1. Phase 2. Non- 3. Reverse phase H
estimation unitary  estimation Quantum algorlthms
map
State qubit:  |b) U Ut \z) 010
Ei |
QL%?:vaue 0) 1H alE Hi——14 . H 10) X1 Xy X3 Xn
Ancilla qubit: |1) R,(6) ~AF 1 Find if there exists i for which x;=1.
Queries: input i, output x;.
b Classically, n queries.
b) 1R '1 I R! ) Quantum, O(¥n) queries [Grover,
0) % T D 0) 1996].
xh \Y :
1) R, (0) = Speeds up exhaustive search
Algorithms
initialization Random initializations
Measure (HC> Yo B;
> H H H | ‘IiﬂpHBl
Q10 —— -.= Ie : :
Q, [0> F—o—fH St -H -.= e_tiHc .
Q, 10> * . . ’ H H -.= : ! optimizeds TQA-initializati
-1nitialization
Q3 19> _ my H -E e_iﬂlHB },i*’ﬁi*
Q, lo> H-o—H st -H .-= ] |
e_iJ’lHC
[+) 1+) - I+ i 5 1
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Different Quantum Advantages/Speedups

1. A provable quantum speedup: (gold standard)
requires a proof that there can be no classical algorithm that performs
as well or better than the quantum algorithm. (grovers algorithm)

2. A strong quantum speedup:
compares the quantum algorithm with the best known classical
algorithm. (shores algorithm)

3. Common quantum speedup:
relaxes the ‘best classical algorithm’ to the ‘best available classical
algorithm’

4. Potential quantum speedup:
compares two specific algorithms and relating the speedup tfo this
instance only

5. Limited quantum speedup:
compares conceptually equivalent algorithms
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The struggle for quantum speedup in machine learning

An example:

Iordanis Kerenidis and Anupam Prakash published “Quantum recommendation
systems” [1603.08675], in Innovations in Theoretical Computer Science

(2017), a QML algorithm claiming exponential quantum speedup over

P4 = )

classical algorithms G SR () @) €
e ot e S Pl o : G | L) =
time 6o |

First genuine real-world application for QML .
M cmned P P

with advantage

Ewing Tang, 18-year old undergrad at UT Austin
debunked this claim [1807.04271]

Have a look at

For NNs, being highly flexible objects, and with
the lack of a fully fletched mathematical teenager-finds-classical-
algorithm describing the evolution of the network alternative-to-quantum-

output efc, difficult to make definite statements recommendation-
algorithm-20180731/
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Some complexity theory

P - solvable, deterministically in polynomial
time t = O(L%)

(considered ‘easy’ or ‘efficiently solvable problems)

NP - non-defterministic polynomial.
Solutions verifiable in polynomial time

NP-hard - hardest problem in NP class
e.g. graph colouring problem is NP-hard

NP-complete - in NP and every problem in NP is reducible to it in polynomial

time. Thus, if any NP-complete problem can be solved in pol time, any NP problem
can be solved in P time. e.g. traveling salesman problem

BPP - Bounded-error Probabilistic Polynomial time. Produces the correct answer
with 2/3 Probabi[ify for all inpufs e.g. testing if number is prime with Solovay-Strassen test

BQP - Bounded-error Quantum Polynomial time. Solvable by probabilistic Turing
machine in polynomial time. Correct answers with 2/3 prob. eg. Shors algorithm
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Complexity classes of machine learning tasks
Training Complexity:

Training a neural network is considered NP-hard. As the task is
to find the minimum of a non-convex optimisation problem

Prediction Complexity:

Once a model is trained, predictions are efficient (class P)

Model selection and Hyperparameter Tuning:

Considered to be in NP. 'No free lunch theorem’. High-
dimensional optimisation

Feature Selection:

Some ML models require to select subset of features for
training. This is considered fo be NP-hard

The relation between BQP and NP is not known and topic of
ongoing research
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e General structure of any QC algorithm:

state preparation x — |x) = S, |0)

measurement of

operator acts on - observable U -\ (YU
H“E Ulz) = [T) |3 (0). =

ert space states corresponds to exp. v
value of operator U

Need to encode Hilbert
space and operator suitable | @~
for quantum system

statistical statement
need to evaluate often

0 0/1 § o—g—

0 — — 0 0 —-

o — U 3 - 0 — 1 oA
: O

0 S 0 — ]

e Operator expressed in terms of individual gates
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Quantum Gate

operations on qubits

Initialisation
* results in output of superpositions

We then measure one specific outcome. Have to repeat measurement to statistically
evaluate how likely each outcome is (by calculating and measuring several times).
Since we work only with probabilities, we measure only probabilities
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Quantum Gate

Interference of Waves

SOou

Wall Screen

quantum gate and multi slit experiment are conceptually identical

IT’s a secret computation...

While operating one cannot see how the
gate works. Only at the end one can
measure the outcome
(box is closed during operations)
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Galton Board as analogy for
Quantum Computer




Algorithm Zoo

Website collecting up to ~200 (until 2018)

tps://quant ithmzoo.
algorithms showing quantum advantage https://quantumalgorithmzoo.org

Highlight Quantum Algorithms - used as basis for others

e Quantum Fourier Transformation (QFT)
e Quantum Phase Estimation (QPE)

e HHL (Harrow, Hassidim, Lloyd) algorithm

e (Gaussian) boson sampling via photonic quantum devices

Grovers algorithm, Shores algorithm, Deutsch algorithm,
Quantum Teleportation, ...
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Quantum computing frameworks

@ QiSkit IBM https://qiskit.org/

= Cir Google https://

i q Quantum AI  quantumai.google/cirq
¥ PENNYLANE ~ fronfend i e Jbennylane.ai/
Ecosystem
m Frontena https://qibo.science/
Ecosystem

: Quantum |
. https://www.dwavesys.com/
Annealing
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impulses carried
toward cell body

dendrites (

nucleus

Classical Neural Network recap

bias

WoI \\

branches L0 (oy)
of axon & synapse
axon from a neuron
7 axon
*~ terminals
impulses carried cell body f Z wiT: + b
away from cell body w1 : .
Z WiZ; + b f -
: output axon
activation
function
WoT9 e
>
/

“V V’
N SDEZSL
CEREEO—0
35 X
R |

MITP Summer School

calculate loss
for output layer

Lecture 98

Many options for
activation function f, e.g.

A

tanh /»

A

sigmoid _//

Michael Spannowsky

July 2023




putting things input hidden output
together

Notation:
Iayerl

+ hyp(x)
(l)

weight — w

RN

node number of node number of
connection in layer [+1 connection in layer |

Layer 1 Layer 2 Layer 3

bias of layer | is connected to all nodes in layer |+1, thus bgl)

b,gl) and w(l) have to be calculated during the learning phase of the ANN
activation function
The feedforward pass: L@ >f(wl(1)x1 n W1(2)x2 n W( >x3 4 b(l))
hgz) = f(wz( X, + w( )xz + w( )x3 + bél))
h? = f(w( X1 + Wiy >x2 + Wi )x3 +b{M)

3 2 2 2 2 2 2 2
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We have managed the first feedforward pass, now we
need to evaluate the loss/cost function

® The cost/loss function evaluates the performance of the learning outcome
(forward pass) of the ANN, i.e. how well did the NN approximate the

fraining data NN output of final layer =

prediction of NN given input x

/

1 2
Jw,b,x,y) = > | yZ-h() (x?) |

1 Z Z 2
:Elly _ypred(x ) |l

Here the sum of squared errors, or L2 norm of the errors

Many loss functions possible. When fitting more useful is the mean-square
error (MSE) m

1 1 )
Jw,b) =— > Sly*-hM ) |
where m runs over

=0
1Z m all ftrainings pairs
- EEJ(W' b,x(z),y(z))
z=0
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We have evaluated the loss, so how does the network learn?

gradient descent and backpropagation

The loss function establishes a
hypersurface for which we try
to find a minimum using
gradient descent

J(69,0,) o

0
o _ .0

Gradient descent for every weight w,.” and ow..
g J ij
every bias 5" in the NN looks like:
@ _ WO
in short: bi — bi _aab.(l)](w’ b)
L

Whnew = Wyoig— @ * Verror
where (¢ is the learning rate
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Learning via backpropagation

e Backpropagation is method to compute the partial derivative of the
loss function E(y,y’). It is about determining how changing the weights
Impact the overall loss in the NN

e variation of loss with respect to weight Wi of NN is

dF dE dy ds , comb of weights S — E Wi N
— = with

dwy dy ds dwy o . k
activation function Y

e weights of network adjusted by
learning rate [

dE dy ds
dy ds dwy

Awg = —p

e New network weights reduce value of
loss function
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Classical Neural Network recap

Very powerful principle which NNs are designed fo exploit

Output
Layer

Input

1. an adaptable complex system that Layer
allows approximating a complicated
function

\[//
\O/

2. the calculation of a loss function in the
output layer which is used to define ,
the task the NN algorithm should E(y,y) =

perform by minimising this function

3. a way to update the | e pf e
network continuously while ﬁ
minimising the loss function, ///" e
e.g. backpropagation =

w

Difficult fo keep all in quantum system - but not impossible? stay tuned!
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Visualisation of supervised learning using

http://playground.tensorflow.org/

Epoch Learning rate Activation Regularization Regularization rate Problem type

4|
o 000;604 0.03 v RelLU v None v 0 v Classification ~

DATA FEATURES + — 4 HIDDEN LAYERS OUTPUT
Which dataset Which Test loss 0.044
do you want to properties do Training loss 0.058
use? you want to @ A= i A= + -
feed in? 5 neurons 4 neurons 3 neurons 2 neurons
----- 3 O A B
— " .v‘. e O ¢o ®)
@ / 4
=/ Ve & A J e,‘
/‘: 9 : 0

Ratio of training

o -0
to test S 5
° 6
data: 50% '5,. A
@
—0
)(22 The outputs are
mixed with varying
Noise: 0 weights, shown
o by the thickness
XX, of the lines.
|
Batch size: 10 0
o sin(X,) This is the output
from one neuron.
Hover to see it Colors shows
REGENERATE ] larger. data, neuron and F ! —
sin(X,) , } 0 1
weight values.

[ Showtestdata [] Discretize output
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Classical Tensor Quantum
ML Algorithms Networks Computing

1. an adaptable complex system that allows approximating a complicated function

Measurement and

Input Hidden Output State Preparation Model Circuit

k@ o Sz Us =i
:7' T N —
2. the calculation of a loss function used to define the task the method
E(y,q) = | ‘ Bs2 , TPirz = fl(x(m) ground state
Y Y y—y H
’ L =L (p(l,x), ltr“th) I') := arg min M
wyep (YY)
3. a way to update 1. while minimising the loss function
J(w) Initja:n |/ Gradient ; ; .
N quantum: annealing
”/ +— argmin Hi / Z;
_ o s hybrid: classical opti.

Data Analysis (Classification, anomaly, regression, fitting, ...)
optimisation > Simulation of field theories (Groundstate, tunnelling, Real-time...)

\ calcula’rlon oF d|FFeren’r|al equa’rlons e’rc e’rc
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How can QNN be superior to NN

Output
Layer

1. an adaptable complex system that

allows approximating a complicated N
function 1
2. loss function E(y,y) = %|y — y’]2

data processing device

C - classical, Q) - quantum

e Input fo QML can be quantum state
[Huang et al “21]

proven exponential advantage on noisy device
over classical algorithm of any size

data generating system

® QML more expressive

[Eisert, Cramer,  [Alcazar, Leyton-Ortega,

Plenio 08] Perdomo-Ortiz 20] [Araz, MS "22]

¢ Hybrid model possible - combination of classical and
quantum nodes

¢ Exploit geometry of quantum loss function
—> Faster learning [Stokes, et al ‘20] [Blance, MS ‘20]
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How can QNN be superior to NN

J(w) Init_ial !~ Gradient
weight \ :"
3. a way to update the network ]
continuously while minimising the ’
loss function, e.g. backpropagation A Sleblcestmiion
/ min

w

e Quantum sampling of loss function/energy function
e Faster learning, i.e. faster groundstate finding of loss function

® More reliable in finding the global minimum of the loss function

¥ Potentially: Less sensitive to Barren Plateaus

Learns faster and from less data

Doesnt get stuck in local minima
(less random in outcomes -> more interpretable)
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Supervised

Fine-grained
small net

Regression Classification

Unsupervised
Clustering Autoencoder
° of o g o C . 3 nodes .
RN ol|2||e
LG o [® e
. 'f..‘.° 0'--.\. N . ¢ ®
odr

Loss function

|
for quantum continuous
variable algorithm see
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Toy example

[Schuld, Petruccione ‘21]

® Squared distance classifier with quantum interference via Hadamard gate

Preprocessed data

e Titanic data set: Raw data | , | Survival
Price Cabin Price Cabin
Passenger 1 8,500 0910 0.85 0.36 1 (yes)
IﬂPU"' data Passenger 2 1,200 2105 0.12 0.84 0 (no)
Passenger 3 7,800 1121 0.78 0.45 ?
—> 2 x 2D vectors T T /' T
inspired by Kaggle.com feature 1  feature 2 classify? label (1 or 0)

¢ Nearest neighbour to classify

<-> need distance measure

Passenger 2
o

¢ Define probability by squared distance classifier:

1 1 1
i~=1=_— 1 — —|x — m 2
px(y = 1) M, > ( I xl)

ST

sum of weights
of all training

Passenger 3

cabin number

Passenéer 1

tot prob.
normalised to 1

prediction depends

ticket price
most on data points

inputs closest to test point
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How to use Quantum Computer to calculate this classification

Step A: Data processing and inputing

Normalise length of input vector to 1
-> Project data onto unit-sphere, only angles remain

- Passenger 2
Raw data price room survival ;

)
e S
Price Cabin | g P wer 3
Passenger 1 0.921 0.390 yes (1 . assenger
Passenger | | 8,500 0910 | = ves (1 ——pp - .
T - °
Passenger2 1,200 2105 Passenger 2 0.141 0.990 no (0) :_CSS Passenger 1
Passenger 3 | 7,800 1121 Passenger 3 0.866 0.500  ? © ‘

ticket price

Step B:  Data encoding (here amplitude encoding)

Data vector
Passenger 1 Passenger 2 Passenger 3 padding

1
a = 7 (0.921, 0.39, 0.141, 0.99, 0.866, 0.5, 0.866, 0.5)"

lalphal™2 =1 Ieng’rh=23
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Extend the state by 4th qubit -> 2* components

1
Qinit = ﬁ (0,0.921, 0, 0.39, 0.141, 0, 0.99, 0, 0, 0.866, 0, 0.5, 0.866, 0, 0.5, 0)”

91 |92 |4g93 |q4 | StepB
Vector component o |0 |0 |0 |0
1
represent subamplitudes 0 o Jo Q) |0 Passenger 1
o [o |1 Jo o
o o |1 (1) | Zoa% (has label 1)
for each feature encoded o 1 lo L0141
. . 4
in an amplitude (e.g. 001), o |1 |0 |1 |o Passenger 2
g4 is in the state that o 1 1 (0) | 09% (has label 0)
corresponds to the label of 0 |t gt Jt |o
feature vector i g g '(1)‘ . 0 866
OMF-C Passenger 3
it o |1 [o o
| | U o 1 () Zosm (assuming label 1)
Amplitudes assignment L 1 0 (0) | Joses
0.
somewhat random, but 1 1 |0 |1 |o Passenger 3
does job... N E R O (assuming label 0)
1 1 1 1 0
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1 /1 1
Step C:Apply Hadamard transformation on q1 H," = 7 (1 —1)

Qubit state Transformation of amplitude vector
q1 | 92 | 93 | 94 |StepB Step C
®init ®inter
0 |0 0 0 |0 0
1 1
0 |0 0 1 ﬁ0.921 7 (0.921 4 0.866)
0 |0 1 0 |0 0
1 1
0 0 1 1 \{10.390 \{g (0.390 + 0.500)
0 |1 0 0 ﬁO. 141 7 (0.141 + 0.866)
0 |1 0 1 |0 0
1 1
0 |1 1 0 ﬁ0.990 7 (0.990 + 0.500)
0 |1 1 1 |0 0
1 10 0 0 |0 0
1L L _
1 10 0 1 ﬁ0.866 \/§(0.921 0.866)
1 10 1 0 |0 0
1 1
1 |0 1 1 ﬁO.SOO %(0.390 — 0.500)
1 1
1 |1 0 0 ﬁ0.866 ﬁ(0.141 — 0.866)
1 |1 0 1 |0 0
1 L _
1 |1 1 0 ﬁO.SOO \/g(O.9 0 — 0.500)
1 |1 1 1 |0 0
MITP Summer School Lecture 112

2

N N _ o
2x2whereN 2

H - init — inter

Superposition q1=0/1 states

-> connects training data (0)
with new/testing data (1)

-> just one computational
operation but acts on all
subamplitudes
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Qubit state

Step D: Measure the first qubit @ |@ |4 |4 |StpD
® final
and only accept if in o [0 o [0 |o
state O 0 |0 0 1 J%_X(o.921+0.866)
o o |1 |0 |0
: 0 0 1 1 | — (0. .
Introduces an if R Tl s Jf_XEg fii’iﬁi?ﬁi
statement into quantum T YR '
algorithm 0 |1 I |0 | = (0.990+0.500)
_> similar to rejection sampling ¢ |1 ' 1.0
J P!iNg 1 o o |o |0
1 o |o |1 |0
-> gl has to be in O 1 jo |1 Jo |0
1 0 1 1 0
-> zero all amplitudes with L L e
ql=1 and renormalise such that 7 -
total probability is 1 (see chi) T T T T

x = 5(10.921 + 0.866|2 +10.390 + 0.500|2 + 0.141 + 0.866|2 + [0.990 + 0.500/%) = 0.902
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Step E: Measure the last qubit with probability p(gs)

measurement = sampling from prob distribution
Interpret probability for fourth qubit to be classifier output

1

We have: p(qs = 0) = ™ (10.141 + 0.866]* + 0.990 + 0.500|°) ~ 0.448
1

Plga=1 = (10.921 + 0.866]> + |0.390 + 0.500/%) ~ 0.552

Y 11 > m)2
which is exactly the squared distance classifier pz(y =1 = M (1 - SR — " )

m|ym=1
c=4

1 1
plgs =0) = — (1 ~ (10141 - 0.866| + |0.990 — 0.500|2)) ~ 0.448,
X

1 1
plga=1) = iy (1 ~ 50.921 — 0.866|2 + |0.390 — 0.500|2)) ~ 0.552

with x = 7(/0.921 + 0.866/% + |0.390 + 0.500> + |0.141 + 0.866| +0.990 + 0.500/?)

Crux, after data encoding only one computational

operation and two simple measurements needed
Irrespective of size of input vector or dataset.
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Some takeaway observations from example

e Data encoding often very important for quantum machine learning
- especially for classical data
influences runtime, the principles of algorithm etc

® The quantum algorithm imposes preprocessing requirements on
classical data (e.g. regularisation and normalisation of data).

e Result of QML algorithm results from a measurement process.
Thus, we need to run experiment several times

e Often QML algorithms are inspired by classical algorithms

® The way quantum computers work may require adaptations to
classical models. Here, we used squared distance because it suited
quantum formalism.
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