– 10 –

(a) (b)

Figure 3: Distribution of signal and background of the (a) pT of the hardest b-jet and the

(b) missing energy.

4 Analysis Setup

The background and signal samples used here consist of pp ! tt̄ events and pp ! Z 0 ! tt̄

events, respectively. The background events have been generated with a centre-of-mass

energy of 14 TeV. When the top quarks are decayed we have forced one quark to have

a hadronic decay while the other has a leptonic decay. A heavy new boson, Z 0 [54], is

used as signal, with a mass of 2 TeV and a width chosen to be 89.6 GeV [55]. Similar

to the background one top quark decays hadronically and the other leptonically. For all

events, a cut of pT > 500 GeV is placed on the transverse momentum of the top quarks.

All events are generated using MadGraph5 aMC@NLO [53] while the parton showering

and hadronisation is performed with Pythia 8.2.

Using the Cambridge-Aachen algorithm [60] the hadrons and the non-isolated leptons

are clustered into jets with radius R = 1.0. This is based on work using fat jets to

reconstruct highly boosted top quarks [56–59]. Using FastJet [61] the kT algorithm is

implemented to recluster the hardest two fat jets into jets with radius R = 0.2. Based

on proximity to a B-meson, jets are b-tagged while requiring them to have a transverse

momentum pT > 30 GeV. We also demand any isolated leptons to have a transverse

momentum pT > 10 GeV.

The selection of these events is then based on numerous criteria. For the two fat jets

in an event, one must contain at least one b-jet while the other must contain at least two

light jets and one b-jet. The events must also contain a minimum of one isolated lepton

and are required to have a scalar-summed transverse momentum of HT > 1 TeV.

In the following, the analysis performed is exclusively based on the transverse momen-

tum of one b-jet (pT,b1) and the event’s missing energy (/ET). We show these observable’s

distributions in Figure 3 and heatmaps in Figure 4.

Our data x is normalised using min-max scaling such that xscaled 2 [0,⇡]. This allows

– 10 –

lept. top dec for 2d feature space only

(a) (b)

Figure 4: Heatmaps of signal and background of the (a) pT of the hardest b-jet and the

(b) missing energy.

our features to be encoded as an angle in a qubit rotation when we begin training. The

target labels are defined as �1 for the background set and 1 for the signal set.

5 Network Performance

We are comparing three models: a classic neural network trained with standard gradient

descent (NN-GD), a VQC trained with standard gradient descent (VQC-GD) and a VQC

trained with our quantum gradient descent method (VQC-QGD) of Sec. 3.2.

The VQC model consists of two qubits, corresponding to the two features pT,b1 and
/ET , and two layers. Each layer has a rotation gate for each qubit followed by two CNOT

gates. We implement this model, depicted in Fig. 2, using PennyLane [52] and train it

for 30 epochs with a batch size of 32 events and an initial learning rate of ⌘ = 0.01. During

training, for all models, we reduce the learning rate value whenever the loss plateaus.

However, learning rate reduction, in this instance, appears to have little e↵ect on the

performance of the network during training. The networks poor capacity to discriminate

signal from background is reflective of the similarity between the two. Figure 4 shows

the probability density for the events to populate areas in the feature space (pT , /ET).

The similarity between signal and background prevents the networks to benefit from a

continuous learning rate reduction, for classical NNs and our hybrid method alike.

We anticipate that a significant advantage of the variational quantum classifier lies

in its smaller network structure, which allows to employ computationally more expensive

optimisation algorithms, as detailed in Sec. 3, giving in turn rise to a faster learning rate.

Such a method would be particularly advantageous in cases where one has to train directly

on a limited amount of data, e.g. rare decays or processes with small production cross

section.

Thus, to compare the network’s ability to learn quickly, we limit ourselves to a total

of 2500 events for the signal and background samples respectively. We impose a 60-20-

– 11 –

(a) (b)

Figure 4: Heatmaps of signal and background of the (a) pT of the hardest b-jet and the

(b) missing energy.

our features to be encoded as an angle in a qubit rotation when we begin training. The

target labels are defined as �1 for the background set and 1 for the signal set.

5 Network Performance

We are comparing three models: a classic neural network trained with standard gradient

descent (NN-GD), a VQC trained with standard gradient descent (VQC-GD) and a VQC

trained with our quantum gradient descent method (VQC-QGD) of Sec. 3.2.

The VQC model consists of two qubits, corresponding to the two features pT,b1 and
/ET , and two layers. Each layer has a rotation gate for each qubit followed by two CNOT

gates. We implement this model, depicted in Fig. 2, using PennyLane [52] and train it

for 30 epochs with a batch size of 32 events and an initial learning rate of ⌘ = 0.01. During

training, for all models, we reduce the learning rate value whenever the loss plateaus.

However, learning rate reduction, in this instance, appears to have little e↵ect on the

performance of the network during training. The networks poor capacity to discriminate

signal from background is reflective of the similarity between the two. Figure 4 shows

the probability density for the events to populate areas in the feature space (pT , /ET).

The similarity between signal and background prevents the networks to benefit from a

continuous learning rate reduction, for classical NNs and our hybrid method alike.

We anticipate that a significant advantage of the variational quantum classifier lies

in its smaller network structure, which allows to employ computationally more expensive

optimisation algorithms, as detailed in Sec. 3, giving in turn rise to a faster learning rate.

Such a method would be particularly advantageous in cases where one has to train directly

on a limited amount of data, e.g. rare decays or processes with small production cross

section.

Thus, to compare the network’s ability to learn quickly, we limit ourselves to a total

of 2500 events for the signal and background samples respectively. We impose a 60-20-

– 11 –

and
MITP Summer School Lecture Michael Spannowsky July 2023 135

Quantum Convolutional Neural Network

conv
layer

pooling

layer

• Convolutional layers work by
sweeping across the input array and
applying different filters (often 2x2 or
3x3 matrices) block by block.
Used to detect specific features of
the image wherever they might
appear.

• Pooling layers used to downsample
results of these convolutions to
extract most relevant features and
reduce the size of the data.
Common pooling methods involve
replacing blocks of the data with their
maximum or average values.

Fully
connected

layer

[Cong, Choi, Lukin ’19]• QCNN uses only O(log(N)) variational
parameters for input size of N qubits

MITP Summer School Lecture Michael Spannowsky July 2023 136

Convolutional Layer

MITP Summer School Lecture Michael Spannowsky July 2023 137

• In the QCNN, each layer contains parametrized circuits, meaning we alter our output
result by adjusting the parameters of each layer. When training our QCNN, it is these
parameters that are adjusted to reduce the loss function of our QCNN.

• Assuming 2 qubits, a general Unitary operator for a conv layer could be written as

with

each U has 15 trainable parameters long training times -> Simplify ansatz:

Connect all adjacent
qubits with this ansatz

eg. for 4 qubits, like that

[quant-ph/0308006]

Pooling Layer

MITP Summer School Lecture Michael Spannowsky July 2023 138

• The purpose of a pooling layer is to reduce the dimensions of our Quantum Circuit,
i.e. reduce the number of qubits in our circuit, while retaining as much information
as possible from previously learned data.

• Two options:
1) ignore some of the qubits after entangling them with adjacent qubits
2) perform a measurement of qubits and use classical feedback loop to process outcome

• Concretely for 1). Apply this circuit and
ignore qubit q0 in everything that
follows.

• output can be processes
via FC classical, quantum
network or directly into
loss

Some results

MITP Summer School Lecture Michael Spannowsky July 2023 139

Input to QCNN: ground state wave function for Hamiltonian

with couplings (J, h1, h2)

Grey dots, training data set

Red and blue dots are true
boundaries as calculated by
DMRG

Yellow and green shaded
area is NN output for the
different phases

[Nagano, et al ’23]
[Cong, Choi, Lukin ’19]

Most popular NN-based anomaly detection method

Autoencoder for unsupervised learning

• in first step input is encoded into information bottleneck

• between input/output layer and bottleneck can be several hidden layers
(conv./deep NNs) -> highly non-linear

• Reconstructed output is then compared with input via loss-function (often MSE)

• NN is trained such that input and output high degree of similarity

In
pu

t
Fe

at
ur

es

La
te

nt

Sp
ac

e

En
co

de
r

O
ut

pu
t

De
co

de
r

Loss = difference

input/output

• after bottleneck decoding step

[Kingma, Welling ’13]

MITP Summer School Lecture Michael Spannowsky July 2023 140

Unsupervised learning with quantum-gate Autoencoder

[Ngairangbam, MS, Takeuchi ’21]

MITP Summer School Lecture Michael Spannowsky July 2023 141

Unsupervised learning with quantum-gate Autoencoder

MITP Summer School Lecture Michael Spannowsky July 2023 142

signalbackground

training only on background -> anomaly detection

•Also used in (h->inv)jj trained on (Z->inv)jj, with full CAE
optimisation

MITP Summer School Lecture Michael Spannowsky July 2023 143

•

Results: Training size dependence

MITP Summer School Lecture Michael Spannowsky July 2023 144

Classical autoencoder Quantum autoencoder

Figure 6: ROC curve between signal acceptance vs background rejection for Quantum Autoen-
coder(QAE) and Classical Autoencoder(CAE) for various values of mH and di↵erent latent dimen-
sions for a training datasize of 10k samples. The trend across latent dimensions is same for both
QAE and CAE with QAEs performing better in all cases.

5.3 Anomaly detection

We now explore the performance of the autoencoders for a search scenario of for di↵erent

signal strengths.

– 12 –

Much faster training and better performance for Quantum autoencoder

better

In our test cast, outcome prevails for much larger classical networks
MITP Summer School Lecture Michael Spannowsky July 2023 145

Results: Benchmark on IBM-Q

MITP Summer School Lecture Michael Spannowsky July 2023 146

Generative Algorithms

MITP Summer School Lecture Michael Spannowsky July 2023 147

5.3 Training Variational Quantum Models 201

(
∂µ fµ

)2 = 〈0|B†G†A†MAGGB|0〉2 + 〈0|B†GG†A†MAGB|0〉2

− 2〈0|B†G†A†MAGGB|0〉〈0|B†GG†A†MAGB|0〉. (5.72)

For example, if B is a 2-design but not A, we define F̃ = G†A†MAG, and use
O2 = |0〉〈0|, O1, O2 ∈ {F̃G,GF̃}.

The evaluation of these expression is very tiresome but straightforward (see
Appendix of Ref. [10]). It leads to expressions of the form

Var[∂µ fµ] =
g(Z ,G,M)

22n − 1
, (5.73)

where Z is either A or B. Most importantly, g typically scales with O(2n) [10].
Overall, the variance therefore scales with O(2−n), and hence exponentially decays
in the number of qubits.

Note that this proof sketch, and the assumptions it required, are just one of
many ways to analyse vanishing gradients in quantum machine learning. However,
it demonstrates nicely how assumptions of circuit classes lead to statements about
the statistical properties of partial derivatives—which is exactly what barren plateaus
refer to.

5.3.4 Generative Training

The preceding sections assumed that quantummodels are deterministic, and that their
outputs are associated with measurement expectations. However, we mentioned in
Sect. 5.1.4 that the probability distribution pθ(x) (or likewise pθ(x, y)) of a prob-
abilistic quantum model can be interpreted as a quantum expectation as well. This
means that the automatic differentiation rules for quantum circuits also hold when
computing partial derivatives of the probability distribution. This is not only inter-
esting for quantum models that are density estimators as discussed in Sect. 2.2.2,
but also for generative models [29]. For example, consider the expectation over a
function g(x) that takes samples x ∈ X produced by a generative quantum model
pµ(x) which depends on a parameter µ ∈ R,

Ex∼pµ [g(x)] =
∫

X
pµ(x)g(x) dx . (5.74)

If the circuit of the quantum model allows for a Pauli-gate parameter-shift rule, the
partial derivative of the expectation is given by

The probability distribution of a quantum model
can be interpreted as a quantum expectation value, to wich the shift
rule can be applied to calculate the partial derivatives

E.g. consider exp value of function that takes samples

5.3 Training Variational Quantum Models 201

(
∂µ fµ

)2 = 〈0|B†G†A†MAGGB|0〉2 + 〈0|B†GG†A†MAGB|0〉2

− 2〈0|B†G†A†MAGGB|0〉〈0|B†GG†A†MAGB|0〉. (5.72)

For example, if B is a 2-design but not A, we define F̃ = G†A†MAG, and use
O2 = |0〉〈0|, O1, O2 ∈ {F̃G,GF̃}.

The evaluation of these expression is very tiresome but straightforward (see
Appendix of Ref. [10]). It leads to expressions of the form

Var[∂µ fµ] =
g(Z ,G,M)

22n − 1
, (5.73)

where Z is either A or B. Most importantly, g typically scales with O(2n) [10].
Overall, the variance therefore scales with O(2−n), and hence exponentially decays
in the number of qubits.

Note that this proof sketch, and the assumptions it required, are just one of
many ways to analyse vanishing gradients in quantum machine learning. However,
it demonstrates nicely how assumptions of circuit classes lead to statements about
the statistical properties of partial derivatives—which is exactly what barren plateaus
refer to.

5.3.4 Generative Training

The preceding sections assumed that quantummodels are deterministic, and that their
outputs are associated with measurement expectations. However, we mentioned in
Sect. 5.1.4 that the probability distribution pθ(x) (or likewise pθ(x, y)) of a prob-
abilistic quantum model can be interpreted as a quantum expectation as well. This
means that the automatic differentiation rules for quantum circuits also hold when
computing partial derivatives of the probability distribution. This is not only inter-
esting for quantum models that are density estimators as discussed in Sect. 2.2.2,
but also for generative models [29]. For example, consider the expectation over a
function g(x) that takes samples x ∈ X produced by a generative quantum model
pµ(x) which depends on a parameter µ ∈ R,

Ex∼pµ [g(x)] =
∫

X
pµ(x)g(x) dx . (5.74)

If the circuit of the quantum model allows for a Pauli-gate parameter-shift rule, the
partial derivative of the expectation is given by

202 5 Variational Circuits as Machine Learning Models

∂µEx∼pµ [g(x)] =
∫

X
dx

(
∂µ pµ(x)

)
g(x) (5.75)

= 1
2 sin(s)

(∫

X

(
∂µ pµ−s(x)

)
g(x) dx −

∫

X

(
∂µ pµ+s(x)

)
g(x)

)
dx

(5.76)

= 1
2 sin(s)

(
Ex∼pµ−s [g(x)] − Ex∼pµ+s [g(x)]

)
. (5.77)

In practice, this means that the derivative of the expectation with respect to the circuit
parameter of a generative model can be estimated by sampling from two alternative
generative models with shifted parameters. Reference [29] used this insight for train-
ing via two-sample testing, a popular method in machine learning that minimises the
maximum-mean discrepancy [30] which measures the distance between two distri-
butions.

In cases where parameter-shift rules to not help to train probabilistic quantum
models, we can revert to the tricks of generative adversarial networks (GANs) [31–
33]. Generative adversarial networks are generative models that are trained by an
adversarial strategy. The idea is to use an additional supervised model during train-
ing, which discriminates between samples from the generative network and samples
from the original data. At the same time, the generative network is trained to fool
the discriminator. As a result of the discriminator becoming increasingly better at
distinguishing true from fake samples, the generator becomes increasingly better at
emulating the true distribution.

This principle can be directly applied to variational quantummodels if we replace
the generator by a variational circuit interpreted as a generative model, while we
replace the discriminator by a variational circuit interpreted as a deterministic model
(see Fig. 5.12 left). But if the real data is produced by a quantum circuit (which may

Fig. 5.12 Generative adversarial training of generative quantummodels. Left: Generative quantum
models can be trained with a generative adversarial setup where measurement results (i.e., data
samples) from the increasingly more powerful generator are distinguished from data of the true
distribution by a supervised (or “discriminative”) model. Right: When the true data is likewise
produced by a quantum circuit, one can drop the measurement step and apply the discriminative
model directly to the final state of the generative circuits

202 5 Variational Circuits as Machine Learning Models

∂µEx∼pµ [g(x)] =
∫

X
dx

(
∂µ pµ(x)

)
g(x) (5.75)

= 1
2 sin(s)

(∫

X

(
∂µ pµ−s(x)

)
g(x) dx −

∫

X

(
∂µ pµ+s(x)

)
g(x)

)
dx

(5.76)

= 1
2 sin(s)

(
Ex∼pµ−s [g(x)] − Ex∼pµ+s [g(x)]

)
. (5.77)

In practice, this means that the derivative of the expectation with respect to the circuit
parameter of a generative model can be estimated by sampling from two alternative
generative models with shifted parameters. Reference [29] used this insight for train-
ing via two-sample testing, a popular method in machine learning that minimises the
maximum-mean discrepancy [30] which measures the distance between two distri-
butions.

In cases where parameter-shift rules to not help to train probabilistic quantum
models, we can revert to the tricks of generative adversarial networks (GANs) [31–
33]. Generative adversarial networks are generative models that are trained by an
adversarial strategy. The idea is to use an additional supervised model during train-
ing, which discriminates between samples from the generative network and samples
from the original data. At the same time, the generative network is trained to fool
the discriminator. As a result of the discriminator becoming increasingly better at
distinguishing true from fake samples, the generator becomes increasingly better at
emulating the true distribution.

This principle can be directly applied to variational quantummodels if we replace
the generator by a variational circuit interpreted as a generative model, while we
replace the discriminator by a variational circuit interpreted as a deterministic model
(see Fig. 5.12 left). But if the real data is produced by a quantum circuit (which may

Fig. 5.12 Generative adversarial training of generative quantummodels. Left: Generative quantum
models can be trained with a generative adversarial setup where measurement results (i.e., data
samples) from the increasingly more powerful generator are distinguished from data of the true
distribution by a supervised (or “discriminative”) model. Right: When the true data is likewise
produced by a quantum circuit, one can drop the measurement step and apply the discriminative
model directly to the final state of the generative circuits

202 5 Variational Circuits as Machine Learning Models

∂µEx∼pµ [g(x)] =
∫

X
dx

(
∂µ pµ(x)

)
g(x) (5.75)

= 1
2 sin(s)

(∫

X

(
∂µ pµ−s(x)

)
g(x) dx −

∫

X

(
∂µ pµ+s(x)

)
g(x)

)
dx

(5.76)

= 1
2 sin(s)

(
Ex∼pµ−s [g(x)] − Ex∼pµ+s [g(x)]

)
. (5.77)

In practice, this means that the derivative of the expectation with respect to the circuit
parameter of a generative model can be estimated by sampling from two alternative
generative models with shifted parameters. Reference [29] used this insight for train-
ing via two-sample testing, a popular method in machine learning that minimises the
maximum-mean discrepancy [30] which measures the distance between two distri-
butions.

In cases where parameter-shift rules to not help to train probabilistic quantum
models, we can revert to the tricks of generative adversarial networks (GANs) [31–
33]. Generative adversarial networks are generative models that are trained by an
adversarial strategy. The idea is to use an additional supervised model during train-
ing, which discriminates between samples from the generative network and samples
from the original data. At the same time, the generative network is trained to fool
the discriminator. As a result of the discriminator becoming increasingly better at
distinguishing true from fake samples, the generator becomes increasingly better at
emulating the true distribution.

This principle can be directly applied to variational quantummodels if we replace
the generator by a variational circuit interpreted as a generative model, while we
replace the discriminator by a variational circuit interpreted as a deterministic model
(see Fig. 5.12 left). But if the real data is produced by a quantum circuit (which may

Fig. 5.12 Generative adversarial training of generative quantummodels. Left: Generative quantum
models can be trained with a generative adversarial setup where measurement results (i.e., data
samples) from the increasingly more powerful generator are distinguished from data of the true
distribution by a supervised (or “discriminative”) model. Right: When the true data is likewise
produced by a quantum circuit, one can drop the measurement step and apply the discriminative
model directly to the final state of the generative circuits

5.3 Training Variational Quantum Models 201

(
∂µ fµ

)2 = 〈0|B†G†A†MAGGB|0〉2 + 〈0|B†GG†A†MAGB|0〉2

− 2〈0|B†G†A†MAGGB|0〉〈0|B†GG†A†MAGB|0〉. (5.72)

For example, if B is a 2-design but not A, we define F̃ = G†A†MAG, and use
O2 = |0〉〈0|, O1, O2 ∈ {F̃G,GF̃}.

The evaluation of these expression is very tiresome but straightforward (see
Appendix of Ref. [10]). It leads to expressions of the form

Var[∂µ fµ] =
g(Z ,G,M)

22n − 1
, (5.73)

where Z is either A or B. Most importantly, g typically scales with O(2n) [10].
Overall, the variance therefore scales with O(2−n), and hence exponentially decays
in the number of qubits.

Note that this proof sketch, and the assumptions it required, are just one of
many ways to analyse vanishing gradients in quantum machine learning. However,
it demonstrates nicely how assumptions of circuit classes lead to statements about
the statistical properties of partial derivatives—which is exactly what barren plateaus
refer to.

5.3.4 Generative Training

The preceding sections assumed that quantummodels are deterministic, and that their
outputs are associated with measurement expectations. However, we mentioned in
Sect. 5.1.4 that the probability distribution pθ(x) (or likewise pθ(x, y)) of a prob-
abilistic quantum model can be interpreted as a quantum expectation as well. This
means that the automatic differentiation rules for quantum circuits also hold when
computing partial derivatives of the probability distribution. This is not only inter-
esting for quantum models that are density estimators as discussed in Sect. 2.2.2,
but also for generative models [29]. For example, consider the expectation over a
function g(x) that takes samples x ∈ X produced by a generative quantum model
pµ(x) which depends on a parameter µ ∈ R,

Ex∼pµ [g(x)] =
∫

X
pµ(x)g(x) dx . (5.74)

If the circuit of the quantum model allows for a Pauli-gate parameter-shift rule, the
partial derivative of the expectation is given by

5.3 Training Variational Quantum Models 201

(
∂µ fµ

)2 = 〈0|B†G†A†MAGGB|0〉2 + 〈0|B†GG†A†MAGB|0〉2

− 2〈0|B†G†A†MAGGB|0〉〈0|B†GG†A†MAGB|0〉. (5.72)

For example, if B is a 2-design but not A, we define F̃ = G†A†MAG, and use
O2 = |0〉〈0|, O1, O2 ∈ {F̃G,GF̃}.

The evaluation of these expression is very tiresome but straightforward (see
Appendix of Ref. [10]). It leads to expressions of the form

Var[∂µ fµ] =
g(Z ,G,M)

22n − 1
, (5.73)

where Z is either A or B. Most importantly, g typically scales with O(2n) [10].
Overall, the variance therefore scales with O(2−n), and hence exponentially decays
in the number of qubits.

Note that this proof sketch, and the assumptions it required, are just one of
many ways to analyse vanishing gradients in quantum machine learning. However,
it demonstrates nicely how assumptions of circuit classes lead to statements about
the statistical properties of partial derivatives—which is exactly what barren plateaus
refer to.

5.3.4 Generative Training

The preceding sections assumed that quantummodels are deterministic, and that their
outputs are associated with measurement expectations. However, we mentioned in
Sect. 5.1.4 that the probability distribution pθ(x) (or likewise pθ(x, y)) of a prob-
abilistic quantum model can be interpreted as a quantum expectation as well. This
means that the automatic differentiation rules for quantum circuits also hold when
computing partial derivatives of the probability distribution. This is not only inter-
esting for quantum models that are density estimators as discussed in Sect. 2.2.2,
but also for generative models [29]. For example, consider the expectation over a
function g(x) that takes samples x ∈ X produced by a generative quantum model
pµ(x) which depends on a parameter µ ∈ R,

Ex∼pµ [g(x)] =
∫

X
pµ(x)g(x) dx . (5.74)

If the circuit of the quantum model allows for a Pauli-gate parameter-shift rule, the
partial derivative of the expectation is given by

5.3 Training Variational Quantum Models 201

(
∂µ fµ

)2 = 〈0|B†G†A†MAGGB|0〉2 + 〈0|B†GG†A†MAGB|0〉2

− 2〈0|B†G†A†MAGGB|0〉〈0|B†GG†A†MAGB|0〉. (5.72)

For example, if B is a 2-design but not A, we define F̃ = G†A†MAG, and use
O2 = |0〉〈0|, O1, O2 ∈ {F̃G,GF̃}.

The evaluation of these expression is very tiresome but straightforward (see
Appendix of Ref. [10]). It leads to expressions of the form

Var[∂µ fµ] =
g(Z ,G,M)

22n − 1
, (5.73)

where Z is either A or B. Most importantly, g typically scales with O(2n) [10].
Overall, the variance therefore scales with O(2−n), and hence exponentially decays
in the number of qubits.

Note that this proof sketch, and the assumptions it required, are just one of
many ways to analyse vanishing gradients in quantum machine learning. However,
it demonstrates nicely how assumptions of circuit classes lead to statements about
the statistical properties of partial derivatives—which is exactly what barren plateaus
refer to.

5.3.4 Generative Training

The preceding sections assumed that quantummodels are deterministic, and that their
outputs are associated with measurement expectations. However, we mentioned in
Sect. 5.1.4 that the probability distribution pθ(x) (or likewise pθ(x, y)) of a prob-
abilistic quantum model can be interpreted as a quantum expectation as well. This
means that the automatic differentiation rules for quantum circuits also hold when
computing partial derivatives of the probability distribution. This is not only inter-
esting for quantum models that are density estimators as discussed in Sect. 2.2.2,
but also for generative models [29]. For example, consider the expectation over a
function g(x) that takes samples x ∈ X produced by a generative quantum model
pµ(x) which depends on a parameter µ ∈ R,

Ex∼pµ [g(x)] =
∫

X
pµ(x)g(x) dx . (5.74)

If the circuit of the quantum model allows for a Pauli-gate parameter-shift rule, the
partial derivative of the expectation is given by

Shift rule gives:

produced by generative model , that depends on parameters

5.3 Training Variational Quantum Models 201

(
∂µ fµ

)2 = 〈0|B†G†A†MAGGB|0〉2 + 〈0|B†GG†A†MAGB|0〉2

− 2〈0|B†G†A†MAGGB|0〉〈0|B†GG†A†MAGB|0〉. (5.72)

For example, if B is a 2-design but not A, we define F̃ = G†A†MAG, and use
O2 = |0〉〈0|, O1, O2 ∈ {F̃G,GF̃}.

The evaluation of these expression is very tiresome but straightforward (see
Appendix of Ref. [10]). It leads to expressions of the form

Var[∂µ fµ] =
g(Z ,G,M)

22n − 1
, (5.73)

where Z is either A or B. Most importantly, g typically scales with O(2n) [10].
Overall, the variance therefore scales with O(2−n), and hence exponentially decays
in the number of qubits.

Note that this proof sketch, and the assumptions it required, are just one of
many ways to analyse vanishing gradients in quantum machine learning. However,
it demonstrates nicely how assumptions of circuit classes lead to statements about
the statistical properties of partial derivatives—which is exactly what barren plateaus
refer to.

5.3.4 Generative Training

The preceding sections assumed that quantummodels are deterministic, and that their
outputs are associated with measurement expectations. However, we mentioned in
Sect. 5.1.4 that the probability distribution pθ(x) (or likewise pθ(x, y)) of a prob-
abilistic quantum model can be interpreted as a quantum expectation as well. This
means that the automatic differentiation rules for quantum circuits also hold when
computing partial derivatives of the probability distribution. This is not only inter-
esting for quantum models that are density estimators as discussed in Sect. 2.2.2,
but also for generative models [29]. For example, consider the expectation over a
function g(x) that takes samples x ∈ X produced by a generative quantum model
pµ(x) which depends on a parameter µ ∈ R,

Ex∼pµ [g(x)] =
∫

X
pµ(x)g(x) dx . (5.74)

If the circuit of the quantum model allows for a Pauli-gate parameter-shift rule, the
partial derivative of the expectation is given by

Can be evaluated by two-sample testing

Quantum Invertible Neural Networks

Quantum Normalising Flow

MITP Summer School Lecture Michael Spannowsky July 2023 148

• Train a transformation from input distribution p(x) to gaussian
distribution p(y) = N(0,1)

• Can create samples from p(x) by sampling from p(y) and calculating
x = Inverse(INN(y))

• Loss function requires jacobian J, which is already available for QNNs
via parameter shift rules

[Rousselot, MS ’23
2302.12906]

MITP Summer School Lecture Michael Spannowsky July 2023 149

MITP Summer School Lecture Michael Spannowsky July 2023 150

MITP Summer School Lecture Michael Spannowsky July 2023 151

MITP Summer School Lecture Michael Spannowsky July 2023 152

MITP Summer School Lecture Michael Spannowsky July 2023 153

•One solution: Train an inverse state preparation (ISP) g : y -> |y>
and the model f s.t. f (g(y)) ~ x-1

MITP Summer School Lecture Michael Spannowsky July 2023 154

MITP Summer School Lecture Michael Spannowsky July 2023 155

Comparison of QINN with INN of varying size

process

