
Algorithms

MITP Summer School Lecture Michael Spannowsky July 2023 87

Different Quantum Advantages/Speedups

1. A provable quantum speedup: (gold standard)
requires a proof that there can be no classical algorithm that performs
as well or better than the quantum algorithm. (grover’s algorithm)

2. A strong quantum speedup:
compares the quantum algorithm with the best known classical
algorithm. (shore’s algorithm)

3. Common quantum speedup:
relaxes the ‘best classical algorithm’ to the ‘best available classical
algorithm’

4. Potential quantum speedup:
compares two specific algorithms and relating the speedup to this
instance only

5. Limited quantum speedup:
compares conceptually equivalent algorithms

MITP Summer School Lecture Michael Spannowsky July 2023 88

MITP Summer School Lecture Michael Spannowsky July 2023 89

The struggle for quantum speedup in machine learning

Ewing Tang, 18-year old undergrad at UT Austin
debunked this claim

An example:

[1807.04271]

Iordanis Kerenidis and Anupam Prakash published “Quantum recommendation

systems” [1603.08675], in Innovations in Theoretical Computer Science

(2017), a QML algorithm claiming exponential quantum speedup over

classical algorithms

First genuine real-world application for QML
with advantage

Have a look at

https://www.quantamagazine.org/

teenager-finds-classical-
alternative-to-quantum-

recommendation-
algorithm-20180731/

For NNs, being highly flexible objects, and with
the lack of a fully fletched mathematical
algorithm describing the evolution of the network
output etc, difficult to make definite statements

P - solvable, deterministically in polynomial
time

NP - non-deterministic polynomial.
Solutions verifiable in polynomial time

3.2. QUANTUM CIRCUITS 31

In classical digital computing, a small set of logical gates, like {AND, OR, NOT},
can be used to compute an arbitrary function. In quantum computing, there is a
similar notion of universality that takes into account that the group of the unitary
operators on a Hilbert space is continuous, so a finite set of gates cannot exactly
implement any unitary operator.

Definition 3.2.3 A set of quantum gates is said to be universal for quantum
computation if, for all n ∈ N, any n-qubit gate can be approximated to arbitrary
accuracy by a composition of only those gates.

A proof of the following theorem can be found in [CN00], the statement provides
the so-called standard universal set for quantum computation.

Theorem 3.2.4 The set {H,S, T,CNOT} is universal for quantum computation.

Assuming that the gates of a universal set require fixed amounts of time to
be implemented on the qubits, time complexity of a quantum algorithm can be
estimated by the gate counting in the corresponding circuit. In complexity theory,
the time complexity of an algorithm is the relation between the computation time t
and the binary size L of the input data. The classical time complexity of a problem
is defined as the infimum of the complexities of all the classical algorithms that can
solve the problem. A precise definition of computation time requires a notion of
elementary operation within a computational model like a single head movement in
a Turing machine or the execution of a logical gate in a digital circuit. However,
the strong Church-Turing hypothesis states that each model can be simulated in
polynomial time by a probabilistic Turing machine then the definition of complexity
classes is model-independent. The class P contains all the decision problems (that
is, the solution is either yes or no) that can be solved in polynomial time in the
sense that t, as a function of L, is bounded from above by a polynomial, using
the big-O notation we write t = O(La) with a > 0. When we say that a problem
is “easy” and a computation is “efficient” we are referring to class P. A decision
problem, described by the boolean function f , is in class NP if there is a decision
problem, described by the boolean function g, in class P such that: g(x, y) = 1 for
some y ⇒ f(x) = 1. Obviously P⊆ NP and the widely believed conjecture is that
P $= NP. A decision problem P is in the class NP-hard if and only if any NP
problem can be reduced to P in polynomial time. The class NP-complete contains
all the decision problems in NP that are NP-hard. Let us consider a probabilistic
computation described by the transition matrix T = {Txy} where y %→ Txy is the
probability distribution of the output given the input x. Due to the probabilistic
output, the computation may return a wrong result. The class BPP contains all

(considered ‘easy’ or ‘efficiently solvable problems)

NP-hard - hardest problem in NP class

NP-complete - in NP and every problem in NP is reducible to it in polynomial
time. Thus, if any NP-complete problem can be solved in pol time, any NP problem
can be solved in P time.

BPP - Bounded-error Probabilistic Polynomial time. Produces the correct answer
with 2/3 probability for all inputs e.g. testing if number is prime with Solovay-Strassen test

BQP - Bounded-error Quantum Polynomial time. Solvable by probabilistic Turing
machine in polynomial time. Correct answers with 2/3 prob. e.g. Shor’s algorithm

e.g. graph colouring problem is NP-hard

e.g. traveling salesman problem

Some complexity theory

MITP Summer School Lecture Michael Spannowsky July 2023 90

The relation between BQP and NP is not known and topic of
ongoing research

Complexity classes of machine learning tasks

Training Complexity:

Training a neural network is considered NP-hard. As the task is
to find the minimum of a non-convex optimisation problem

Prediction Complexity:

Once a model is trained, predictions are efficient (class P)

Model selection and Hyperparameter Tuning:

Considered to be in NP. ‘No free lunch theorem’. High-
dimensional optimisation

Feature Selection:
Some ML models require to select subset of features for
training. This is considered to be NP-hard

MITP Summer School Lecture Michael Spannowsky July 2023 91

• General structure of any QC algorithm:

• Operator expressed in terms of individual gates

operator acts on
Hilbert space states

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

h 2| 1i (196)

14

measurement of
observable

corresponds to exp.
value of operator

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2| 1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2| 1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2| 1i |
2 (196)

U (197)

Û (198)

D
Û
E

=

h |U | i

h | i
(199)

14

statistical statement
need to evaluate often

Need to encode Hilbert
space and operator suitable

for quantum system

state preparation

MITP Summer School Lecture Michael Spannowsky July 2023 92

Quantum Gate

initialisation
operations on qubits

results in output of superpositions

We then measure one specific outcome. Have to repeat measurement to statistically
evaluate how likely each outcome is (by calculating and measuring several times).

Since we work only with probabilities, we measure only probabilities

MITP Summer School Lecture Michael Spannowsky July 2023 93

Quantum Gate

quantum gate and multi slit experiment are conceptually identical

While operating one cannot see how the
gate works. Only at the end one can

measure the outcome

(box is closed during operations)

MITP Summer School Lecture Michael Spannowsky July 2023 94

Galton Board as analogy for
Quantum Computer

Siegen Kolloquium Michael Spannowsky 09.12.2021 95

Algorithm Zoo

Highlight Quantum Algorithms - used as basis for others

https://quantumalgorithmzoo.orgWebsite collecting up to ~200 (until 2018)
algorithms showing quantum advantage

• Quantum Fourier Transformation (QFT)

• HHL (Harrow, Hassidim, Lloyd) algorithm

• (Gaussian) boson sampling via photonic quantum devices

• Quantum Phase Estimation (QPE)

Grover’s algorithm, Shore’s algorithm, Deutsch algorithm,
Quantum Teleportation, …

MITP Summer School Lecture Michael Spannowsky July 2023 96

Quantum computing frameworks

Frontend

Ecosystem

Google
Quantum AI

https://qiskit.org/IBM

https://
quantumai.google/cirq

https://pennylane.ai/

Frontend

Ecosystem https://qibo.science/

Quantum

Annealing

https://www.dwavesys.com/

MITP Summer School Lecture Michael Spannowsky July 2023 97

Many options for
activation function f, e.g.

tanh

sigmoid

bias

calculate loss
for output layer

Classical Neural Network recap

MITP Summer School Lecture Michael Spannowsky July 2023 98

putting things
together

input hidden output

Notation:

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T) (227)

w(l)
ij (228)

16

weight

layer l

node number of
connection in layer l+1

node number of
connection in layer l

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T) (227)

w(l)
ij (228)

b(l)i (229)

16

bias of layer l is connected to all nodes in layer l+1, thus

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T) (227)

w(l)
ij (228)

b(l)i (229)

16

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T) (227)

w(l)
ij (228)

b(l)i (229)

16

and have to be calculated during the learning phase of the ANN

The feedforward pass:
activation function

MITP Summer School Lecture Michael Spannowsky July 2023 99

We have managed the first feedforward pass, now we
need to evaluate the loss/cost function

• The cost/loss function evaluates the performance of the learning outcome
(forward pass) of the ANN, i.e. how well did the NN approximate the
training data NN output of final layer =

prediction of NN given input x

Here the sum of squared errors, or L2 norm of the errors

where m runs over
all trainings pairs

Many loss functions possible. When fitting more useful is the mean-square
error (MSE)

MITP Summer School Lecture Michael Spannowsky July 2023 100

The loss function establishes a
hypersurface for which we try

to find a minimum using
gradient descent

We have evaluated the loss, so how does the network learn?

gradient descent and backpropagation

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

16

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

16

Gradient descent for every weight and
every bias in the NN looks like:

in short:

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

↵ (231)

16

where is the learning rate

MITP Summer School Lecture Michael Spannowsky July 2023 101

Learning via backpropagation

• variation of loss with respect to weight of NN is

• Backpropagation is method to compute the partial derivative of the
loss function E(y,y’). It is about determining how changing the weights
impact the overall loss in the NN

hh ! (aa ! 2b2⌧)(bb̄) ! 4b+ 2⌧ (208)

hh ! (2b+MET)(2b) ! 4b+MET (209)

ASM = A+(✓)ei�
1 + cos ✓

2
+A�(✓)e�i� 1� cos ✓

2
+A0(✓)

sin ✓
p
2

(210)

ABSM = B+(✓)ei�
1 + cos ✓

2
+B�(✓)e�i� 1� cos ✓

2
+B0(✓)

sin ✓
p
2

(211)

P 0
5 = S5/FL(1� FL) (212)

d4�

dq2d⌦
=

9

32⇡

9X

i=1

Isi (q
2)wi(✓l, ✓k,�) (213)

Si =
Ii + Īi

d(�+ �̄)/dq2
(214)

dE

dwk
=

dE

dy

dy

ds

ds

dwk
(215)

15

with

hh ! (aa ! 2b2⌧)(bb̄) ! 4b+ 2⌧ (208)

hh ! (2b+MET)(2b) ! 4b+MET (209)

ASM = A+(✓)ei�
1 + cos ✓

2
+A�(✓)e�i� 1� cos ✓

2
+A0(✓)

sin ✓
p
2

(210)

ABSM = B+(✓)ei�
1 + cos ✓

2
+B�(✓)e�i� 1� cos ✓

2
+B0(✓)

sin ✓
p
2

(211)

P 0
5 = S5/FL(1� FL) (212)

d4�

dq2d⌦
=

9

32⇡

9X

i=1

Isi (q
2)wi(✓l, ✓k,�) (213)

Si =
Ii + Īi

d(�+ �̄)/dq2
(214)

dE

dwk
=

dE

dy

dy

ds

ds

dwk
(215)

wk (216)

15

hh ! (aa ! 2b2⌧)(bb̄) ! 4b+ 2⌧ (208)

hh ! (2b+MET)(2b) ! 4b+MET (209)

ASM = A+(✓)ei�
1 + cos ✓

2
+A�(✓)e�i� 1� cos ✓

2
+A0(✓)

sin ✓
p
2

(210)

ABSM = B+(✓)ei�
1 + cos ✓

2
+B�(✓)e�i� 1� cos ✓

2
+B0(✓)

sin ✓
p
2

(211)

P 0
5 = S5/FL(1� FL) (212)

d4�

dq2d⌦
=

9

32⇡

9X

i=1

Isi (q
2)wi(✓l, ✓k,�) (213)

Si =
Ii + Īi

d(�+ �̄)/dq2
(214)

dE

dwk
=

dE

dy

dy

ds

ds

dwk
(215)

wk (216)

s =
X

k

wkhk (217)

15

comb of weights

activation function

hh ! (aa ! 2b2⌧)(bb̄) ! 4b+ 2⌧ (208)

hh ! (2b+MET)(2b) ! 4b+MET (209)

ASM = A+(✓)ei�
1 + cos ✓

2
+A�(✓)e�i� 1� cos ✓

2
+A0(✓)

sin ✓
p
2

(210)

ABSM = B+(✓)ei�
1 + cos ✓

2
+B�(✓)e�i� 1� cos ✓

2
+B0(✓)

sin ✓
p
2

(211)

P 0
5 = S5/FL(1� FL) (212)

d4�

dq2d⌦
=

9

32⇡

9X

i=1

Isi (q
2)wi(✓l, ✓k,�) (213)

Si =
Ii + Īi

d(�+ �̄)/dq2
(214)

dE

dwk
=

dE

dy

dy

ds

ds

dwk
(215)

wk (216)

s =
X

k

wkhk (217)

y (218)

15

• weights of network adjusted by
learning rate

hh ! (aa ! 2b2⌧)(bb̄) ! 4b+ 2⌧ (208)

hh ! (2b+MET)(2b) ! 4b+MET (209)

ASM = A+(✓)ei�
1 + cos ✓

2
+A�(✓)e�i� 1� cos ✓

2
+A0(✓)

sin ✓
p
2

(210)

ABSM = B+(✓)ei�
1 + cos ✓

2
+B�(✓)e�i� 1� cos ✓

2
+B0(✓)

sin ✓
p
2

(211)

P 0
5 = S5/FL(1� FL) (212)

d4�

dq2d⌦
=

9

32⇡

9X

i=1

Isi (q
2)wi(✓l, ✓k,�) (213)

Si =
Ii + Īi

d(�+ �̄)/dq2
(214)

dE

dwk
=

dE

dy

dy

ds

ds

dwk
(215)

wk (216)

s =
X

k

wkhk (217)

y (218)

µ (219)

15

hh ! (aa ! 2b2⌧)(bb̄) ! 4b+ 2⌧ (208)

hh ! (2b+MET)(2b) ! 4b+MET (209)

ASM = A+(✓)ei�
1 + cos ✓

2
+A�(✓)e�i� 1� cos ✓

2
+A0(✓)

sin ✓
p
2

(210)

ABSM = B+(✓)ei�
1 + cos ✓

2
+B�(✓)e�i� 1� cos ✓

2
+B0(✓)

sin ✓
p
2

(211)

P 0
5 = S5/FL(1� FL) (212)

d4�

dq2d⌦
=

9

32⇡

9X

i=1

Isi (q
2)wi(✓l, ✓k,�) (213)

Si =
Ii + Īi

d(�+ �̄)/dq2
(214)

dE

dwk
=

dE

dy

dy

ds

ds

dwk
(215)

wk (216)

s =
X

k

wkhk (217)

y (218)

µ (219)

�wk = �µ
dE

dy

dy

ds

ds

dwk
(220)

15

• New network weights reduce value of
loss function

MITP Summer School Lecture Michael Spannowsky July 2023 102

Classical Neural Network recap

1. an adaptable complex system that
allows approximating a complicated
function

2. the calculation of a loss function in the
output layer which is used to define
the task the NN algorithm should
perform by minimising this function

3. a way to update the
network continuously while
minimising the loss function,
e.g. backpropagation

Very powerful principle which NNs are designed to exploit

Difficult to keep all in quantum system - but not impossible? stay tuned!

=

MITP Summer School Lecture Michael Spannowsky July 2023 103

http://playground.tensorflow.org/

Visualisation of supervised learning using

MITP Summer School Lecture Michael Spannowsky July 2023 104

Classical

ML Algorithms

Simulation of field theories (Groundstate, tunnelling, Real-time…)

Tensor
Networks

Data Analysis (Classification, anomaly, regression, fitting, …)

Quantum
Computing

1. an adaptable complex system that allows approximating a complicated function

2. the calculation of a loss function used to define the task the method

3. a way to update 1. while minimising the loss function

optimisation
Calculation of differential equations, etc etc

quantum: annealing

hybrid: classical opti.

ground state

MITP Summer School Lecture Michael Spannowsky July 2023 105

How can QNN be superior to NN

1. an adaptable complex system that
allows approximating a complicated
function

•QML more expressive

• Input to QML can be quantum state

proven exponential advantage on noisy device
over classical algorithm of any size

[Huang et al ’21]

[Alcazar, Leyton-Ortega,
Perdomo-Ortiz ’20]

[Eisert, Cramer,
Plenio ’08]

• Hybrid model possible - combination of classical and
quantum nodes

• Exploit geometry of quantum loss function
[Blance, MS ’20]Faster learning

2. loss function

[Araz, MS ’22]

[Stokes, et al ’20]

MITP Summer School Lecture Michael Spannowsky July 2023 106

3. a way to update the network
continuously while minimising the
loss function, e.g. backpropagation

How can QNN be superior to NN

• Faster learning, i.e. faster groundstate finding of loss function

•More reliable in finding the global minimum of the loss function

Learns faster and from less data
Doesn’t get stuck in local minima
(less random in outcomes -> more interpretable)

• Quantum sampling of loss function/energy function

Less sensitive to Barren Plateaus Potentially:

MITP Summer School Lecture Michael Spannowsky July 2023 107

Regression Classification

Clustering Autoencoder

Supervised

Unsupervised

Fine-grained
small net

Large net

[Blance, MS ’21]for quantum continuous
variable algorithm see

MITP Summer School Lecture Michael Spannowsky July 2023 108

Toy example

• Squared distance classifier with quantum interference via Hadamard gate

[Schuld, Petruccione ’21]

• Titanic data set:

feature 1 feature 2 label (1 or 0)

2 x 2D vectors

Input data

classify?

tot prob.
normalised to 1 sum of weights

of all training
inputs

MITP Summer School Lecture Michael Spannowsky July 2023 109

inspired by Kaggle.com

• Nearest neighbour to classify
<-> need distance measure

• Define probability by squared distance classifier:

prediction depends
most on data points
closest to test point

How to use Quantum Computer to calculate this classification

Step A: Data processing and inputing

Step B: Data encoding (here amplitude encoding)

Data vector
Passenger 1 Passenger 2 Passenger 3 padding

 length=23|alpha|^2 = 1

Normalise length of input vector to 1
-> Project data onto unit-sphere, only angles remain

MITP Summer School Lecture Michael Spannowsky July 2023 110

Extend the state by 4th qubit -> 2 components 4

Vector component
represent subamplitudes } Passenger 1

} Passenger 2

(has label 1)

(has label 0)

} Passenger 3
(assuming label 1)

} Passenger 3
(assuming label 0)

for each feature encoded
in an amplitude (e.g. 001),
q4 is in the state that

corresponds to the label of
feature vector

Amplitudes assignment
somewhat random, but

does job…

MITP Summer School Lecture Michael Spannowsky July 2023 111

Step C: Apply Hadamard transformation on q1

where

Superposition q1=0/1 states

c̄g ⇠
m2

W

16⇡2

y2t
⇤2

(208)

LS = (Dµ�)
† Dµ�� µ2�†�� �(�†�)2 (209)

(� > 0, µ2 < 0) (210)

Dµ� = [@µ + igWµ + ig0y�B
µ]� (211)

LF = yEijL̄L,i�Ej + yUijQ̄L,i�Uj + yDij Q̄L,i�Dj + c.c (212)

JB,F [m
2�2] =

Z 1

0
dx x2 log

h
1⌥ e�

p
x2+�2m2

i
(213)

h�i = �fv (214)

h�i = �tv (215)

T ⇤ (216)

V (r) = �
g2(�̄)

Z(�̄)

e
� m(�̄)p

Z(�̄)
r

4⇡r
M (217)

xy00 + (1� x)y0 + 4y = 0 (218)

y(0) = 1 (219)

y(1) = L1
4(1) (220)

y(1) = L4(1) (221)

H = H1 +H2 + · · ·+Hk (222)

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

15

-> just one computational
operation but acts on all

subamplitudes

-> connects training data (0)
with new/testing data (1)

MITP Summer School Lecture Michael Spannowsky July 2023 112

Step D: Measure the first qubit
and only accept if in
state 0

Introduces an if
statement into quantum
algorithm

-> similar to rejection sampling

-> q1 has to be in 0

-> zero all amplitudes with
q1=1 and renormalise such that
total probability is 1 (see chi)

MITP Summer School Lecture Michael Spannowsky July 2023 113

Step E: Measure the last qubit with probability
measurement = sampling from prob distribution

Interpret probability for fourth qubit to be classifier output

which is exactly the squared distance classifier

We have:

with

Crux, after data encoding only one computational
operation and two simple measurements needed

Irrespective of size of input vector or dataset.

MITP Summer School Lecture Michael Spannowsky July 2023 114

MITP Summer School Lecture Michael Spannowsky July 2023 115

Some takeaway observations from example

• Data encoding often very important for quantum machine learning
- especially for classical data
influences runtime, the principles of algorithm etc

• The quantum algorithm imposes preprocessing requirements on
classical data (e.g. regularisation and normalisation of data).

• Result of QML algorithm results from a measurement process.
Thus, we need to run experiment several times

• Often QML algorithms are inspired by classical algorithms

• The way quantum computers work may require adaptations to
classical models. Here, we used squared distance because it suited
quantum formalism.

