
Algorithms 
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Different Quantum Advantages/Speedups

1. A provable quantum speedup: (gold standard) 
requires a proof that there can be no classical algorithm that performs 
as well or better than the quantum algorithm. (grover’s algorithm)


2. A strong quantum speedup: 
compares the quantum algorithm with the best known classical 
algorithm. (shore’s algorithm)


3. Common quantum speedup: 
relaxes the ‘best classical algorithm’ to the ‘best available classical 
algorithm’


4. Potential quantum speedup: 
compares two specific algorithms and relating the speedup to this 
instance only


5. Limited quantum speedup:  
compares conceptually equivalent algorithms  
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The struggle for quantum speedup in machine learning

Ewing Tang, 18-year old undergrad at UT Austin 
debunked this claim

An example:

[1807.04271]

Iordanis Kerenidis and Anupam Prakash published “Quantum recommendation 

systems” [1603.08675], in Innovations in Theoretical Computer Science 

(2017), a QML algorithm claiming exponential quantum speedup over 

classical algorithms

First genuine real-world application for QML 
with advantage

Have a look at

https://www.quantamagazine.org/

teenager-finds-classical-
alternative-to-quantum-

recommendation-
algorithm-20180731/

For NNs, being highly flexible objects, and with 
the lack of a fully fletched mathematical 
algorithm describing the evolution of the network 
output etc, difficult to make definite statements



P - solvable, deterministically in polynomial 
time

NP - non-deterministic polynomial. 
Solutions verifiable in polynomial time

3.2. QUANTUM CIRCUITS 31

In classical digital computing, a small set of logical gates, like {AND, OR, NOT},
can be used to compute an arbitrary function. In quantum computing, there is a
similar notion of universality that takes into account that the group of the unitary
operators on a Hilbert space is continuous, so a finite set of gates cannot exactly
implement any unitary operator.

Definition 3.2.3 A set of quantum gates is said to be universal for quantum
computation if, for all n ∈ N, any n-qubit gate can be approximated to arbitrary
accuracy by a composition of only those gates.

A proof of the following theorem can be found in [CN00], the statement provides
the so-called standard universal set for quantum computation.

Theorem 3.2.4 The set {H,S, T,CNOT} is universal for quantum computation.

Assuming that the gates of a universal set require fixed amounts of time to
be implemented on the qubits, time complexity of a quantum algorithm can be
estimated by the gate counting in the corresponding circuit. In complexity theory,
the time complexity of an algorithm is the relation between the computation time t
and the binary size L of the input data. The classical time complexity of a problem
is defined as the infimum of the complexities of all the classical algorithms that can
solve the problem. A precise definition of computation time requires a notion of
elementary operation within a computational model like a single head movement in
a Turing machine or the execution of a logical gate in a digital circuit. However,
the strong Church-Turing hypothesis states that each model can be simulated in
polynomial time by a probabilistic Turing machine then the definition of complexity
classes is model-independent. The class P contains all the decision problems (that
is, the solution is either yes or no) that can be solved in polynomial time in the
sense that t, as a function of L, is bounded from above by a polynomial, using
the big-O notation we write t = O(La) with a > 0. When we say that a problem
is “easy” and a computation is “efficient” we are referring to class P. A decision
problem, described by the boolean function f , is in class NP if there is a decision
problem, described by the boolean function g, in class P such that: g(x, y) = 1 for
some y ⇒ f(x) = 1. Obviously P⊆ NP and the widely believed conjecture is that
P $= NP. A decision problem P is in the class NP-hard if and only if any NP
problem can be reduced to P in polynomial time. The class NP-complete contains
all the decision problems in NP that are NP-hard. Let us consider a probabilistic
computation described by the transition matrix T = {Txy} where y %→ Txy is the
probability distribution of the output given the input x. Due to the probabilistic
output, the computation may return a wrong result. The class BPP contains all

(considered ‘easy’ or ‘efficiently solvable problems)

NP-hard - hardest problem in NP class

NP-complete - in NP and every problem in NP is reducible to it in polynomial 
time. Thus, if any NP-complete problem can be solved in pol time, any NP problem 
can be solved in P time.

BPP - Bounded-error Probabilistic Polynomial time. Produces the correct answer 
with 2/3 probability for all inputs e.g. testing if number is prime with Solovay-Strassen test

BQP - Bounded-error Quantum Polynomial time. Solvable by probabilistic Turing 
machine in polynomial time. Correct answers with 2/3 prob. e.g. Shor’s algorithm

e.g. graph colouring problem is NP-hard

e.g. traveling salesman problem

Some complexity theory
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The relation between BQP and NP is not known and topic of 
ongoing research

Complexity classes of machine learning tasks

Training Complexity:

Training a neural network is considered NP-hard. As the task is 
to find the minimum of a non-convex optimisation problem

Prediction Complexity:

Once a model is trained, predictions are efficient (class P)

Model selection and Hyperparameter Tuning:

Considered to be in NP. ‘No free lunch theorem’. High-
dimensional optimisation

Feature Selection:
Some ML models require to select subset of features for 
training. This is considered to be NP-hard
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•  General structure of any QC algorithm:

• Operator expressed in terms of individual gates

operator acts on  
Hilbert space states

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

h 2|  1i (196)

14

measurement of 
observable   

corresponds to exp. 
value of operator

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

D
Û
E

 
=

h |U | i

h | i
(199)

14

statistical statement 
need to evaluate often

Need to encode Hilbert 
space and operator suitable 

for quantum system

state preparation
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Quantum Gate

initialisation
operations on qubits

results in output of superpositions

We then measure one specific outcome. Have to repeat measurement to statistically 
evaluate how likely each outcome is (by calculating and measuring several times). 

Since we work only with probabilities, we measure only probabilities
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Quantum Gate

quantum gate and multi slit experiment are conceptually identical

While operating one cannot see how the 
gate works. Only at the end one can 

measure the outcome

(box is closed during operations)
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Galton Board as analogy for 
Quantum Computer
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Algorithm Zoo

Highlight Quantum Algorithms - used as basis for others

https://quantumalgorithmzoo.orgWebsite collecting up to ~200 (until 2018)  
algorithms showing quantum advantage

• Quantum Fourier Transformation (QFT)

• HHL (Harrow, Hassidim, Lloyd) algorithm

• (Gaussian) boson sampling via photonic quantum devices

• Quantum Phase Estimation (QPE)

Grover’s algorithm, Shore’s algorithm, Deutsch algorithm, 
Quantum Teleportation, …
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Quantum computing frameworks

Frontend

Ecosystem

Google 
Quantum AI

https://qiskit.org/IBM

https://
quantumai.google/cirq

https://pennylane.ai/

Frontend

Ecosystem https://qibo.science/

Quantum 

Annealing

https://www.dwavesys.com/
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Many options for 
activation function f, e.g.

tanh

sigmoid

bias

calculate loss 
for output layer

Classical Neural Network recap
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putting things 
together

input hidden output

Notation:

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

16

weight

layer l

node number of 
connection in layer l+1

node number of 
connection in layer l

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

16

bias of layer l is connected to all nodes in layer l+1, thus

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

16

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

16

and have to be calculated during the learning phase of the ANN

The feedforward pass: 
activation function
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We have managed the first feedforward pass, now we 
need to evaluate the loss/cost function

• The cost/loss function evaluates the performance of the learning outcome 
(forward pass) of the ANN, i.e. how well did the NN approximate the 
training data NN output of final layer =  

prediction of NN given input x

Here the sum of squared errors, or L2 norm of the errors

where m runs over 
all trainings pairs 

Many loss functions possible. When fitting more useful is the mean-square 
error (MSE)
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The loss function establishes a 
hypersurface for which we try 

to find a minimum using 
gradient descent

We have evaluated the loss, so how does the network learn?

gradient descent and backpropagation

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

16

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

16

Gradient descent for every weight     and 
every bias     in the NN looks like:

in short:

s2 (223)

F̂ (224)

ESph (225)

V (H) (226)

Ve↵(h, T ) (227)

w(l)
ij (228)

b(l)i (229)

z(l)i (230)

↵ (231)

16

where is the learning rate 
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Learning via backpropagation

• variation of loss with respect to weight      of NN is

• Backpropagation is method to compute the partial derivative of the 
loss function E(y,y’). It is about determining how changing the weights 
impact the overall loss in the NN 
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comb of weights

activation function 
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• weights of network adjusted by 
learning rate  
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• New network weights reduce value of 
loss function
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Classical Neural Network recap

1. an adaptable complex system that 
allows approximating a complicated 
function

2. the calculation of a loss function in the 
output layer which is used to define 
the task the NN algorithm should 
perform by minimising this function

3. a way to update the 
network continuously while 
minimising the loss function, 
e.g. backpropagation

Very powerful principle which NNs are designed to exploit

Difficult to keep all in quantum system - but not impossible? stay tuned!

=

MITP Summer School         Lecture      Michael Spannowsky         July 2023                   103



http://playground.tensorflow.org/

Visualisation of supervised learning using 
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Classical

ML Algorithms

Simulation of field theories (Groundstate, tunnelling, Real-time…)

Tensor 
Networks

Data Analysis (Classification, anomaly, regression, fitting, …)

Quantum 
Computing

1. an adaptable complex system that allows approximating a complicated function

2. the calculation of a loss function used to define the task the method

3. a way to update 1. while minimising the loss function

optimisation
Calculation of differential equations, etc etc

quantum: annealing

hybrid: classical opti.

ground state 
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How can QNN be superior to NN

1. an adaptable complex system that 
allows approximating a complicated 
function

•QML more expressive

• Input to QML can be quantum state

proven exponential advantage on noisy device 
over classical algorithm of any size

[Huang et al ’21]

[Alcazar, Leyton-Ortega, 
Perdomo-Ortiz ’20]

[Eisert, Cramer, 
Plenio ’08]

•  Hybrid model possible - combination of classical and 
quantum nodes

• Exploit geometry of quantum loss function
[Blance, MS ’20]Faster learning

2. loss function

[Araz, MS ’22]

[Stokes, et al ’20]
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3. a way to update the network 
continuously while minimising the 
loss function, e.g. backpropagation

How can QNN be superior to NN

• Faster learning, i.e. faster groundstate finding of loss function

•More reliable in finding the global minimum of the loss function

Learns faster and from less data
Doesn’t get stuck in local minima  
(less random in outcomes -> more interpretable)

•  Quantum sampling of loss function/energy function

Less sensitive to Barren Plateaus Potentially:
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Regression Classification

Clustering Autoencoder

Supervised

Unsupervised

Fine-grained 
small net

Large net

[Blance, MS ’21]for quantum continuous 
variable algorithm see 
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Toy example

• Squared distance classifier with quantum interference via Hadamard gate

[Schuld, Petruccione ’21]

• Titanic data set:

feature 1 feature 2 label (1 or 0)

2 x 2D vectors

Input data

classify?

tot prob. 
normalised to 1 sum of weights 

of all training 
inputs
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inspired by Kaggle.com

• Nearest neighbour to classify 
<-> need distance measure

• Define probability by squared distance classifier:

prediction depends 
most on data points 
closest to test point



How to use Quantum Computer to calculate this classification

Step A: Data processing and inputing

Step B: Data encoding (here amplitude encoding)

Data vector
Passenger 1 Passenger 2 Passenger 3 padding

 length=23|alpha|^2 = 1

Normalise length of input vector to 1  
-> Project data onto unit-sphere, only angles remain
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Extend the state by 4th qubit -> 2   components 4

Vector component 
represent subamplitudes } Passenger 1

}   Passenger 2

(has label 1)

(has label 0)

}   Passenger 3
(assuming label 1)

}   Passenger 3
(assuming label 0)

for each feature encoded 
in an amplitude (e.g. 001), 
q4 is in the state that 

corresponds to the label of 
feature vector

Amplitudes assignment 
somewhat random, but 

does job…
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Step C: Apply Hadamard transformation on q1

where

 
Superposition q1=0/1 states

c̄g ⇠
m2

W

16⇡2

y2t
⇤2

(208)

LS = (Dµ�)
† Dµ�� µ2�†�� �(�†�)2 (209)

(� > 0, µ2 < 0) (210)

Dµ� = [@µ + igWµ + ig0y�B
µ]� (211)

LF = yEijL̄L,i�Ej + yUijQ̄L,i�Uj + yDij Q̄L,i�Dj + c.c (212)

JB,F [m
2�2] =

Z 1

0
dx x2 log

h
1⌥ e�

p
x2+�2m2

i
(213)

h�i = �fv (214)

h�i = �tv (215)

T ⇤ (216)

V (r) = �
g2(�̄)

Z(�̄)

e
� m(�̄)p

Z(�̄)
r

4⇡r
M (217)

xy00 + (1� x)y0 + 4y = 0 (218)

y(0) = 1 (219)

y(1) = L1
4(1) (220)

y(1) = L4(1) (221)

H = H1 +H2 + · · ·+Hk (222)

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

15

-> just one computational 
operation but acts on all 

subamplitudes

-> connects training data (0) 
with new/testing data (1)
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Step D: Measure the first qubit 
and only accept if in 
state 0 

Introduces an if 
statement into quantum 
algorithm

-> similar to rejection sampling

-> q1 has to be in 0

-> zero all amplitudes with 
q1=1 and renormalise such that 
total probability is 1 (see chi)
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Step E: Measure the last qubit with probability 
measurement = sampling from prob distribution

Interpret probability for fourth qubit to be classifier output

which is exactly the squared distance classifier

We have:

with

Crux, after data encoding only one computational 
operation and two simple measurements needed

Irrespective of size of input vector or dataset.
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Some takeaway observations from example

•  Data encoding often very important for quantum machine learning 
- especially for classical data 
influences runtime, the principles of algorithm etc

• The quantum algorithm imposes preprocessing requirements on 
classical data (e.g. regularisation and normalisation of data).

• Result of QML algorithm results from a measurement process. 
Thus, we need to run experiment several times

• Often QML algorithms are inspired by classical algorithms

• The way quantum computers work may require adaptations to 
classical models. Here, we used squared distance because it suited 
quantum formalism.


