
Quantum Gate Computing Basics

MITP Summer School Lecture Michael Spannowsky July 2023 47

Structure of a Quantum Machine Learning Algorithm

MITP Summer School Lecture Michael Spannowsky July 2023 48

MITP Summer School Lecture Michael Spannowsky July 2023 49

MITP Summer School Lecture Michael Spannowsky July 2023 50

All the methods
discussed in the
lectures you had
over the last 2

weeks

MITP Summer School Lecture Michael Spannowsky July 2023 51

Classical data processed
via quantum algorithms on

quantum devices

MITP Summer School Lecture Michael Spannowsky July 2023 52

MITP Summer School Lecture Michael Spannowsky July 2023 53

Encoding

Data State of a
quantum system

MITP Summer School Lecture Michael Spannowsky July 2023 54

data encoding in different parts of the state and
operator description

maps a collection of items into the states forming an orthonormal basis of the Hilbert
space of the considered quantum system.

The orthonormal basis {|x⟩}x∈X , called computational basis, is made by the

eigenstates of a reference observable measured on the considered quantum system. For
instance, a bit can be encoded into a qubit by the mapping 0 → |0⟩, 1 → |1⟩. Then the

n-bit strings (x1 · · · xn) can be encoded into the states of n qubits forming an

orthonormal basis of a 2n-dimensional Hilbert space Hn:

Chapter 3

Basics of Quantum Computing

Quantum computing is a type of computation where quantum phenomena, such as
state superposition and entanglement, are exploited to perform calculations. It is
the most prominent application of quantum information theory and delivers algo-
rithms to solve efficiently some problems which are hard for classical computers.
This chapter is focused on the fundamentals of quantum computing like the ab-
stract notion of a universal quantum computer and the circuit model for quantum
computations. There is an overview on adiabatic quantum computing which pro-
vides a notion of analog quantum computer. Quantum annealers, as specific-purpose
quantum machines, are also introduced.

3.1 Encoding data into quantum states

In quantum information theory, a quantum encoding is any procedure to map classi-
cal data into the physical states of a considered quantum system. In this section we
list the quantum encodings that are relevant in the following to encode the values
of discrete and continuous variables into quantum states.

The basis encoding is defined by mapping a collection of items into the states
forming an orthonormal basis of the Hilbert space of the considered quantum sys-
tem. Given a finite set X with cardinality |X|, any x ∈ X can be encoded into a
basis vector |x〉 of a Hilbert space of dimension |X|. Physically, the orthonormal
basis {|x〉}x∈X , called computational basis, is made by the eigenstates of a reference
observable measured on the considered quantum system. For instance, a bit can
be encoded into a qubit by the mapping 0 #→ |0〉, 1 #→ |1〉. Then the n-bit strings
(x1 · · · xn) can be encoded into the states of n qubits forming an orthonormal basis
of a 2n-dimensional Hilbert space Hn:

Bn % (x1 · · · xn) #→ |x1 · · · xn〉 ∈ Hn. (3.1.1)

25© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Pastorello, Concise Guide to Quantum Machine Learning,
Machine Learning: Foundations, Methodologies, and Applications,
https://doi.org/10.1007/978-981-19-6897-6_3

can prepare superposition of data that
can be processed in parallel, e.g.

26 CHAPTER 3. BASICS OF QUANTUM COMPUTING

Then the qubits can be prepared in a superposition of different data that can be
processed in parallel by linearity. In particular one can consider the superposition
of all the possible binary strings of length n:

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉. (3.1.2)

The initialization of the complete superposition (3.1.2) is the idea behind the quan-
tum advantage of the celebrated Grover’s search for instance.

The amplitude encoding is the representation of classical data into the amplitudes
of a quantum state. A complex vector x ∈ Cd with unit norm can be represented
by the amplitudes of a quantum state |ψx〉 with respect to a fixed basis {|φi〉}i of
the d-dimensional Hilbert space H:

|ψx〉 =
d∑

i=1

xi|φi〉 ∈ H. (3.1.3)

If the classical information is given by a d×d complex matrix A satisfying
∑

ij |aij|2 =
1, it can be encoded in the state:

|ψA〉 =
d∑

i,j=1

aij|φi〉 ⊗ |φj〉 ∈ H⊗ H. (3.1.4)

The main advantage of the amplitude encoding is the space efficiency with respect
to the basis encoding. Consider a system made by n qubits, within the basis encod-
ing we can convey only n classical bits, within the amplitude encoding we can store
complex vectors of dimension 2n. The limitations of amplitude encoding are the
normalization requirement on the classical data and the fact that quantum ampli-
tudes xi cannot be directly observed and only the real numbers |xi|2 can be retrieved
from the state |ψx〉 where the complex vector x is stored. Therefore, the amplitude
encoding requires normalized data vectors or norms that are given separately.

A third kind of quantum encoding is related to probability distributions. Given
a probability distribution p on the finite set X, it can be encoded in the state:

|ψp〉 =
∑

x∈X

√
p(x)|x〉 ∈ H, (3.1.5)

where {|x〉}x∈X is an orthonormal basis of the |X|-dimensional Hilbert space H. Re-
peated measurements on the state |ψp〉 with respect to the computational basis allow
to sample the distribution p. Some authors call this procedure qsample encoding.

Basis encoding:

MITP Summer School Lecture Michael Spannowsky July 2023 55

Binary encoding into basis states

Represent numbers as binaries, each binary
digit requires a qubit

data vector quantum state
binary fraction rep.

MITP Summer School Lecture Michael Spannowsky July 2023 56

sign

basis vector coefficient {0,1}

| i = ↵|0i+ �|1i (532)

|�i = �|0i+ �|1i (533)

(A⌦B)(| i ⌦ |�i) (534)

(A⌦B)(| i ⌦ |�i) = (A| i)⌦ (B|�i) = a| i ⌦ b|�i = ab(| i ⌦ |�i) (535)

| i ⌦ |�i = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|0i ⌦ |0i+ ↵�|0i ⌦ |1i+ ��|1i ⌦ |0i+ ��|1i ⌦ |1i

⇢ = p"| "ih" |+ p#| #ih# | (536)

p" =
1

1 + e�E/kT
, p# = 1� p" (537)

x =
⌧�1X

k=1

bk
1

2k
(538)

38

Time-Evolution Encoding

3.4 Strategies of Input Encoding 117

Fig. 3.13 Data points in the one-dimensional interval [−1, 1] (left) canbeprojectedonto normalised
vectors by adding a constant value in a second dimension x2 and renormalising the overall vector

While amplitude encoding uses much less qubits than basis encoding, we will
see that the routines preparing the dense amplitude vectors are very costly (in some
sense trading space for time). Amplitude encoding is therefore also not very suitable
for near-term devices. In contrast, the next embedding strategy is widely used in
algorithms for small-scale quantum computers.

3.4.3 Time-Evolution Encoding

Time-evolution encoding prescribes to associate a scalar value x ∈ R with the time
t in the unitary evolution by a Hamiltonian H in Eq. (3.24),

U (x) = e−i x H . (3.64)

The state after the evolution, |ψ(x)〉 = U (x)|ψ0〉, depends on x in a way that is
defined by the Hamiltonian H . In quantum machine learning, this kind of encoding
is particularly popular when encoding classical trainable parameters into a quantum
circuit. Themost common choice are the Pauli rotation gates fromEqs. (3.45)–(3.47),
inwhich H = 1

2σa and a ∈ {x, y, z}. Successive gates or evolutions of the formU (x)
can be used to encode a real-valued vector x ∈ RN .

Example 3.6 (Time-evolution encoding) Consider the second entry from the vectors
used in the previous examples, −0.438. Time-evolution encoding with an RY gate
and initial state |0〉 produces the state

|ψ(−0.438)〉 = cos(−0.438/2)|0〉 + sin(−0.438/2)|1〉 (3.65)

≈ 0.976|0〉 − 0.217|1〉. (3.66)

The cosine/sine structure of the amplitudes is typical for time-evolution encoding
and leads to a Fourier-like dependency of the amplitudes on the inputs, which we
will explore further in Sect. 5.2.

Associates the input data value x with the time evolution parameter t

 In quantum machine learning, this kind of encoding is particularly popular when
encoding classical trainable parameters into a quantum circuit. The most common choice
are the Pauli rotation gates, in which and a ∈ {x, y, z}. Successive gates or
evolutions of the form U(x) can be used to encode a real-valued vector x ∈ RN

3.4 Strategies of Input Encoding 117

Fig. 3.13 Data points in the one-dimensional interval [−1, 1] (left) canbeprojectedonto normalised
vectors by adding a constant value in a second dimension x2 and renormalising the overall vector

While amplitude encoding uses much less qubits than basis encoding, we will
see that the routines preparing the dense amplitude vectors are very costly (in some
sense trading space for time). Amplitude encoding is therefore also not very suitable
for near-term devices. In contrast, the next embedding strategy is widely used in
algorithms for small-scale quantum computers.

3.4.3 Time-Evolution Encoding

Time-evolution encoding prescribes to associate a scalar value x ∈ R with the time
t in the unitary evolution by a Hamiltonian H in Eq. (3.24),

U (x) = e−i x H . (3.64)

The state after the evolution, |ψ(x)〉 = U (x)|ψ0〉, depends on x in a way that is
defined by the Hamiltonian H . In quantum machine learning, this kind of encoding
is particularly popular when encoding classical trainable parameters into a quantum
circuit. Themost common choice are the Pauli rotation gates fromEqs. (3.45)–(3.47),
inwhich H = 1

2σa and a ∈ {x, y, z}. Successive gates or evolutions of the formU (x)
can be used to encode a real-valued vector x ∈ RN .

Example 3.6 (Time-evolution encoding) Consider the second entry from the vectors
used in the previous examples, −0.438. Time-evolution encoding with an RY gate
and initial state |0〉 produces the state

|ψ(−0.438)〉 = cos(−0.438/2)|0〉 + sin(−0.438/2)|1〉 (3.65)

≈ 0.976|0〉 − 0.217|1〉. (3.66)

The cosine/sine structure of the amplitudes is typical for time-evolution encoding
and leads to a Fourier-like dependency of the amplitudes on the inputs, which we
will explore further in Sect. 5.2.

3.4 Strategies of Input Encoding 117

Fig. 3.13 Data points in the one-dimensional interval [−1, 1] (left) canbeprojectedonto normalised
vectors by adding a constant value in a second dimension x2 and renormalising the overall vector

While amplitude encoding uses much less qubits than basis encoding, we will
see that the routines preparing the dense amplitude vectors are very costly (in some
sense trading space for time). Amplitude encoding is therefore also not very suitable
for near-term devices. In contrast, the next embedding strategy is widely used in
algorithms for small-scale quantum computers.

3.4.3 Time-Evolution Encoding

Time-evolution encoding prescribes to associate a scalar value x ∈ R with the time
t in the unitary evolution by a Hamiltonian H in Eq. (3.24),

U (x) = e−i x H . (3.64)

The state after the evolution, |ψ(x)〉 = U (x)|ψ0〉, depends on x in a way that is
defined by the Hamiltonian H . In quantum machine learning, this kind of encoding
is particularly popular when encoding classical trainable parameters into a quantum
circuit. Themost common choice are the Pauli rotation gates fromEqs. (3.45)–(3.47),
inwhich H = 1

2σa and a ∈ {x, y, z}. Successive gates or evolutions of the formU (x)
can be used to encode a real-valued vector x ∈ RN .

Example 3.6 (Time-evolution encoding) Consider the second entry from the vectors
used in the previous examples, −0.438. Time-evolution encoding with an RY gate
and initial state |0〉 produces the state

|ψ(−0.438)〉 = cos(−0.438/2)|0〉 + sin(−0.438/2)|1〉 (3.65)

≈ 0.976|0〉 − 0.217|1〉. (3.66)

The cosine/sine structure of the amplitudes is typical for time-evolution encoding
and leads to a Fourier-like dependency of the amplitudes on the inputs, which we
will explore further in Sect. 5.2.

data

3.4 Strategies of Input Encoding 117

Fig. 3.13 Data points in the one-dimensional interval [−1, 1] (left) canbeprojectedonto normalised
vectors by adding a constant value in a second dimension x2 and renormalising the overall vector

While amplitude encoding uses much less qubits than basis encoding, we will
see that the routines preparing the dense amplitude vectors are very costly (in some
sense trading space for time). Amplitude encoding is therefore also not very suitable
for near-term devices. In contrast, the next embedding strategy is widely used in
algorithms for small-scale quantum computers.

3.4.3 Time-Evolution Encoding

Time-evolution encoding prescribes to associate a scalar value x ∈ R with the time
t in the unitary evolution by a Hamiltonian H in Eq. (3.24),

U (x) = e−i x H . (3.64)

The state after the evolution, |ψ(x)〉 = U (x)|ψ0〉, depends on x in a way that is
defined by the Hamiltonian H . In quantum machine learning, this kind of encoding
is particularly popular when encoding classical trainable parameters into a quantum
circuit. Themost common choice are the Pauli rotation gates fromEqs. (3.45)–(3.47),
inwhich H = 1

2σa and a ∈ {x, y, z}. Successive gates or evolutions of the formU (x)
can be used to encode a real-valued vector x ∈ RN .

Example 3.6 (Time-evolution encoding) Consider the second entry from the vectors
used in the previous examples, −0.438. Time-evolution encoding with an RY gate
and initial state |0〉 produces the state

|ψ(−0.438)〉 = cos(−0.438/2)|0〉 + sin(−0.438/2)|1〉 (3.65)

≈ 0.976|0〉 − 0.217|1〉. (3.66)

The cosine/sine structure of the amplitudes is typical for time-evolution encoding
and leads to a Fourier-like dependency of the amplitudes on the inputs, which we
will explore further in Sect. 5.2.

Encoded with RY gate applied to initial state |0>

3.4 Strategies of Input Encoding 117

Fig. 3.13 Data points in the one-dimensional interval [−1, 1] (left) canbeprojectedonto normalised
vectors by adding a constant value in a second dimension x2 and renormalising the overall vector

While amplitude encoding uses much less qubits than basis encoding, we will
see that the routines preparing the dense amplitude vectors are very costly (in some
sense trading space for time). Amplitude encoding is therefore also not very suitable
for near-term devices. In contrast, the next embedding strategy is widely used in
algorithms for small-scale quantum computers.

3.4.3 Time-Evolution Encoding

Time-evolution encoding prescribes to associate a scalar value x ∈ R with the time
t in the unitary evolution by a Hamiltonian H in Eq. (3.24),

U (x) = e−i x H . (3.64)

The state after the evolution, |ψ(x)〉 = U (x)|ψ0〉, depends on x in a way that is
defined by the Hamiltonian H . In quantum machine learning, this kind of encoding
is particularly popular when encoding classical trainable parameters into a quantum
circuit. Themost common choice are the Pauli rotation gates fromEqs. (3.45)–(3.47),
inwhich H = 1

2σa and a ∈ {x, y, z}. Successive gates or evolutions of the formU (x)
can be used to encode a real-valued vector x ∈ RN .

Example 3.6 (Time-evolution encoding) Consider the second entry from the vectors
used in the previous examples, −0.438. Time-evolution encoding with an RY gate
and initial state |0〉 produces the state

|ψ(−0.438)〉 = cos(−0.438/2)|0〉 + sin(−0.438/2)|1〉 (3.65)

≈ 0.976|0〉 − 0.217|1〉. (3.66)

The cosine/sine structure of the amplitudes is typical for time-evolution encoding
and leads to a Fourier-like dependency of the amplitudes on the inputs, which we
will explore further in Sect. 5.2.

sine/cosine structure typical for Time-Evolution Encoding -> leads to
Fourier-type dependence of amplitudes on the inputs

MITP Summer School Lecture Michael Spannowsky July 2023 57

Angle/Rotation encoding

When used on an !-qubit circuit, this feature map of angle encoding can take

up to ! numerical inputs "1, ... , "!. The action of its circuit consists in the
application of a rotation gate on each qubit # parametrised by the value "# . In
this feature map, we are using the "# values as angles in the rotations, hence
the name of the encoding.

Example

x normalised [0,2pi)
as RZ|0> doesnt do anything

MITP Summer School Lecture Michael Spannowsky July 2023 58

4.5 Data Encoding as a Feature Map 173

4.5.2 Examples of Data-Encoding Feature Maps

Let us revisit a few examples of encoding methods introduced so far to understand
what effect they have on the original data features they encode. Figure4.10 tries to
visualise this with a simplified example of four data points.

Amplitude encoding implements a trivial feature map: if the input is preprocessed
to suit an amplitude vector, the φ1 data-encoding feature map is the identity

φ1(x) = x. (4.81)

As a result, this feature map is distance-preserving. Interesting enough, the quantum
circuit to implement this quantum feature map is in general highly entangling and
non-trivial. However, quantum circuits that use amplitude encoding cannot process
the data in a strongly nonlinear fashion.Amplitude encoding is, therefore, particularly
useful when the linear power of quantum computers is to be harnessed (as we will
see in Sect. 7.1).

Basis encoding implements a feature map that is nonlinear. It maps inputs b that
represent some vector x as a binary string to standard basis states

φ1(b) =





0
...

1b
...

0




. (4.82)

In the real subspace of the quantum Hilbert space, these points lie on the corners of
a hypercube. Importantly, the data-embedding states are always orthogonal to each
other. This means that basis encoding always linearly separates data classes. How-
ever, any new data point not seen in a learning algorithm will likewise be embedded
into a state that is orthogonal to all data points from the training set, and we need
more powerful tools than an inner product of feature states to build learners that
generalise well (see also Sect. 9.1).

Finally, we can look at rotation encoding, which was introduced as a kind of
time-evolution encoding with Pauli rotation gates. It maps input features to products
of sums of sine and cosine functions. In the simple example of one Pauli X rotation
per qubit and feature, the map transforms an N -dimensional real-valued input vector
x ∈ RN as

φ1(x) =





sin(x1) sin(x2) . . . sin(xN)
sin(x1) sin(x2) . . . cos(xN)

...

cos(x1) cos(x2) . . . sin(xN)
cos(x1) cos(x2) . . . cos(xN)




. (4.83)

4.5 Data Encoding as a Feature Map 173

4.5.2 Examples of Data-Encoding Feature Maps

Let us revisit a few examples of encoding methods introduced so far to understand
what effect they have on the original data features they encode. Figure4.10 tries to
visualise this with a simplified example of four data points.

Amplitude encoding implements a trivial feature map: if the input is preprocessed
to suit an amplitude vector, the φ1 data-encoding feature map is the identity

φ1(x) = x. (4.81)

As a result, this feature map is distance-preserving. Interesting enough, the quantum
circuit to implement this quantum feature map is in general highly entangling and
non-trivial. However, quantum circuits that use amplitude encoding cannot process
the data in a strongly nonlinear fashion.Amplitude encoding is, therefore, particularly
useful when the linear power of quantum computers is to be harnessed (as we will
see in Sect. 7.1).

Basis encoding implements a feature map that is nonlinear. It maps inputs b that
represent some vector x as a binary string to standard basis states

φ1(b) =





0
...

1b
...

0




. (4.82)

In the real subspace of the quantum Hilbert space, these points lie on the corners of
a hypercube. Importantly, the data-embedding states are always orthogonal to each
other. This means that basis encoding always linearly separates data classes. How-
ever, any new data point not seen in a learning algorithm will likewise be embedded
into a state that is orthogonal to all data points from the training set, and we need
more powerful tools than an inner product of feature states to build learners that
generalise well (see also Sect. 9.1).

Finally, we can look at rotation encoding, which was introduced as a kind of
time-evolution encoding with Pauli rotation gates. It maps input features to products
of sums of sine and cosine functions. In the simple example of one Pauli X rotation
per qubit and feature, the map transforms an N -dimensional real-valued input vector
x ∈ RN as

φ1(x) =





sin(x1) sin(x2) . . . sin(xN)
sin(x1) sin(x2) . . . cos(xN)

...

cos(x1) cos(x2) . . . sin(xN)
cos(x1) cos(x2) . . . cos(xN)




. (4.83)

In example of simple Pauli-X rotation, transforms real-valued N-
dimensional input vector as

encoding can be repeated
multiple times, e.g.

results in non-linearities and higher expressivity of model

174 4 Representing Data on a Quantum Computer

Fig. 4.10 Bloch representation of feature states for data encoded via the three different encoding
methods mentioned in this section. In basis encoding, we used a 3-bit representation of the data
features, while amplitude encoding normalised the input vectors before embedding them

Applications of such a feature map can be surprisingly powerful [35].
A trick that is often used in practice is to repeat an encoding circuit. There are two

different types of repetitions, in parallel and in sequence. Repeating an encoding in
parallel [22, 36] means to prepare k sets or registers of qubits in the feature state.
The resulting state is (2n)k-dimensional and given by

φ1(x) ⊗ · · · ⊗ φ1(x) =





(φ1)1(x)(φ1)1(x) . . . (φ1)1(x)
(φ1)1(x)(φ1)1(x) . . . (φ1)2(x)

...

(φ1)2n (x)(φ1)2n (x) . . . (φ1)2n (x)




. (4.84)

It contains kth-order products of the non-repeated features. For example, parallel
repetition of amplitude encoding prepares a feature state with amplitudes that are
products of N of the original features

φ1(x) ⊗ · · · ⊗ φ1(x) =





x1x1 . . . x1
x1x1 . . . x2

...

xN xN . . . xN




. (4.85)

Repeating an encoding in sequence [37] means to apply the circuit L times to the
same set of qubits. If no operations between the encoding circuits are applied, the
overall embedding circuit becomes

U (x) . . .U (x) = U (x)L . (4.86)

(need N qubits)

repeated encoding used to show universal approximation theorem
for variational quantum circuits

MITP Summer School Lecture Michael Spannowsky July 2023 59

MITP Summer School Lecture Michael Spannowsky July 2023 60

Hamiltonian Encoding:

 For some applications, it can be useful to encode matrices into the Hamiltonian of
a time evolution. The basic idea is to associate a Hamiltonian H with a square
matrix A. In case A is not Hermitian, one can sometimes use the trick of encoding

118 3 Quantum Computing

3.4.4 Hamiltonian Encoding

For some applications, it can be useful to encode matrices into the Hamiltonian of a
time evolution, as used in the famous HHL algorithm for matrix inversion [29]. The
basic idea is to associate a Hamiltonian H with a square matrix A. In case A is not
Hermitian, one can sometimes use the trick of encoding

HA =
(
0 A
A† 0

)
, (3.67)

instead, and to perform the computations in two subspaces of the Hilbert space.
Hamiltonian encoding allows us to extract and process the eigenvalues of A, for
example, to multiply A or A−1 with an amplitude-encoded vector.

Example 3.7 (Hamiltonian encoding) The matrix

A =
(
0.073 −0.438
0.730 0.000

)
(3.68)

from Example 3.5 can also define the dynamics of a quantum system. Since A is not
Hermitian, we define the Hamiltonian

HA =





0 0 0.073 −0.438
0 0 0.730 0.000

0.073 0.730 0 0
−0.438 0.000 0 0



 . (3.69)

The effect of applying the Hamiltonian via e−i t H to an amplitude vector α can
be calculated from the corresponding eigenvalue equations. The eigenvectors and
eigenvalues of H are

v1 =
(−0.108 −0.699 0.704 −0.065

)
, λ1 = −0.736

v2 =
(
0.699 −0.108 0.065 0.704

)
, λ2 = −0.435

v3 =
(
0.699 −0.108 −0.065 −0.704

)
, λ3 = 0.435

v4 =
(
0.108 0.699 0.704 −0.064

)
, λ4 = 0.736.

These eigenvectors form a basis and hence α can be decomposed in this basis as

α = γ1v1 + γ2v2 + γ3v3 + γ4v4, (3.70)

with γi = α†vi for i = 1, . . . , 4. Applying the Hamiltonian therefore leads to

α′ = e−i HAtα = e−iλ1tγ1v1 + e−iλ2tγ2v2 + e−iλ3tγ3v3 + e−iλ4tγ4v4, (3.71)

 instead, and to perform the computations in two subspaces of the Hilbert space.
Hamiltonian encoding allows us to extract and process the eigenvalues of A, for
example, to multiply A or A−1 with an amplitude-encoded vector.

Amplitude encoding:
Represent classical data as amplitudes of a quantum state

26 CHAPTER 3. BASICS OF QUANTUM COMPUTING

Then the qubits can be prepared in a superposition of different data that can be
processed in parallel by linearity. In particular one can consider the superposition
of all the possible binary strings of length n:

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉. (3.1.2)

The initialization of the complete superposition (3.1.2) is the idea behind the quan-
tum advantage of the celebrated Grover’s search for instance.

The amplitude encoding is the representation of classical data into the amplitudes
of a quantum state. A complex vector x ∈ Cd with unit norm can be represented
by the amplitudes of a quantum state |ψx〉 with respect to a fixed basis {|φi〉}i of
the d-dimensional Hilbert space H:

|ψx〉 =
d∑

i=1

xi|φi〉 ∈ H. (3.1.3)

If the classical information is given by a d×d complex matrix A satisfying
∑

ij |aij|2 =
1, it can be encoded in the state:

|ψA〉 =
d∑

i,j=1

aij|φi〉 ⊗ |φj〉 ∈ H⊗ H. (3.1.4)

The main advantage of the amplitude encoding is the space efficiency with respect
to the basis encoding. Consider a system made by n qubits, within the basis encod-
ing we can convey only n classical bits, within the amplitude encoding we can store
complex vectors of dimension 2n. The limitations of amplitude encoding are the
normalization requirement on the classical data and the fact that quantum ampli-
tudes xi cannot be directly observed and only the real numbers |xi|2 can be retrieved
from the state |ψx〉 where the complex vector x is stored. Therefore, the amplitude
encoding requires normalized data vectors or norms that are given separately.

A third kind of quantum encoding is related to probability distributions. Given
a probability distribution p on the finite set X, it can be encoded in the state:

|ψp〉 =
∑

x∈X

√
p(x)|x〉 ∈ H, (3.1.5)

where {|x〉}x∈X is an orthonormal basis of the |X|-dimensional Hilbert space H. Re-
peated measurements on the state |ψp〉 with respect to the computational basis allow
to sample the distribution p. Some authors call this procedure qsample encoding.

or for composite systems with

26 CHAPTER 3. BASICS OF QUANTUM COMPUTING

Then the qubits can be prepared in a superposition of different data that can be
processed in parallel by linearity. In particular one can consider the superposition
of all the possible binary strings of length n:

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉. (3.1.2)

The initialization of the complete superposition (3.1.2) is the idea behind the quan-
tum advantage of the celebrated Grover’s search for instance.

The amplitude encoding is the representation of classical data into the amplitudes
of a quantum state. A complex vector x ∈ Cd with unit norm can be represented
by the amplitudes of a quantum state |ψx〉 with respect to a fixed basis {|φi〉}i of
the d-dimensional Hilbert space H:

|ψx〉 =
d∑

i=1

xi|φi〉 ∈ H. (3.1.3)

If the classical information is given by a d×d complex matrix A satisfying
∑

ij |aij|2 =
1, it can be encoded in the state:

|ψA〉 =
d∑

i,j=1

aij|φi〉 ⊗ |φj〉 ∈ H⊗ H. (3.1.4)

The main advantage of the amplitude encoding is the space efficiency with respect
to the basis encoding. Consider a system made by n qubits, within the basis encod-
ing we can convey only n classical bits, within the amplitude encoding we can store
complex vectors of dimension 2n. The limitations of amplitude encoding are the
normalization requirement on the classical data and the fact that quantum ampli-
tudes xi cannot be directly observed and only the real numbers |xi|2 can be retrieved
from the state |ψx〉 where the complex vector x is stored. Therefore, the amplitude
encoding requires normalized data vectors or norms that are given separately.

A third kind of quantum encoding is related to probability distributions. Given
a probability distribution p on the finite set X, it can be encoded in the state:

|ψp〉 =
∑

x∈X

√
p(x)|x〉 ∈ H, (3.1.5)

where {|x〉}x∈X is an orthonormal basis of the |X|-dimensional Hilbert space H. Re-
peated measurements on the state |ψp〉 with respect to the computational basis allow
to sample the distribution p. Some authors call this procedure qsample encoding.

26 CHAPTER 3. BASICS OF QUANTUM COMPUTING

Then the qubits can be prepared in a superposition of different data that can be
processed in parallel by linearity. In particular one can consider the superposition
of all the possible binary strings of length n:

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉. (3.1.2)

The initialization of the complete superposition (3.1.2) is the idea behind the quan-
tum advantage of the celebrated Grover’s search for instance.

The amplitude encoding is the representation of classical data into the amplitudes
of a quantum state. A complex vector x ∈ Cd with unit norm can be represented
by the amplitudes of a quantum state |ψx〉 with respect to a fixed basis {|φi〉}i of
the d-dimensional Hilbert space H:

|ψx〉 =
d∑

i=1

xi|φi〉 ∈ H. (3.1.3)

If the classical information is given by a d×d complex matrix A satisfying
∑

ij |aij|2 =
1, it can be encoded in the state:

|ψA〉 =
d∑

i,j=1

aij|φi〉 ⊗ |φj〉 ∈ H⊗ H. (3.1.4)

The main advantage of the amplitude encoding is the space efficiency with respect
to the basis encoding. Consider a system made by n qubits, within the basis encod-
ing we can convey only n classical bits, within the amplitude encoding we can store
complex vectors of dimension 2n. The limitations of amplitude encoding are the
normalization requirement on the classical data and the fact that quantum ampli-
tudes xi cannot be directly observed and only the real numbers |xi|2 can be retrieved
from the state |ψx〉 where the complex vector x is stored. Therefore, the amplitude
encoding requires normalized data vectors or norms that are given separately.

A third kind of quantum encoding is related to probability distributions. Given
a probability distribution p on the finite set X, it can be encoded in the state:

|ψp〉 =
∑

x∈X

√
p(x)|x〉 ∈ H, (3.1.5)

where {|x〉}x∈X is an orthonormal basis of the |X|-dimensional Hilbert space H. Re-
peated measurements on the state |ψp〉 with respect to the computational basis allow
to sample the distribution p. Some authors call this procedure qsample encoding.

26 CHAPTER 3. BASICS OF QUANTUM COMPUTING

Then the qubits can be prepared in a superposition of different data that can be
processed in parallel by linearity. In particular one can consider the superposition
of all the possible binary strings of length n:

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉. (3.1.2)

The initialization of the complete superposition (3.1.2) is the idea behind the quan-
tum advantage of the celebrated Grover’s search for instance.

The amplitude encoding is the representation of classical data into the amplitudes
of a quantum state. A complex vector x ∈ Cd with unit norm can be represented
by the amplitudes of a quantum state |ψx〉 with respect to a fixed basis {|φi〉}i of
the d-dimensional Hilbert space H:

|ψx〉 =
d∑

i=1

xi|φi〉 ∈ H. (3.1.3)

If the classical information is given by a d×d complex matrix A satisfying
∑

ij |aij|2 =
1, it can be encoded in the state:

|ψA〉 =
d∑

i,j=1

aij|φi〉 ⊗ |φj〉 ∈ H⊗ H. (3.1.4)

The main advantage of the amplitude encoding is the space efficiency with respect
to the basis encoding. Consider a system made by n qubits, within the basis encod-
ing we can convey only n classical bits, within the amplitude encoding we can store
complex vectors of dimension 2n. The limitations of amplitude encoding are the
normalization requirement on the classical data and the fact that quantum ampli-
tudes xi cannot be directly observed and only the real numbers |xi|2 can be retrieved
from the state |ψx〉 where the complex vector x is stored. Therefore, the amplitude
encoding requires normalized data vectors or norms that are given separately.

A third kind of quantum encoding is related to probability distributions. Given
a probability distribution p on the finite set X, it can be encoded in the state:

|ψp〉 =
∑

x∈X

√
p(x)|x〉 ∈ H, (3.1.5)

where {|x〉}x∈X is an orthonormal basis of the |X|-dimensional Hilbert space H. Re-
peated measurements on the state |ψp〉 with respect to the computational basis allow
to sample the distribution p. Some authors call this procedure qsample encoding.

116 3 Quantum Computing

by enlarging the Hilbert space accordingly. This turns out to be rather useful for
quantum algorithms, since the “index registers” |i〉, | j〉 refer to the i th row and the
j th column, respectively. By fixing either of the registers, we can therefore address
a row or column of the matrix. For Hermitian positive trace-1 matrices A ∈ C2n×2n ,
another option arises: One can associate its entries with the entries of a densitymatrix
ρA, so that ai j ↔ ρi j .

Encoding information into the probabilistic description of a quantum system nec-
essarily poses severe limitations on which mathematical operations can be executed
to transform the input. This becomes particularly important whenwewant to perform
a nonlinear map on the amplitudes, which is impossible to implement in a unitary
fashion (at least without tricks that use measurements or marginalisation). This has
been extensively debated under the keyword of “nonlinear quantum theories” [25,
26], and it has been demonstrated that assumptions of nonlinear operators would
immediately negate fundamental principles of nature that are widely believed to be
true [27, 28].

Another obvious restriction of thismethod is that only normalised classical vectors
can be processed. Effectively this means that quantum states represent the data in one
less dimension orwith one less degree of freedom: a classical two-dimensional vector
(x1, x2)T can only be associated with an amplitude vector (α0,α1)

T of a qubit which
fulfils |α0|2 + |α1|2 = 1. This means that it lies on a unit circle, a one-dimensional
manifold in a two-dimensional space. Three-dimensional vectors encoded in three
amplitudes of a 2-qubit quantum system (where the last of the four amplitudes is
redundant and set to zero) will reduce the three-dimensional space to the surface of
a sphere, and so on. A remedy can be to increase the space of the classical vector
by one element set to 1 and, to normalise the resulting vector (see Fig. 3.13). After
normalisation, this new element will carry full information about the normalisation
constant, and hence about the original length of the vector.

Example 3.5 (Amplitude encoding) To encode the same vector from Example 3.4,
x = (0.1,−0.6, 1.0), in amplitude encoding, we have to first normalise it to unit
length (rounding to three digits here) and pad it with zeros to a dimension of integer
logarithm,

x = (0.073,−0.438, 0.730, 0.000). (3.61)

Now it can be represented by a quantum state of 2 qubits:

|ψx〉 = 0.073|00〉 − 0.438|01〉 + 0.730|10〉 + 0|11〉. (3.62)

This state would at the same time encode the matrix

A =
(
0.073 −0.438
0.730 0.000

)
, (3.63)

if we interpret the first qubit as an index for the row and the second qubit as an index
for the column.

116 3 Quantum Computing

by enlarging the Hilbert space accordingly. This turns out to be rather useful for
quantum algorithms, since the “index registers” |i〉, | j〉 refer to the i th row and the
j th column, respectively. By fixing either of the registers, we can therefore address
a row or column of the matrix. For Hermitian positive trace-1 matrices A ∈ C2n×2n ,
another option arises: One can associate its entries with the entries of a densitymatrix
ρA, so that ai j ↔ ρi j .

Encoding information into the probabilistic description of a quantum system nec-
essarily poses severe limitations on which mathematical operations can be executed
to transform the input. This becomes particularly important whenwewant to perform
a nonlinear map on the amplitudes, which is impossible to implement in a unitary
fashion (at least without tricks that use measurements or marginalisation). This has
been extensively debated under the keyword of “nonlinear quantum theories” [25,
26], and it has been demonstrated that assumptions of nonlinear operators would
immediately negate fundamental principles of nature that are widely believed to be
true [27, 28].

Another obvious restriction of thismethod is that only normalised classical vectors
can be processed. Effectively this means that quantum states represent the data in one
less dimension orwith one less degree of freedom: a classical two-dimensional vector
(x1, x2)T can only be associated with an amplitude vector (α0,α1)

T of a qubit which
fulfils |α0|2 + |α1|2 = 1. This means that it lies on a unit circle, a one-dimensional
manifold in a two-dimensional space. Three-dimensional vectors encoded in three
amplitudes of a 2-qubit quantum system (where the last of the four amplitudes is
redundant and set to zero) will reduce the three-dimensional space to the surface of
a sphere, and so on. A remedy can be to increase the space of the classical vector
by one element set to 1 and, to normalise the resulting vector (see Fig. 3.13). After
normalisation, this new element will carry full information about the normalisation
constant, and hence about the original length of the vector.

Example 3.5 (Amplitude encoding) To encode the same vector from Example 3.4,
x = (0.1,−0.6, 1.0), in amplitude encoding, we have to first normalise it to unit
length (rounding to three digits here) and pad it with zeros to a dimension of integer
logarithm,

x = (0.073,−0.438, 0.730, 0.000). (3.61)

Now it can be represented by a quantum state of 2 qubits:

|ψx〉 = 0.073|00〉 − 0.438|01〉 + 0.730|10〉 + 0|11〉. (3.62)

This state would at the same time encode the matrix

A =
(
0.073 −0.438
0.730 0.000

)
, (3.63)

if we interpret the first qubit as an index for the row and the second qubit as an index
for the column.

Example:

data vector normalised and padded data vector

116 3 Quantum Computing

by enlarging the Hilbert space accordingly. This turns out to be rather useful for
quantum algorithms, since the “index registers” |i〉, | j〉 refer to the i th row and the
j th column, respectively. By fixing either of the registers, we can therefore address
a row or column of the matrix. For Hermitian positive trace-1 matrices A ∈ C2n×2n ,
another option arises: One can associate its entries with the entries of a densitymatrix
ρA, so that ai j ↔ ρi j .

Encoding information into the probabilistic description of a quantum system nec-
essarily poses severe limitations on which mathematical operations can be executed
to transform the input. This becomes particularly important whenwewant to perform
a nonlinear map on the amplitudes, which is impossible to implement in a unitary
fashion (at least without tricks that use measurements or marginalisation). This has
been extensively debated under the keyword of “nonlinear quantum theories” [25,
26], and it has been demonstrated that assumptions of nonlinear operators would
immediately negate fundamental principles of nature that are widely believed to be
true [27, 28].

Another obvious restriction of thismethod is that only normalised classical vectors
can be processed. Effectively this means that quantum states represent the data in one
less dimension orwith one less degree of freedom: a classical two-dimensional vector
(x1, x2)T can only be associated with an amplitude vector (α0,α1)

T of a qubit which
fulfils |α0|2 + |α1|2 = 1. This means that it lies on a unit circle, a one-dimensional
manifold in a two-dimensional space. Three-dimensional vectors encoded in three
amplitudes of a 2-qubit quantum system (where the last of the four amplitudes is
redundant and set to zero) will reduce the three-dimensional space to the surface of
a sphere, and so on. A remedy can be to increase the space of the classical vector
by one element set to 1 and, to normalise the resulting vector (see Fig. 3.13). After
normalisation, this new element will carry full information about the normalisation
constant, and hence about the original length of the vector.

Example 3.5 (Amplitude encoding) To encode the same vector from Example 3.4,
x = (0.1,−0.6, 1.0), in amplitude encoding, we have to first normalise it to unit
length (rounding to three digits here) and pad it with zeros to a dimension of integer
logarithm,

x = (0.073,−0.438, 0.730, 0.000). (3.61)

Now it can be represented by a quantum state of 2 qubits:

|ψx〉 = 0.073|00〉 − 0.438|01〉 + 0.730|10〉 + 0|11〉. (3.62)

This state would at the same time encode the matrix

A =
(
0.073 −0.438
0.730 0.000

)
, (3.63)

if we interpret the first qubit as an index for the row and the second qubit as an index
for the column.

quantum state

MITP Summer School Lecture Michael Spannowsky July 2023 61

Qsample encoding:

26 CHAPTER 3. BASICS OF QUANTUM COMPUTING

Then the qubits can be prepared in a superposition of different data that can be
processed in parallel by linearity. In particular one can consider the superposition
of all the possible binary strings of length n:

|ψ〉 = 1√
2n

2n−1∑

x=0

|x〉. (3.1.2)

The initialization of the complete superposition (3.1.2) is the idea behind the quan-
tum advantage of the celebrated Grover’s search for instance.

The amplitude encoding is the representation of classical data into the amplitudes
of a quantum state. A complex vector x ∈ Cd with unit norm can be represented
by the amplitudes of a quantum state |ψx〉 with respect to a fixed basis {|φi〉}i of
the d-dimensional Hilbert space H:

|ψx〉 =
d∑

i=1

xi|φi〉 ∈ H. (3.1.3)

If the classical information is given by a d×d complex matrix A satisfying
∑

ij |aij|2 =
1, it can be encoded in the state:

|ψA〉 =
d∑

i,j=1

aij|φi〉 ⊗ |φj〉 ∈ H⊗ H. (3.1.4)

The main advantage of the amplitude encoding is the space efficiency with respect
to the basis encoding. Consider a system made by n qubits, within the basis encod-
ing we can convey only n classical bits, within the amplitude encoding we can store
complex vectors of dimension 2n. The limitations of amplitude encoding are the
normalization requirement on the classical data and the fact that quantum ampli-
tudes xi cannot be directly observed and only the real numbers |xi|2 can be retrieved
from the state |ψx〉 where the complex vector x is stored. Therefore, the amplitude
encoding requires normalized data vectors or norms that are given separately.

A third kind of quantum encoding is related to probability distributions. Given
a probability distribution p on the finite set X, it can be encoded in the state:

|ψp〉 =
∑

x∈X

√
p(x)|x〉 ∈ H, (3.1.5)

where {|x〉}x∈X is an orthonormal basis of the |X|-dimensional Hilbert space H. Re-
peated measurements on the state |ψp〉 with respect to the computational basis allow
to sample the distribution p. Some authors call this procedure qsample encoding.

Given a probability distribution p on the finite set X, it can be encoded in the
state:

 Repeated measurements on the state |ψp⟩ with respect to the computational
basis allow to sample the distribution p.

MITP Summer School Lecture Michael Spannowsky July 2023 62

This could also be encoded as a matrix A

116 3 Quantum Computing

by enlarging the Hilbert space accordingly. This turns out to be rather useful for
quantum algorithms, since the “index registers” |i〉, | j〉 refer to the i th row and the
j th column, respectively. By fixing either of the registers, we can therefore address
a row or column of the matrix. For Hermitian positive trace-1 matrices A ∈ C2n×2n ,
another option arises: One can associate its entries with the entries of a densitymatrix
ρA, so that ai j ↔ ρi j .

Encoding information into the probabilistic description of a quantum system nec-
essarily poses severe limitations on which mathematical operations can be executed
to transform the input. This becomes particularly important whenwewant to perform
a nonlinear map on the amplitudes, which is impossible to implement in a unitary
fashion (at least without tricks that use measurements or marginalisation). This has
been extensively debated under the keyword of “nonlinear quantum theories” [25,
26], and it has been demonstrated that assumptions of nonlinear operators would
immediately negate fundamental principles of nature that are widely believed to be
true [27, 28].

Another obvious restriction of thismethod is that only normalised classical vectors
can be processed. Effectively this means that quantum states represent the data in one
less dimension orwith one less degree of freedom: a classical two-dimensional vector
(x1, x2)T can only be associated with an amplitude vector (α0,α1)

T of a qubit which
fulfils |α0|2 + |α1|2 = 1. This means that it lies on a unit circle, a one-dimensional
manifold in a two-dimensional space. Three-dimensional vectors encoded in three
amplitudes of a 2-qubit quantum system (where the last of the four amplitudes is
redundant and set to zero) will reduce the three-dimensional space to the surface of
a sphere, and so on. A remedy can be to increase the space of the classical vector
by one element set to 1 and, to normalise the resulting vector (see Fig. 3.13). After
normalisation, this new element will carry full information about the normalisation
constant, and hence about the original length of the vector.

Example 3.5 (Amplitude encoding) To encode the same vector from Example 3.4,
x = (0.1,−0.6, 1.0), in amplitude encoding, we have to first normalise it to unit
length (rounding to three digits here) and pad it with zeros to a dimension of integer
logarithm,

x = (0.073,−0.438, 0.730, 0.000). (3.61)

Now it can be represented by a quantum state of 2 qubits:

|ψx〉 = 0.073|00〉 − 0.438|01〉 + 0.730|10〉 + 0|11〉. (3.62)

This state would at the same time encode the matrix

A =
(
0.073 −0.438
0.730 0.000

)
, (3.63)

if we interpret the first qubit as an index for the row and the second qubit as an index
for the column.
Amplitude encoding uses much less qubits than basis encoding, however,
routines to prepare amplitude vectors can be costly

In a sense a hybrid case of basis and amplitude encoding since the information
is represented by amplitudes, but the features are encoded in the qubits.

174 4 Representing Data on a Quantum Computer

Fig. 4.10 Bloch representation of feature states for data encoded via the three different encoding
methods mentioned in this section. In basis encoding, we used a 3-bit representation of the data
features, while amplitude encoding normalised the input vectors before embedding them

Applications of such a feature map can be surprisingly powerful [35].
A trick that is often used in practice is to repeat an encoding circuit. There are two

different types of repetitions, in parallel and in sequence. Repeating an encoding in
parallel [22, 36] means to prepare k sets or registers of qubits in the feature state.
The resulting state is (2n)k-dimensional and given by

φ1(x) ⊗ · · · ⊗ φ1(x) =





(φ1)1(x)(φ1)1(x) . . . (φ1)1(x)
(φ1)1(x)(φ1)1(x) . . . (φ1)2(x)

...

(φ1)2n (x)(φ1)2n (x) . . . (φ1)2n (x)




. (4.84)

It contains kth-order products of the non-repeated features. For example, parallel
repetition of amplitude encoding prepares a feature state with amplitudes that are
products of N of the original features

φ1(x) ⊗ · · · ⊗ φ1(x) =





x1x1 . . . x1
x1x1 . . . x2

...

xN xN . . . xN




. (4.85)

Repeating an encoding in sequence [37] means to apply the circuit L times to the
same set of qubits. If no operations between the encoding circuits are applied, the
overall embedding circuit becomes

U (x) . . .U (x) = U (x)L . (4.86)

 Michael Spannowsky July 2023 63

visualisation of data encoding

see Schuld & Petruccione

Encoding can be important for runtime of algo - crucial aspect of QC
N= # features tau=#bits in binary rep

Quantum Circuits

MITP Summer School Lecture Michael Spannowsky July 2023 64

Need transition form classical to quantum:

bits qubits

gates quantum

gates

algorithms

Classical Quantum

quantum algorithms

MITP Summer School Lecture Michael Spannowsky July 2023 65

Single-Qubit Quantum Gates

Illustrative to write single-qubit operation as matrices

X-Gate:

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

Quantum equivalent to classical NOT gate

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

Represented by matrix

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

concretely

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

It is unitary

Flips |0> to |1> and vice versa (hopping)

MITP Summer School Lecture Michael Spannowsky July 2023 66

Z-Gate:

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

Represented by matrix

Action

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

-

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

Note, the X, Y and Z gates are represented by the Pauli matrices

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

Eigenvalues +- 1

MITP Summer School Lecture Michael Spannowsky July 2023 67

18 CHAPTER 2. BASICS OF QUANTUM MECHANICS

• Compatible and incompatible observables : A and B are compatible when they
commute:

[A,B] := AB − BA = 0, (2.3.16)

in this case: PA
a P

B
b = PB

b PA
a ∀a ∈ σ(A) and ∀b ∈ σ(B), so the following

probability is well-defined:

Pψ(A = a ∧B = b) = 〈ψ|PA
a P

B
b ψ〉 = 〈ψ|PB

b PA
a ψ〉. (2.3.17)

Pψ(A = a ∧ B = b) is the joint probability of measuring the value a of the ob-
servable A and the value b of the observable B when the system is in the state
|ψ〉. Conversely, if [A,B] '= 0 then we have not a well-defined joint probability
Pψ(A = a ∧ B = b), this fact is consistent with the phenomenological evidence
that A and B cannot be simultaneously measured. Moreover, let us remark that
in the presented mathematical formulation of quantum mechanics the measurement
process of the observable A is completely described by the PVM {Pa}a∈σ(A) which
determines the probability distribution of the outcomes and the post-measurement
state.

Example 2.3.2 Let us reconsider the example 2.1.1. An electron admits a triple
of observables called components of spin (Sx, Sy, Sz). If an electron is described in
the frame of reference where it is at rest3 then the associated Hilbert space is H (C2.
The spin-operators are defined by:

Sx,y,z :=
!
2
σx,y,z , (2.3.18)

where σx,y,z are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.3.19)

If we measure the ẑ-component of the spin, the two possible outcomes are the eigen-
values of Sz: +

!
2 and −!

2 .
Since:

[σi, σj] = 2iεijkσk, (2.3.20)

3In another frame of reference we must consider the kinetic degrees of freedom to specify the
state of the electron, in that case we need an infinite-dimensional Hilbert space.

Hadamard gate:

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

3.2 Introduction to Quantum Computing 101

Quantum logic gates are realised by unitary transformations introduced in Eqs.
(3.10) and (3.23). As we have seen, after a projective measurement in the com-
putational basis, the state of the qubit |ψ〉 = α0|0〉 + α1|1〉 will be either |0〉 with
probability |α0|2 or |1〉 with probability |α1|2.

Single-qubit gates are formally described by 2 × 2 unitary transformations. It is
illustrative to write these transformations as matrices. As an example, we consider
the so-called X gate, which is the quantum equivalent of the classical NOT gate, as
it acts as

|0〉 #→ |1〉, (3.38)

|1〉 #→ |0〉. (3.39)

It is represented by the matrix

X =
(
0 1
1 0

)
.

In vector-matrix notation, it is easy to check that applying the X gate to the state |0〉
results in the state |1〉

X|0〉 =
(
0 1
1 0

)(
1
0

)
=
(
0
1

)
= |1〉.

In otherwords, applied to a generic single-qubit state, the X gate swaps the amplitudes
of the |0〉 and |1〉 components. Obviously, X is unitary,

XX† = XX−1 = 1.

Some useful single-qubit gates are summarised in the Table3.3. The first three
gates X , Y and Z are equivalent to the Pauli matrices

σx =
(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, (3.40)

which will often appear in later chapters.
One gate that we will make frequent use of is the Hadamard gate H (which is not

to be confused with the Hamiltonian of the same symbol). The Hadamard gate was
already introduced in Chap. 1. Its effect on the basis states |0〉 and |1〉 is

|0〉 #→ 1√
2
(|0〉 + |1〉), (3.41)

|1〉 #→ 1√
2
(|0〉 − |1〉). (3.42)

102 3 Quantum Computing

Table 3.3 Some useful single-qubit logic gates and their representations

Gate Circuit representation Matrix representation Dirac representation

X X

(
0 1
1 0

)

|1〉〈0| + |0〉〈1|

Y Y

(
0 −i
i 0

)

i |1〉〈0| − i |0〉〈1|

Z Z

(
1 0
0 −1

)

|1〉〈0| − |0〉〈1|

H H
1√
2

(
1 1
1 −1

)
1√
2
(|0〉 + |1〉)〈0| + 1√

2
(|0〉 − |1〉)〈1|

S S
1√
2

(
1 0
0 i

)
1√
2
|0〉〈0| + 1√

2
i |1〉〈1|

R R
1√
2

(
1 0
0 e(−iπ/4)

)
1√
2
|0〉〈0| + 1√

2
e(−iπ/4)|1〉〈1|

As has been made clear from the above expression, the role of H is to create super-
positions of qubits.

Of course, it is important to operate on more qubits at the same time as well.
The paradigmatic 2-qubit gate is the so-called CNOT gate, which is an example of a
controlled gate. The state of a qubit is changed, based on the value of another, control,
qubit. In the case of theCNOTgate, theNOToperation (or X operation) is performed,
when the first qubit is in state |1〉; otherwise, the second qubit is unchanged

|00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉. (3.43)

Accordingly, the matrix representation of the CNOT gate is given by

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 .

The CNOT gate (3.43) is a special case of a more general controlled U gate

|00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |1〉U |0〉, |11〉 %→ |1〉U |1〉, (3.44)

where U is an arbitrary single-qubit unitary gate. For the CNOT, we obviously have
U = X . Any multiple qubit gate may be composed by a sequence of single-qubit
gates and CNOT gates [18]. In Table3.4, we summarise some useful multi-qubit
gates.

Matrix representation

Action:

3.2. QUANTUM CIRCUITS 29

be evaluated in these terms. Let us list the main quantum gates, the Hadamard
gate is a 1-qubit gate defined in matrix form with respect to the computational
basis {|0〉, |1〉} as follows:

H :=
1√
2

(
1 1
1 −1

)
, (3.2.1)

its graphical representation is:

H .

The Hadamard gate realizes a change of basis {|0〉, |1〉} $→ {|+〉, |−〉} of a 1-qubit
Hilbert space where |+〉 and |−〉 are defined in (2.3.23).

The 1-qubit gate that appends a relative phase in the input state, it is defined
by:

Pφ :=

(
1 0
0 eiφ

)
, (3.2.2)

where φ ∈ R, its graphical representation is:

Pφ .

The 1-qubits gates defined by S := Pπ/2 and T := Pπ/4 play a crucial role in defining
a universal set of quantum gates.

The following statement entails a characteristic decomposition of 1-qubit gates
that is crucial for constructing controlled quantum gates [CN00].

Proposition 3.2.2 For any 1-qubit gate U there exist unitary operators A,B,C
satisfying ABC = I and α ∈ R such that:

U = eiαAσxBσxC. (3.2.3)

The prototypical controlled operation is the controlled-NOT (CNOT). The CNOT
gate is a 2-qubit gate defined, with respect to the computational basis, by:

CNOT|x〉|y〉 := |x〉|y ⊕ x〉, x, y ∈ {0, 1}, (3.2.4)

so the first qubit controls the conditional action of a bit-flip on the second qubit, its
graphical representation is:

•

.

Phase gate: Matrix representation

3.2. QUANTUM CIRCUITS 29

be evaluated in these terms. Let us list the main quantum gates, the Hadamard
gate is a 1-qubit gate defined in matrix form with respect to the computational
basis {|0〉, |1〉} as follows:

H :=
1√
2

(
1 1
1 −1

)
, (3.2.1)

its graphical representation is:

H .

The Hadamard gate realizes a change of basis {|0〉, |1〉} $→ {|+〉, |−〉} of a 1-qubit
Hilbert space where |+〉 and |−〉 are defined in (2.3.23).

The 1-qubit gate that appends a relative phase in the input state, it is defined
by:

Pφ :=

(
1 0
0 eiφ

)
, (3.2.2)

where φ ∈ R, its graphical representation is:

Pφ .

The 1-qubits gates defined by S := Pπ/2 and T := Pπ/4 play a crucial role in defining
a universal set of quantum gates.

The following statement entails a characteristic decomposition of 1-qubit gates
that is crucial for constructing controlled quantum gates [CN00].

Proposition 3.2.2 For any 1-qubit gate U there exist unitary operators A,B,C
satisfying ABC = I and α ∈ R such that:

U = eiαAσxBσxC. (3.2.3)

The prototypical controlled operation is the controlled-NOT (CNOT). The CNOT
gate is a 2-qubit gate defined, with respect to the computational basis, by:

CNOT|x〉|y〉 := |x〉|y ⊕ x〉, x, y ∈ {0, 1}, (3.2.4)

so the first qubit controls the conditional action of a bit-flip on the second qubit, its
graphical representation is:

•

.

3.2. QUANTUM CIRCUITS 29

be evaluated in these terms. Let us list the main quantum gates, the Hadamard
gate is a 1-qubit gate defined in matrix form with respect to the computational
basis {|0〉, |1〉} as follows:

H :=
1√
2

(
1 1
1 −1

)
, (3.2.1)

its graphical representation is:

H .

The Hadamard gate realizes a change of basis {|0〉, |1〉} $→ {|+〉, |−〉} of a 1-qubit
Hilbert space where |+〉 and |−〉 are defined in (2.3.23).

The 1-qubit gate that appends a relative phase in the input state, it is defined
by:

Pφ :=

(
1 0
0 eiφ

)
, (3.2.2)

where φ ∈ R, its graphical representation is:

Pφ .

The 1-qubits gates defined by S := Pπ/2 and T := Pπ/4 play a crucial role in defining
a universal set of quantum gates.

The following statement entails a characteristic decomposition of 1-qubit gates
that is crucial for constructing controlled quantum gates [CN00].

Proposition 3.2.2 For any 1-qubit gate U there exist unitary operators A,B,C
satisfying ABC = I and α ∈ R such that:

U = eiαAσxBσxC. (3.2.3)

The prototypical controlled operation is the controlled-NOT (CNOT). The CNOT
gate is a 2-qubit gate defined, with respect to the computational basis, by:

CNOT|x〉|y〉 := |x〉|y ⊕ x〉, x, y ∈ {0, 1}, (3.2.4)

so the first qubit controls the conditional action of a bit-flip on the second qubit, its
graphical representation is:

•

.

With special phase values

µ =
L · �(mH)

L · �(mH)
=

�(mH)

�SM(mH)
(465)

Hµ (466)

H0 (467)

H1 (468)

ps+b (469)

ps+b < 5% (470)

= lim
n!1

⇧n�1

i=0
(1� Psomething(Ti < t  Ti+1)) (471)

�M2

H =
�2fNf

4⇡2


(m2

f �m2

S) log

✓
⇤

mS

◆
+ 3m2

f log

✓
mS

mf

◆�
(472)

�2f = 2m2

f/v
2 = ��S (473)

NS = 2Nf (474)

= (475)

= | |2 (476)

 total = 1 + 2 (477)

 total = 1 + 2 (478)

| |2
total

= | 1|
2 + | 2|

2 + 2Re(1
⇤
2
) (479)

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

33MITP Summer School Lecture Michael Spannowsky July 2023 68

Summary of fixed 1-qubit gates:
102 3 Quantum Computing

Table 3.3 Some useful single-qubit logic gates and their representations

Gate Circuit representation Matrix representation Dirac representation

X X

(
0 1
1 0

)

|1〉〈0| + |0〉〈1|

Y Y

(
0 −i
i 0

)

i |1〉〈0| − i |0〉〈1|

Z Z

(
1 0
0 −1

)

|1〉〈0| − |0〉〈1|

H H
1√
2

(
1 1
1 −1

)
1√
2
(|0〉 + |1〉)〈0| + 1√

2
(|0〉 − |1〉)〈1|

S S
1√
2

(
1 0
0 i

)
1√
2
|0〉〈0| + 1√

2
i |1〉〈1|

R R
1√
2

(
1 0
0 e(−iπ/4)

)
1√
2
|0〉〈0| + 1√

2
e(−iπ/4)|1〉〈1|

As has been made clear from the above expression, the role of H is to create super-
positions of qubits.

Of course, it is important to operate on more qubits at the same time as well.
The paradigmatic 2-qubit gate is the so-called CNOT gate, which is an example of a
controlled gate. The state of a qubit is changed, based on the value of another, control,
qubit. In the case of theCNOTgate, theNOToperation (or X operation) is performed,
when the first qubit is in state |1〉; otherwise, the second qubit is unchanged

|00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |11〉, |11〉 %→ |10〉. (3.43)

Accordingly, the matrix representation of the CNOT gate is given by

CNOT =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 .

The CNOT gate (3.43) is a special case of a more general controlled U gate

|00〉 %→ |00〉, |01〉 %→ |01〉, |10〉 %→ |1〉U |0〉, |11〉 %→ |1〉U |1〉, (3.44)

where U is an arbitrary single-qubit unitary gate. For the CNOT, we obviously have
U = X . Any multiple qubit gate may be composed by a sequence of single-qubit
gates and CNOT gates [18]. In Table3.4, we summarise some useful multi-qubit
gates.

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

0  ✓  ⇡ (487)

0  ✓ < 2⇡ (488)

T (489)

34

MITP Summer School Lecture Michael Spannowsky July 2023 69

Quantum gate can be parametrised

Pauli rotations:

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0〉 or |1〉. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0〉 or |1〉. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0〉 or |1〉. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0〉 or |1〉. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

generalised form via

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0〉 or |1〉. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

34

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

34

MITP Summer School Lecture Michael Spannowsky July 2023 70

Measurement process
3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

Measurement process of a generic (normalised) qubit state

represented by projection onto eigenstates

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

and

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

Prob of measurement outcome 0 is then

and

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

After measurement qubit is in state

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

The observable corresponding to a computational basis measurement is
Pauli-Z observable

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

(we know eigenvalues +1 for |0> and -1 for |1>)

MITP Summer School Lecture Michael Spannowsky July 2023 71

3.2 Introduction to Quantum Computing 107

Fig. 3.6 Relationship
between the sample size S
and the mean value
p̄ = 1

S

∑S
i=1 si for different

errors ε for the Wilson score
interval of a Bernoulli
parameter estimation
problem as described in the
text

Fig. 3.7 Putting it all
together: the circuit diagram
illustrates the building
blocks of qubits, (possibly
parametrised) gates,
measurement and the
estimation of expectations
from the text

averaged. Figure3.7 illustrates this by combining the building blocks of gates, mea-
surements and classical averaging to one picture that we will make use of in later
sections.

3.2.5 Quantum Parallelism and Function Evaluation

As the first larger example of a quantum algorithm, we want to construct a quantum
logic circuit that evaluates a function f (x) (see also [17]). This simple algorithm
will already exhibit one of the salient features of quantum algorithms: quantum par-
allelism. Roughly speaking, we will see how a quantum computer is able to evaluate
many different values of the function f (x) at the same time, or in superposition.
This is conceptually similar to a classical algorithm that samples x and evaluates
f (x), but with the key difference that in the quantum case we can use effects such
as interference on the “paths” of the computation.

To be specific, we consider a very simple function f (x) that has a single bit as
input and a single bit as output, i.e., a function with a one-bit domain and range,

f (x) : {0, 1} → {0, 1}.

Examples of such a function are the identity function

The expectation value

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

in a value in [-1, 1]. Its error can be estimated
as sampling from a Bernoulli distribution.

Wald interval gives

3.2 Introduction to Quantum Computing 105

A computational basis measurement of a generic (normalised) qubit state |ψ〉 =
α0|0〉 + α1|1〉 is represented by the projectors on the two possible eigenspaces P0 =
|0〉〈0| and P1 = |1〉〈1|. The probability of obtaining the measurement outcome 0 is
then

p(0) = tr(P0|ψ〉〈ψ|) = 〈ψ|P0|ψ〉 = |α0|2.

Similarly, one finds that p(1) = |α1|2. After the measurement, say of outcome 0, the
qubit is in the state

|ψ〉 ← P0|ψ〉√〈ψ|P0|ψ〉 = |0〉.

The full observable corresponding to a computational basismeasurement is the Pauli-
Z observable,

σz = |0〉〈0| − |1〉〈1|, (3.49)

from which we can read off the eigenvalues +1 (corresponding to the observation
|0〉) and −1 (corresponding to the observation |1〉). Separate computational basis
measurements performed on multiple qubits can be understood as drawing a sample
of a binary string of length n—where n is the number of qubits—from a distribution
defined by the quantum state.

The expectation 〈σz〉 of a single-qubit measurement in the computational basis is
a value in the range [−1, 1]. In practice, the expectation is estimated by rerunning an
algorithm s times to sample S bits in {−1, 1}, where S is also known as the number
of shots. The estimate is then computed as the average of the bits.

The number of samples S required to estimate 〈σz〉 with error ε can be analysed
by conventional statistics, since measuring a single qubit is equivalent to estimating
the probability p when sampling from a Bernoulli distribution.10 The error gives
us a confidence interval [p − ε, p + ε]. A confidence interval is defined for a given
confidence level, for example, of 99%. The confidence level has the following mean-
ing: If we have different sets S of S samples and compute estimators and confidence
intervals for each of them, the confidence level is the proportion of sample sets for
which the true value p lies within the confidence interval. In statistics, the confi-
dence level is usually expressed by a so-called z-value, for example, a z-value of
2.58 corresponds to a confidence of 99%. This correspondence can be looked up in
tables.

There are different ways to estimate the error of a Bernoulli trial (and hence
the estimation of a single-qubit computational basis measurement expectation). The
most simple one is theWald interval which is suited for cases of large S and p ≈ 0.5,
corresponding to 〈σz〉 = 0. The error ε can be calculated as

ε = z

√
p̂(1 − p̂)

S
, (3.50)

10 Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and
want to estimate the bias p, i.e., with what probability the coin produces heads.

shots
stat. z-value

share of
sample in
state 1

For

106 3 Quantum Computing

where p̂ is the share of the samples being in state 1, which is a simple estimator for
the probability. This is maximised for p̂ = 0.5, so that we can assume the overall
error of our estimation ε to be at most

ε ≤ z

2
√
S

(3.51)

with a confidence level of z. In other words, for a given ε and z, we need O(ε−2)

samples S from the qubit measurement. If we want to have an error bar of at most
ε = 0.1 and a confidence level of 99%, we need about 167 samples, and an error of
ε = 0.01 with confidence 99% requires at most 17,000 samples.

One can see that the bound fails for p̂ → 0, 1 [23], which is why more refined
investigation techniques become useful, such as the Wilson score interval [24] with
the following refined estimator for the probability:

ˆ̂p = 1

1+ z2
S

(
p̂ + z2

2S

)
, (3.52)

and the error

ε = z

1+ z2
S

(
p̂(1 − p̂)

S
+ z2

4S2

) 1
2

. (3.53)

Again this is maximised for p̂ = 0.5 and with a confidence level z, we can state that
the overall error of our estimation is bounded by

ε ≤
√
z2

S + z2

4S2
. (3.54)

This can be solved for S as

S ≤
ε2
√

z4(16ε2+1)
ε4 + z2

8ε2
. (3.55)

Again,weget a scaling of ε2 for the number of samples needed.With theWilson score,
a confidence level of 99% suggests that we need 173 single-qubit measurements to
guarantee an error of less than 0.1. However, now we can test the cases p̂ = 0, 1 for
which S = z2(1

2ε − 1). For ε = 0.1, we only need about 27 measurements for the
same confidence level at the boundaries. The overall behaviour is plotted in Fig. 3.6.

Altogether, one can see that high-precision estimates of Pauli-Z expectations
require a lot of samples from a quantum computer. This needs to be taken into account
when comparing quantum machine learning algorithms to classical heuristics that
estimate a quantity with finite sample sizes. This little exercise also illuminates that
quantum computations are often implemented as a combination of classical and
quantum processing: the circuit is run with S shots, and the results are classically

106 3 Quantum Computing

where p̂ is the share of the samples being in state 1, which is a simple estimator for
the probability. This is maximised for p̂ = 0.5, so that we can assume the overall
error of our estimation ε to be at most

ε ≤ z

2
√
S

(3.51)

with a confidence level of z. In other words, for a given ε and z, we need O(ε−2)

samples S from the qubit measurement. If we want to have an error bar of at most
ε = 0.1 and a confidence level of 99%, we need about 167 samples, and an error of
ε = 0.01 with confidence 99% requires at most 17,000 samples.

One can see that the bound fails for p̂ → 0, 1 [23], which is why more refined
investigation techniques become useful, such as the Wilson score interval [24] with
the following refined estimator for the probability:

ˆ̂p = 1

1+ z2
S

(
p̂ + z2

2S

)
, (3.52)

and the error

ε = z

1+ z2
S

(
p̂(1 − p̂)

S
+ z2

4S2

) 1
2

. (3.53)

Again this is maximised for p̂ = 0.5 and with a confidence level z, we can state that
the overall error of our estimation is bounded by

ε ≤
√
z2

S + z2

4S2
. (3.54)

This can be solved for S as

S ≤
ε2
√

z4(16ε2+1)
ε4 + z2

8ε2
. (3.55)

Again,weget a scaling of ε2 for the number of samples needed.With theWilson score,
a confidence level of 99% suggests that we need 173 single-qubit measurements to
guarantee an error of less than 0.1. However, now we can test the cases p̂ = 0, 1 for
which S = z2(1

2ε − 1). For ε = 0.1, we only need about 27 measurements for the
same confidence level at the boundaries. The overall behaviour is plotted in Fig. 3.6.

Altogether, one can see that high-precision estimates of Pauli-Z expectations
require a lot of samples from a quantum computer. This needs to be taken into account
when comparing quantum machine learning algorithms to classical heuristics that
estimate a quantity with finite sample sizes. This little exercise also illuminates that
quantum computations are often implemented as a combination of classical and
quantum processing: the circuit is run with S shots, and the results are classically

106 3 Quantum Computing

where p̂ is the share of the samples being in state 1, which is a simple estimator for
the probability. This is maximised for p̂ = 0.5, so that we can assume the overall
error of our estimation ε to be at most

ε ≤ z

2
√
S

(3.51)

with a confidence level of z. In other words, for a given ε and z, we need O(ε−2)

samples S from the qubit measurement. If we want to have an error bar of at most
ε = 0.1 and a confidence level of 99%, we need about 167 samples, and an error of
ε = 0.01 with confidence 99% requires at most 17,000 samples.

One can see that the bound fails for p̂ → 0, 1 [23], which is why more refined
investigation techniques become useful, such as the Wilson score interval [24] with
the following refined estimator for the probability:

ˆ̂p = 1

1+ z2
S

(
p̂ + z2

2S

)
, (3.52)

and the error

ε = z

1+ z2
S

(
p̂(1 − p̂)

S
+ z2

4S2

) 1
2

. (3.53)

Again this is maximised for p̂ = 0.5 and with a confidence level z, we can state that
the overall error of our estimation is bounded by

ε ≤
√
z2

S + z2

4S2
. (3.54)

This can be solved for S as

S ≤
ε2
√

z4(16ε2+1)
ε4 + z2

8ε2
. (3.55)

Again,weget a scaling of ε2 for the number of samples needed.With theWilson score,
a confidence level of 99% suggests that we need 173 single-qubit measurements to
guarantee an error of less than 0.1. However, now we can test the cases p̂ = 0, 1 for
which S = z2(1

2ε − 1). For ε = 0.1, we only need about 27 measurements for the
same confidence level at the boundaries. The overall behaviour is plotted in Fig. 3.6.

Altogether, one can see that high-precision estimates of Pauli-Z expectations
require a lot of samples from a quantum computer. This needs to be taken into account
when comparing quantum machine learning algorithms to classical heuristics that
estimate a quantity with finite sample sizes. This little exercise also illuminates that
quantum computations are often implemented as a combination of classical and
quantum processing: the circuit is run with S shots, and the results are classically

106 3 Quantum Computing

where p̂ is the share of the samples being in state 1, which is a simple estimator for
the probability. This is maximised for p̂ = 0.5, so that we can assume the overall
error of our estimation ε to be at most

ε ≤ z

2
√
S

(3.51)

with a confidence level of z. In other words, for a given ε and z, we need O(ε−2)

samples S from the qubit measurement. If we want to have an error bar of at most
ε = 0.1 and a confidence level of 99%, we need about 167 samples, and an error of
ε = 0.01 with confidence 99% requires at most 17,000 samples.

One can see that the bound fails for p̂ → 0, 1 [23], which is why more refined
investigation techniques become useful, such as the Wilson score interval [24] with
the following refined estimator for the probability:

ˆ̂p = 1

1+ z2
S

(
p̂ + z2

2S

)
, (3.52)

and the error

ε = z

1+ z2
S

(
p̂(1 − p̂)

S
+ z2

4S2

) 1
2

. (3.53)

Again this is maximised for p̂ = 0.5 and with a confidence level z, we can state that
the overall error of our estimation is bounded by

ε ≤
√
z2

S + z2

4S2
. (3.54)

This can be solved for S as

S ≤
ε2
√

z4(16ε2+1)
ε4 + z2

8ε2
. (3.55)

Again,weget a scaling of ε2 for the number of samples needed.With theWilson score,
a confidence level of 99% suggests that we need 173 single-qubit measurements to
guarantee an error of less than 0.1. However, now we can test the cases p̂ = 0, 1 for
which S = z2(1

2ε − 1). For ε = 0.1, we only need about 27 measurements for the
same confidence level at the boundaries. The overall behaviour is plotted in Fig. 3.6.

Altogether, one can see that high-precision estimates of Pauli-Z expectations
require a lot of samples from a quantum computer. This needs to be taken into account
when comparing quantum machine learning algorithms to classical heuristics that
estimate a quantity with finite sample sizes. This little exercise also illuminates that
quantum computations are often implemented as a combination of classical and
quantum processing: the circuit is run with S shots, and the results are classically

106 3 Quantum Computing

where p̂ is the share of the samples being in state 1, which is a simple estimator for
the probability. This is maximised for p̂ = 0.5, so that we can assume the overall
error of our estimation ε to be at most

ε ≤ z

2
√
S

(3.51)

with a confidence level of z. In other words, for a given ε and z, we need O(ε−2)

samples S from the qubit measurement. If we want to have an error bar of at most
ε = 0.1 and a confidence level of 99%, we need about 167 samples, and an error of
ε = 0.01 with confidence 99% requires at most 17,000 samples.

One can see that the bound fails for p̂ → 0, 1 [23], which is why more refined
investigation techniques become useful, such as the Wilson score interval [24] with
the following refined estimator for the probability:

ˆ̂p = 1

1+ z2
S

(
p̂ + z2

2S

)
, (3.52)

and the error

ε = z

1+ z2
S

(
p̂(1 − p̂)

S
+ z2

4S2

) 1
2

. (3.53)

Again this is maximised for p̂ = 0.5 and with a confidence level z, we can state that
the overall error of our estimation is bounded by

ε ≤
√
z2

S + z2

4S2
. (3.54)

This can be solved for S as

S ≤
ε2
√

z4(16ε2+1)
ε4 + z2

8ε2
. (3.55)

Again,weget a scaling of ε2 for the number of samples needed.With theWilson score,
a confidence level of 99% suggests that we need 173 single-qubit measurements to
guarantee an error of less than 0.1. However, now we can test the cases p̂ = 0, 1 for
which S = z2(1

2ε − 1). For ε = 0.1, we only need about 27 measurements for the
same confidence level at the boundaries. The overall behaviour is plotted in Fig. 3.6.

Altogether, one can see that high-precision estimates of Pauli-Z expectations
require a lot of samples from a quantum computer. This needs to be taken into account
when comparing quantum machine learning algorithms to classical heuristics that
estimate a quantity with finite sample sizes. This little exercise also illuminates that
quantum computations are often implemented as a combination of classical and
quantum processing: the circuit is run with S shots, and the results are classically

and conf level one needs samples

For and conf level

106 3 Quantum Computing

where p̂ is the share of the samples being in state 1, which is a simple estimator for
the probability. This is maximised for p̂ = 0.5, so that we can assume the overall
error of our estimation ε to be at most

ε ≤ z

2
√
S

(3.51)

with a confidence level of z. In other words, for a given ε and z, we need O(ε−2)

samples S from the qubit measurement. If we want to have an error bar of at most
ε = 0.1 and a confidence level of 99%, we need about 167 samples, and an error of
ε = 0.01 with confidence 99% requires at most 17,000 samples.

One can see that the bound fails for p̂ → 0, 1 [23], which is why more refined
investigation techniques become useful, such as the Wilson score interval [24] with
the following refined estimator for the probability:

ˆ̂p = 1

1+ z2
S

(
p̂ + z2

2S

)
, (3.52)

and the error

ε = z

1+ z2
S

(
p̂(1 − p̂)

S
+ z2

4S2

) 1
2

. (3.53)

Again this is maximised for p̂ = 0.5 and with a confidence level z, we can state that
the overall error of our estimation is bounded by

ε ≤
√
z2

S + z2

4S2
. (3.54)

This can be solved for S as

S ≤
ε2
√

z4(16ε2+1)
ε4 + z2

8ε2
. (3.55)

Again,weget a scaling of ε2 for the number of samples needed.With theWilson score,
a confidence level of 99% suggests that we need 173 single-qubit measurements to
guarantee an error of less than 0.1. However, now we can test the cases p̂ = 0, 1 for
which S = z2(1

2ε − 1). For ε = 0.1, we only need about 27 measurements for the
same confidence level at the boundaries. The overall behaviour is plotted in Fig. 3.6.

Altogether, one can see that high-precision estimates of Pauli-Z expectations
require a lot of samples from a quantum computer. This needs to be taken into account
when comparing quantum machine learning algorithms to classical heuristics that
estimate a quantity with finite sample sizes. This little exercise also illuminates that
quantum computations are often implemented as a combination of classical and
quantum processing: the circuit is run with S shots, and the results are classically

one needs samples

Overall might need a large number of shots on quantum computer

This needs to be taken into account when comparing quantum and

classical computers in terms of speedups and quantum advantage

MITP Summer School Lecture Michael Spannowsky July 2023 72

(suited for large s and p~0.5)

The Bloch Sphere
3.2 Introduction to Quantum Computing 99

Fig. 3.4 The Bloch sphere
representation of a qubit

The inner product of |ψ1〉 and |ψ2〉 is therefore given by

〈ψ1|ψ2〉 = α∗
0β0 + α∗

1β1.

Of course, this is equivalent to the scalar or vector product of the two corresponding
amplitude vectors. Similarly, the outer product of two states can be compactly written
as

|ψ1〉〈ψ2| =
(

α0β∗
0 α0β∗

1
α1β∗

0 α1β∗
1

)
,

which is the outer product of the amplitude vectors.
According to Sect. 3.1.3.5, n unentangled qubits are described by a tensor product

of single qubits |q1〉, . . . , |qn〉,

|ψ〉 = |q1〉 ⊗ · · · ⊗ |qn〉. (3.33)

If the qubits are entangled, state |ψ〉 is no longer separable, and in the computational
basis it reads

|ψ〉 = α0|0 . . . 00〉 + α1|0 . . . 01〉 + · · · + α2n−1|1 . . . 11〉, (3.34)

withαi ∈ C, and
∑2n−1

i=0 |αi |2 = 1. Here, we introduce the common shorthand which
writes the tensor product |a〉 ⊗ |b〉 as |ab〉. The basis {|0 . . . 00〉, . . . , |1 . . . 11〉} is
the computational basis for n qubits. Note that for some algorithms, the qubits are
divided into certain registers, which have different functions in the computation.

We will make heavy use of an elegant notation that summarises a Dirac vector in
computational basis as

98 3 Quantum Computing

〈ψ| = α∗
0〈0| + α∗

1〈1|,

where ∗ denotes complex conjugation.
As discussed in the previous sections, such a Dirac vector has a vector represen-

tation, since K -dimensional, discrete Hilbert spaces are isomorphic to the space of
complex vectors CK . In vector notation, a general qubit is expressed as

α =
(

α0

α1

)
.

The Hermitian conjugate of this amplitude column vector is the transposed and
conjugated row vector

α† = (α∗
0,α

∗
1) ∈ C2. (3.31)

Furthermore, we can represent the two states |0〉 and |1〉 as the standard basis vectors
of the C2,

|0〉 =
(
1
0

)
∈ C2,

|1〉 =
(
0
1

)
∈ C2.

Vector notation can be very insightful to understand the effect of quantum gates.
However, as common in quantum computing, we will predominantly use Dirac nota-
tion.

It is sometimes useful to have a geometric representation of a qubit. A generic
qubit in the pure state (3.30) can be parametrised as

|ψ〉 = e(iγ)
(
cos

θ

2
|0〉 + e(iφ) sin

θ

2
|1〉
)
,

where θ,φ and γ are real numbers with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The global phase
factor e(iγ) has no observable effect and will be omitted in the following. The angles
θ and φ have the obvious interpretation as spherical coordinates, so that the Hilbert
space vector |ψ〉 can be visualised as the R3 vector (sin θ cosφ, sin θ sin φ, cosφ)
pointing from the origin to the surface of a ball, the so-called Bloch sphere. The
Bloch sphere is illustrated in Fig. 3.4.9

The Dirac notation allows also for a compact description of the inner product
of two vectors in Hilbert space that was introduced in Sect. 3.1.3.1. Consider, for
example, two vectors in C2, |ψ1〉 = α0|0〉 + α1|1〉 and |ψ2〉 = β0|0〉 + β1|1〉, with
αi ,βi ∈ C for i = 0, 1, |α0|2 + |α1|2 = 1 and |β0|2 + |β1|2 = 1. Since |0〉, |1〉 are
orthonormal, we have that

〈0|0〉 = 〈1|1〉 = 1, 〈0|1〉 = 〈1|0〉 = 0. (3.32)

9 Adapted from https://tex.stackexchange.com/questions/345420/how-to-draw-a-bloch-sphere.

98 3 Quantum Computing

〈ψ| = α∗
0〈0| + α∗

1〈1|,

where ∗ denotes complex conjugation.
As discussed in the previous sections, such a Dirac vector has a vector represen-

tation, since K -dimensional, discrete Hilbert spaces are isomorphic to the space of
complex vectors CK . In vector notation, a general qubit is expressed as

α =
(

α0

α1

)
.

The Hermitian conjugate of this amplitude column vector is the transposed and
conjugated row vector

α† = (α∗
0,α

∗
1) ∈ C2. (3.31)

Furthermore, we can represent the two states |0〉 and |1〉 as the standard basis vectors
of the C2,

|0〉 =
(
1
0

)
∈ C2,

|1〉 =
(
0
1

)
∈ C2.

Vector notation can be very insightful to understand the effect of quantum gates.
However, as common in quantum computing, we will predominantly use Dirac nota-
tion.

It is sometimes useful to have a geometric representation of a qubit. A generic
qubit in the pure state (3.30) can be parametrised as

|ψ〉 = e(iγ)
(
cos

θ

2
|0〉 + e(iφ) sin

θ

2
|1〉
)
,

where θ,φ and γ are real numbers with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The global phase
factor e(iγ) has no observable effect and will be omitted in the following. The angles
θ and φ have the obvious interpretation as spherical coordinates, so that the Hilbert
space vector |ψ〉 can be visualised as the R3 vector (sin θ cosφ, sin θ sin φ, cosφ)
pointing from the origin to the surface of a ball, the so-called Bloch sphere. The
Bloch sphere is illustrated in Fig. 3.4.9

The Dirac notation allows also for a compact description of the inner product
of two vectors in Hilbert space that was introduced in Sect. 3.1.3.1. Consider, for
example, two vectors in C2, |ψ1〉 = α0|0〉 + α1|1〉 and |ψ2〉 = β0|0〉 + β1|1〉, with
αi ,βi ∈ C for i = 0, 1, |α0|2 + |α1|2 = 1 and |β0|2 + |β1|2 = 1. Since |0〉, |1〉 are
orthonormal, we have that

〈0|0〉 = 〈1|1〉 = 1, 〈0|1〉 = 〈1|0〉 = 0. (3.32)

9 Adapted from https://tex.stackexchange.com/questions/345420/how-to-draw-a-bloch-sphere.

Thus, with single qubit can be

where a global imaginary phase has no measurable
effect and can be omitted.

Since with

one can find angles such that

27 = 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2⇥ 2 = 128 (480)

E[(y � h(x))2] = E[(y � ȳ)2] + E[(ȳ � h̄(x))2] + E[(h(x)� h̄(x))2] (481)

R := P�⇡/4 (482)

= cos
✓

2
I � i sin

✓

2
X (483)

= cos
✓

2
I � i sin

✓

2
Y (484)

= cos
✓

2
I � i sin

✓

2
Z (485)

� = � � � (486)

34

parametrised as

MITP Summer School Lecture Michael Spannowsky July 2023 73

2-qubit states

Are built by tensor products, each qubit can be in state |0> or in state |1>

So, for two qubits we have four possibilities:

that we denote

or

We can have superposition as a generic state

with complex coefficients such that

MITP Summer School Lecture Michael Spannowsky July 2023 74

2-qubit states

Furthermore, we can express the state as a vector

For which we find the inner products

A 2-qubit quantum gate is a unitary matrix U of size 4 x 4

MITP Summer School Lecture Michael Spannowsky July 2023 75

2-qubit gates
CNOT gate:

unitary matrix representation

In words: if the first qubit is |0> nothing changes. If it is |1> we flip
the second bit (and first stays the same)

Action:

As a gate:

• A set of gates that can approximate any quantum operation
-> Universal quantum computer

Rotation gates + phase shift gate + CNOTe.g.

MITP Summer School Lecture Michael Spannowsky July 2023 76

The CNOT gate is an extremely important gate

• It realises conditional probabilities

• It creates entanglement

• It can copy classical information, because

• Constructs other control gates

104 3 Quantum Computing

Fig. 3.5 A quantum circuit that entangles two qubits in the graphical notation of quantum circuits.
A line denotes a so-called “quantum wire” that indicates the time evolution of a qubit. The initial
state of the qubit is written to the left of the quantum wire, and sometimes the final state is written
towards the right. A gate sits on the wires that correspond to the qubits it acts on

Before moving on, we want to make one important last comment. While so far we
have only looked at fixed gates, quantum gates can also be parametrised. The most
important parametrised gates are the three Pauli rotations:

Rx (θ) = e−i θ
2 σx =

(
cos
(

θ
2

)
−i sin

(
θ
2

)

−i sin
(

θ
2

)
cos
(

θ
2

)

)

(3.45)

Ry(θ) = e−i θ
2 σy =

(
cos
(

θ
2

)
− sin

(
θ
2

)

sin
(

θ
2

)
cos
(

θ
2

)

)

(3.46)

Rz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei

θ
2

)

. (3.47)

Depending on the parameter θ, the gate implements a different transformation. A
general parametrised single-qubit gate can be written as

R(θ1, θ2, θ3) =
(
ei(−

θ1
2 − θ3

2) cos(θ2
2) −ei(−

θ1
2 + θ3

2) sin(θ2
2)

ei(
θ1
2 − θ3

2) sin(θ2
2) ei(

θ1
2 + θ3

2) cos(θ2
2)

)

, (3.48)

which can be decomposed into Pauli gates via R(θ1, θ2, θ3) = Rz(θ1)Ry(θ2)Rz(θ3).
These parametrised gates are important building blocks for variational circuits that
we will introduce in Chap. 5.

3.2.4 Measuring Qubits in the Computational Basis

Section3.1.3.4 showed how measurements are modelled in the theory of quantum
mechanics. However, in most algorithms, we only need a computational basis mea-
surement which measures whether the individual qubits are in state |0〉 or |1〉. In
fact, lots of actual quantum computing platforms only implement this simplest kind
of measurement, and implement more complicated observables by applying a cir-
cuit U just before measuring. This pre-measurement circuit can be understood as
a basis transformation of the quantum state which effectively implements the more
complicated observable.

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP ××





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





T •
•





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0〉2 ⊗ |0〉1 +

1√
2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as a Bell state.

read circuit from
left to right

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP ××





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





T •
•





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0〉2 ⊗ |0〉1 +

1√
2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as a Bell state.

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP ××





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





T •
•





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0〉2 ⊗ |0〉1 +

1√
2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as a Bell state.

Bell state (fully entangled)

MITP Summer School Lecture Michael Spannowsky July 2023 77

SWAP gate

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP ××





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





T •
•





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0〉2 ⊗ |0〉1 +

1√
2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as a Bell state.

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP ××





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





T •
•





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0〉2 ⊗ |0〉1 +

1√
2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as a Bell state.

Can swap two qubits.

In basis

it is represented by

In gate notation:

Can be decomposed by Pauli operators

MITP Summer School Lecture Michael Spannowsky July 2023 78

N-qubit states

When we have n qubits, each of them can be in state |0> or |1>

Thus for n qubit states we have 2^n possibilities:

or simply

A generic state of the system will be

With complex coefficients, such that

MITP Summer School Lecture Michael Spannowsky July 2023 79

Suppose we have the N qubit state

If we measure all its qubits, we obtain:

• 0 with probability and the new state will be

• 1 with probability and the new state will be

• …

• with probability and the new state is

Completely analogous to 1 and 2 qubit situation but now with
possibilities

MITP Summer School Lecture Michael Spannowsky July 2023 80

Toffoli gate (CCNOT)

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP ××





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





T •
•





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0〉2 ⊗ |0〉1 +

1√
2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as a Bell state.

3.2 Introduction to Quantum Computing 103

Table 3.4 Some useful and common multi-qubit gates: The 2-qubit CNOT and SWAP gate, a well
as the 3-qubit Toffoli gate

Gate Circuit representation Matrix representation

CNOT •





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





SWAP ××





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





T •
•





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





Tables3.3 and 3.4 reveal also the circuit notation of the respective gates. Cir-
cuit notation allows the graphical visualisation of a quantum routine, and we will
introduce it with our first little quantum algorithm, the entangling circuit shown in
Fig. 3.5.

Example 3.3 (Entangling circuit)Wewill compute the action of the quantum circuit
from Fig. 3.5 on the initial state of the two qubits, namely |0〉2|0〉1. For clarity, we
have labelled the upper qubit by the subscript 2 and the lower qubit by the subscript
1. We read the circuit from left to right and write

CNOT((H2 ⊗ 11)(|0〉2 ⊗ |0〉1)).

Recalling the effect of the Hadamard gate H (3.41), the above expression becomes
a fully entangled state

CNOT(
1√
2
|0〉2 ⊗ |0〉1 +

1√
2
|1〉2 ⊗ |0〉1)

= 1√
2
(|0〉2 ⊗ |0〉1 + |1〉2 ⊗ |1〉1).

This state is also known as a Bell state.

controls from
two qubits

Matrix
representation

Truth table

Toffoli gate can also be decomposed into Pauli operators

MITP Summer School Lecture Michael Spannowsky July 2023 81

Example: Turning a Hamiltonian term into a gate

Recall

Assume

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = iZt (513)

RZ(✓) = ei
✓
2Z (514)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

36

Example 1

Example 2

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

36

Assume

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

R(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

36

Assume, universal gate operations on device are

Since

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

36

(proof via CBH Formula)

MITP Summer School Lecture Michael Spannowsky July 2023 82

Example 3

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

36

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

36

note

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

(Z ⌦ Z)2 = I (521)

36

with

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

36

one finds

for the action on states we find

which can be written in matrix form as

Tr2(⇢) =

✓
a2 + b2 ac+ bd
ac+ bd c2 + d2

◆
(508)

| i =
1
p
2
(|00i+ |11i) (509)

| i = |ai ⌦ |bi = (↵|0i+ �|1i)⌦ (�|0i+ �|1i) = ↵�|00i+ ↵�|01i+ ��|10i+ ��|11i

↵�|01i+ ��|10i = 0 and ↵�|00i = ��|11i =
1
p
2

(510)

↵� = 0 and �� = 0 (511)

RZ(2t)

H1 = Z (512)

U = e�iZt (513)

RZ(✓) = e�i ✓
2Z (514)

H2 = X (515)

{H,RZ , CX} (516)

HXH = Z) X = HZH (517)

U = He�iZtH (518)

H RZ(2t) H

H = Z ⌦ Z (519)

e�Z⌦Zt
6= e�iZt

⌦ e�iZt (520)

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

36

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

37

if # of 1 is even one gets -
if #of 1 is odd one gets + (parity of state)

circuit that
implements that

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

|11i (526)

|01i (527)

|10i (528)

|00i (529)

RZ(2t)

H RZ(2t) H

RZ(✓)

RZ(2t)

37

(Z ⌦ Z)2 = I (521)

ei(Z⌦Z)t = cos(t)I� i sin(t)Z ⌦ Z (522)

ei(Z⌦Z)t
|00i = (cos(t)I� i sin(t)Z ⌦ Z) |00i = (cos(t)� i sin(t)) |00i (523)

ei(Z⌦Z)t
|11i = (cos(t)I� i sin(t)Z ⌦ Z) |11i = (cos(t)� i sin(t)) |11i (524)

ei(Z⌦Z)t
|01i = cos(t) |01i � i sin(t)Z |0i ⌦ Z |1i = (cos(t) + i sin(t)) |01i (525)

ei(Z⌦Z)t =

2

664

e�it 0 0 0
0 eit 0 0
0 0 eit 0
0 0 0 e�it

3

775

RZ(2t) =


e�it 0
0 eit

�

|11i (526)

|01i (527)

|10i (528)

|00i (529)

RZ(2t)

H RZ(2t) H

RZ(✓)

RZ(2t)

37

with

MITP Summer School Lecture Michael Spannowsky July 2023 83

Overlap of Quantum States

SWAP test:

3.6 Important Quantum Algorithms 123

3.6.1 Measuring the Overlap of Quantum States

Inner products 〈a|b〉 of quantum states, or alternatively their absolute square value
|〈a|b〉|2 called the overlap, are a central feature in quantum theory when comparing
two states. As we will see, inner products and overlaps of quantum states will also
be a crucial ingredient to many quantum machine learning methods. However, it is
actually not immediately obvious how to measure these values. This is particularly
true for the complex-valued inner product, which has no corresponding quantum
observable (since quantum observables return real-valued measurement outcomes
and expectations).

There is a family of small quantum circuits that use interference between different
branches of a superposition to fulfil this task [38]. The most well-known of the
interference routines is the so-called swap test and returns the absolute value of
the inner product of the quantum states of two separate quantum systems. We will
also present two variations which we call the Hadamard test and inversion test.
These require successively fewer qubits, but impose stricter assumptions on the
physical capabilities of the systems implementing them. The Hadamard test is able
to measure the real and imaginary values of the inner product 〈a|b〉 in two separate
measurements.

3.6.1.1 The Swap Test

We consider a quantum state that is the product state of two qubit registers prepared
in |a〉 ⊗ |b〉 = |a〉|b〉. The swap test is a common trick to extract the absolute square
of their inner product, |〈a|b〉|2, from the probability of measuring an ancilla qubit
in a certain state. To achieve this, one creates a superposition of the ancilla qubit
and swaps the quantum states in one branch of the superposition, after which they
are interfered (see Fig. 3.15). We have seen this principle already in the Hadamard
classifier from the introductory chapter.

We add an ancilla qubit and start with the state |0〉|a〉|b〉. AHadamard gate applied
to the ancilla—the qubit in the first register—leads to

1√
2
(|0〉 + |1〉)|a〉|b〉.

Fig. 3.15 Schematic illustration of the swap test routine. An ancilla qubit in state 0 is prepared
together with two quantum states (turquoise and red shapes). The ancilla is superposed and the
two states are swapped in the branch marked by the ancilla’s 1 state. The ancilla is then interfered,
writing the sum and difference of the original and the swapped order into each branch

Is a way to extract of tensor product state

3.6 Important Quantum Algorithms 123

3.6.1 Measuring the Overlap of Quantum States

Inner products 〈a|b〉 of quantum states, or alternatively their absolute square value
|〈a|b〉|2 called the overlap, are a central feature in quantum theory when comparing
two states. As we will see, inner products and overlaps of quantum states will also
be a crucial ingredient to many quantum machine learning methods. However, it is
actually not immediately obvious how to measure these values. This is particularly
true for the complex-valued inner product, which has no corresponding quantum
observable (since quantum observables return real-valued measurement outcomes
and expectations).

There is a family of small quantum circuits that use interference between different
branches of a superposition to fulfil this task [38]. The most well-known of the
interference routines is the so-called swap test and returns the absolute value of
the inner product of the quantum states of two separate quantum systems. We will
also present two variations which we call the Hadamard test and inversion test.
These require successively fewer qubits, but impose stricter assumptions on the
physical capabilities of the systems implementing them. The Hadamard test is able
to measure the real and imaginary values of the inner product 〈a|b〉 in two separate
measurements.

3.6.1.1 The Swap Test

We consider a quantum state that is the product state of two qubit registers prepared
in |a〉 ⊗ |b〉 = |a〉|b〉. The swap test is a common trick to extract the absolute square
of their inner product, |〈a|b〉|2, from the probability of measuring an ancilla qubit
in a certain state. To achieve this, one creates a superposition of the ancilla qubit
and swaps the quantum states in one branch of the superposition, after which they
are interfered (see Fig. 3.15). We have seen this principle already in the Hadamard
classifier from the introductory chapter.

We add an ancilla qubit and start with the state |0〉|a〉|b〉. AHadamard gate applied
to the ancilla—the qubit in the first register—leads to

1√
2
(|0〉 + |1〉)|a〉|b〉.

Fig. 3.15 Schematic illustration of the swap test routine. An ancilla qubit in state 0 is prepared
together with two quantum states (turquoise and red shapes). The ancilla is superposed and the
two states are swapped in the branch marked by the ancilla’s 1 state. The ancilla is then interfered,
writing the sum and difference of the original and the swapped order into each branch

One adds an ancilla qubit

3.6 Important Quantum Algorithms 123

3.6.1 Measuring the Overlap of Quantum States

Inner products 〈a|b〉 of quantum states, or alternatively their absolute square value
|〈a|b〉|2 called the overlap, are a central feature in quantum theory when comparing
two states. As we will see, inner products and overlaps of quantum states will also
be a crucial ingredient to many quantum machine learning methods. However, it is
actually not immediately obvious how to measure these values. This is particularly
true for the complex-valued inner product, which has no corresponding quantum
observable (since quantum observables return real-valued measurement outcomes
and expectations).

There is a family of small quantum circuits that use interference between different
branches of a superposition to fulfil this task [38]. The most well-known of the
interference routines is the so-called swap test and returns the absolute value of
the inner product of the quantum states of two separate quantum systems. We will
also present two variations which we call the Hadamard test and inversion test.
These require successively fewer qubits, but impose stricter assumptions on the
physical capabilities of the systems implementing them. The Hadamard test is able
to measure the real and imaginary values of the inner product 〈a|b〉 in two separate
measurements.

3.6.1.1 The Swap Test

We consider a quantum state that is the product state of two qubit registers prepared
in |a〉 ⊗ |b〉 = |a〉|b〉. The swap test is a common trick to extract the absolute square
of their inner product, |〈a|b〉|2, from the probability of measuring an ancilla qubit
in a certain state. To achieve this, one creates a superposition of the ancilla qubit
and swaps the quantum states in one branch of the superposition, after which they
are interfered (see Fig. 3.15). We have seen this principle already in the Hadamard
classifier from the introductory chapter.

We add an ancilla qubit and start with the state |0〉|a〉|b〉. AHadamard gate applied
to the ancilla—the qubit in the first register—leads to

1√
2
(|0〉 + |1〉)|a〉|b〉.

Fig. 3.15 Schematic illustration of the swap test routine. An ancilla qubit in state 0 is prepared
together with two quantum states (turquoise and red shapes). The ancilla is superposed and the
two states are swapped in the branch marked by the ancilla’s 1 state. The ancilla is then interfered,
writing the sum and difference of the original and the swapped order into each branch

then apply an H to the ancilla

3.6 Important Quantum Algorithms 123

3.6.1 Measuring the Overlap of Quantum States

Inner products 〈a|b〉 of quantum states, or alternatively their absolute square value
|〈a|b〉|2 called the overlap, are a central feature in quantum theory when comparing
two states. As we will see, inner products and overlaps of quantum states will also
be a crucial ingredient to many quantum machine learning methods. However, it is
actually not immediately obvious how to measure these values. This is particularly
true for the complex-valued inner product, which has no corresponding quantum
observable (since quantum observables return real-valued measurement outcomes
and expectations).

There is a family of small quantum circuits that use interference between different
branches of a superposition to fulfil this task [38]. The most well-known of the
interference routines is the so-called swap test and returns the absolute value of
the inner product of the quantum states of two separate quantum systems. We will
also present two variations which we call the Hadamard test and inversion test.
These require successively fewer qubits, but impose stricter assumptions on the
physical capabilities of the systems implementing them. The Hadamard test is able
to measure the real and imaginary values of the inner product 〈a|b〉 in two separate
measurements.

3.6.1.1 The Swap Test

We consider a quantum state that is the product state of two qubit registers prepared
in |a〉 ⊗ |b〉 = |a〉|b〉. The swap test is a common trick to extract the absolute square
of their inner product, |〈a|b〉|2, from the probability of measuring an ancilla qubit
in a certain state. To achieve this, one creates a superposition of the ancilla qubit
and swaps the quantum states in one branch of the superposition, after which they
are interfered (see Fig. 3.15). We have seen this principle already in the Hadamard
classifier from the introductory chapter.

We add an ancilla qubit and start with the state |0〉|a〉|b〉. AHadamard gate applied
to the ancilla—the qubit in the first register—leads to

1√
2
(|0〉 + |1〉)|a〉|b〉.

Fig. 3.15 Schematic illustration of the swap test routine. An ancilla qubit in state 0 is prepared
together with two quantum states (turquoise and red shapes). The ancilla is superposed and the
two states are swapped in the branch marked by the ancilla’s 1 state. The ancilla is then interfered,
writing the sum and difference of the original and the swapped order into each branch

3.6 Important Quantum Algorithms 123

3.6.1 Measuring the Overlap of Quantum States

Inner products 〈a|b〉 of quantum states, or alternatively their absolute square value
|〈a|b〉|2 called the overlap, are a central feature in quantum theory when comparing
two states. As we will see, inner products and overlaps of quantum states will also
be a crucial ingredient to many quantum machine learning methods. However, it is
actually not immediately obvious how to measure these values. This is particularly
true for the complex-valued inner product, which has no corresponding quantum
observable (since quantum observables return real-valued measurement outcomes
and expectations).

There is a family of small quantum circuits that use interference between different
branches of a superposition to fulfil this task [38]. The most well-known of the
interference routines is the so-called swap test and returns the absolute value of
the inner product of the quantum states of two separate quantum systems. We will
also present two variations which we call the Hadamard test and inversion test.
These require successively fewer qubits, but impose stricter assumptions on the
physical capabilities of the systems implementing them. The Hadamard test is able
to measure the real and imaginary values of the inner product 〈a|b〉 in two separate
measurements.

3.6.1.1 The Swap Test

We consider a quantum state that is the product state of two qubit registers prepared
in |a〉 ⊗ |b〉 = |a〉|b〉. The swap test is a common trick to extract the absolute square
of their inner product, |〈a|b〉|2, from the probability of measuring an ancilla qubit
in a certain state. To achieve this, one creates a superposition of the ancilla qubit
and swaps the quantum states in one branch of the superposition, after which they
are interfered (see Fig. 3.15). We have seen this principle already in the Hadamard
classifier from the introductory chapter.

We add an ancilla qubit and start with the state |0〉|a〉|b〉. AHadamard gate applied
to the ancilla—the qubit in the first register—leads to

1√
2
(|0〉 + |1〉)|a〉|b〉.

Fig. 3.15 Schematic illustration of the swap test routine. An ancilla qubit in state 0 is prepared
together with two quantum states (turquoise and red shapes). The ancilla is superposed and the
two states are swapped in the branch marked by the ancilla’s 1 state. The ancilla is then interfered,
writing the sum and difference of the original and the swapped order into each branch

apply SWAP gate to |a> and |b>
condition to ancilla being in state 1

124 3 Quantum Computing

We now apply a swap operator on the two registers |a〉, |b〉 which is conditioned on
the ancilla being in state 1. This operation swaps the states |a〉|b〉 → |b〉|a〉 in the
corresponding branch,

1√
2
(|0〉|a〉|b〉 + |1〉|a〉|b〉).

Another Hadamard applied to the ancilla results in the state

|ψ〉 = 1
2
|0〉 ⊗ (|a〉|b〉 + |b〉|a〉)+ 1

2
|1〉 ⊗ (|a〉|b〉 − |b〉|a〉) .

This prepares two branches of a superposition, one containing a sum between
the “unswapped” and “swapped” states of the two registers, and the other contain-
ing their difference. The probability of measuring the ancilla qubit in state 0, the
acceptance probability p0 = |(〈0| ⊗ 1)|ψ〉|2 (where the 〈0| acts on the ancilla and
in some notational abuse, the 1 is the identity functional acting on the remainder of
the qubits), is given by

p0 =
1
2

− 1
2
|〈a|b〉|2, (3.72)

and reveals the overlap of the two states via

|〈a|b〉|2 = 1 − 2p0. (3.73)

In themore general case that the two input states aremixed states a and b, the same
routine can be applied and the success probability of the post-selective measurement
is given by [39]

p0 =
1
2

− 1
2
tr{ab}. (3.74)

Note that here the expression ab is not an abbreviation of the tensor product, but a
proper matrix (or operator) product.

As we will see, the swap test is often used in contexts where |a〉, |b〉 represent
normalised and real-valued N -dimensional data vectors a = (a1, . . . , aN) and b =
(b1, . . . , bN) in amplitude encoding. In this case, we sometimes want to know the
real value of the inner product 〈ψa|ψb〉. The absolute value of the inner product
can be derived by taking the square root of expression (3.73), but this still leaves
the sign of the inner product unknown. With a little trick in the way information is
encoded into the amplitudes [40], it is possible to reveal the sign using the swap test.
One simply has to extend the vectors to encode by an extra dimension N + 1 whose
amplitude is set to the constant value 1. To renormalise, we have to then multiply the
entire N + 1-dimensional vector with 1√

2
. This way, the vector to encode becomes

(1√
2
a1, . . . , 1√

2
aN , 1√

2
). If part of the amplitude vector has been padded with zeros

for amplitude encoding, this extension comes at no extra cost in the number of qubits.

124 3 Quantum Computing

We now apply a swap operator on the two registers |a〉, |b〉 which is conditioned on
the ancilla being in state 1. This operation swaps the states |a〉|b〉 → |b〉|a〉 in the
corresponding branch,

1√
2
(|0〉|a〉|b〉 + |1〉|a〉|b〉).

Another Hadamard applied to the ancilla results in the state

|ψ〉 = 1
2
|0〉 ⊗ (|a〉|b〉 + |b〉|a〉)+ 1

2
|1〉 ⊗ (|a〉|b〉 − |b〉|a〉) .

This prepares two branches of a superposition, one containing a sum between
the “unswapped” and “swapped” states of the two registers, and the other contain-
ing their difference. The probability of measuring the ancilla qubit in state 0, the
acceptance probability p0 = |(〈0| ⊗ 1)|ψ〉|2 (where the 〈0| acts on the ancilla and
in some notational abuse, the 1 is the identity functional acting on the remainder of
the qubits), is given by

p0 =
1
2

− 1
2
|〈a|b〉|2, (3.72)

and reveals the overlap of the two states via

|〈a|b〉|2 = 1 − 2p0. (3.73)

In themore general case that the two input states aremixed states a and b, the same
routine can be applied and the success probability of the post-selective measurement
is given by [39]

p0 =
1
2

− 1
2
tr{ab}. (3.74)

Note that here the expression ab is not an abbreviation of the tensor product, but a
proper matrix (or operator) product.

As we will see, the swap test is often used in contexts where |a〉, |b〉 represent
normalised and real-valued N -dimensional data vectors a = (a1, . . . , aN) and b =
(b1, . . . , bN) in amplitude encoding. In this case, we sometimes want to know the
real value of the inner product 〈ψa|ψb〉. The absolute value of the inner product
can be derived by taking the square root of expression (3.73), but this still leaves
the sign of the inner product unknown. With a little trick in the way information is
encoded into the amplitudes [40], it is possible to reveal the sign using the swap test.
One simply has to extend the vectors to encode by an extra dimension N + 1 whose
amplitude is set to the constant value 1. To renormalise, we have to then multiply the
entire N + 1-dimensional vector with 1√

2
. This way, the vector to encode becomes

(1√
2
a1, . . . , 1√

2
aN , 1√

2
). If part of the amplitude vector has been padded with zeros

for amplitude encoding, this extension comes at no extra cost in the number of qubits.

another H on the ancilla

124 3 Quantum Computing

We now apply a swap operator on the two registers |a〉, |b〉 which is conditioned on
the ancilla being in state 1. This operation swaps the states |a〉|b〉 → |b〉|a〉 in the
corresponding branch,

1√
2
(|0〉|a〉|b〉 + |1〉|a〉|b〉).

Another Hadamard applied to the ancilla results in the state

|ψ〉 = 1
2
|0〉 ⊗ (|a〉|b〉 + |b〉|a〉)+ 1

2
|1〉 ⊗ (|a〉|b〉 − |b〉|a〉) .

This prepares two branches of a superposition, one containing a sum between
the “unswapped” and “swapped” states of the two registers, and the other contain-
ing their difference. The probability of measuring the ancilla qubit in state 0, the
acceptance probability p0 = |(〈0| ⊗ 1)|ψ〉|2 (where the 〈0| acts on the ancilla and
in some notational abuse, the 1 is the identity functional acting on the remainder of
the qubits), is given by

p0 =
1
2

− 1
2
|〈a|b〉|2, (3.72)

and reveals the overlap of the two states via

|〈a|b〉|2 = 1 − 2p0. (3.73)

In themore general case that the two input states aremixed states a and b, the same
routine can be applied and the success probability of the post-selective measurement
is given by [39]

p0 =
1
2

− 1
2
tr{ab}. (3.74)

Note that here the expression ab is not an abbreviation of the tensor product, but a
proper matrix (or operator) product.

As we will see, the swap test is often used in contexts where |a〉, |b〉 represent
normalised and real-valued N -dimensional data vectors a = (a1, . . . , aN) and b =
(b1, . . . , bN) in amplitude encoding. In this case, we sometimes want to know the
real value of the inner product 〈ψa|ψb〉. The absolute value of the inner product
can be derived by taking the square root of expression (3.73), but this still leaves
the sign of the inner product unknown. With a little trick in the way information is
encoded into the amplitudes [40], it is possible to reveal the sign using the swap test.
One simply has to extend the vectors to encode by an extra dimension N + 1 whose
amplitude is set to the constant value 1. To renormalise, we have to then multiply the
entire N + 1-dimensional vector with 1√

2
. This way, the vector to encode becomes

(1√
2
a1, . . . , 1√

2
aN , 1√

2
). If part of the amplitude vector has been padded with zeros

for amplitude encoding, this extension comes at no extra cost in the number of qubits.

124 3 Quantum Computing

We now apply a swap operator on the two registers |a〉, |b〉 which is conditioned on
the ancilla being in state 1. This operation swaps the states |a〉|b〉 → |b〉|a〉 in the
corresponding branch,

1√
2
(|0〉|a〉|b〉 + |1〉|a〉|b〉).

Another Hadamard applied to the ancilla results in the state

|ψ〉 = 1
2
|0〉 ⊗ (|a〉|b〉 + |b〉|a〉)+ 1

2
|1〉 ⊗ (|a〉|b〉 − |b〉|a〉) .

This prepares two branches of a superposition, one containing a sum between
the “unswapped” and “swapped” states of the two registers, and the other contain-
ing their difference. The probability of measuring the ancilla qubit in state 0, the
acceptance probability p0 = |(〈0| ⊗ 1)|ψ〉|2 (where the 〈0| acts on the ancilla and
in some notational abuse, the 1 is the identity functional acting on the remainder of
the qubits), is given by

p0 =
1
2

− 1
2
|〈a|b〉|2, (3.72)

and reveals the overlap of the two states via

|〈a|b〉|2 = 1 − 2p0. (3.73)

In themore general case that the two input states aremixed states a and b, the same
routine can be applied and the success probability of the post-selective measurement
is given by [39]

p0 =
1
2

− 1
2
tr{ab}. (3.74)

Note that here the expression ab is not an abbreviation of the tensor product, but a
proper matrix (or operator) product.

As we will see, the swap test is often used in contexts where |a〉, |b〉 represent
normalised and real-valued N -dimensional data vectors a = (a1, . . . , aN) and b =
(b1, . . . , bN) in amplitude encoding. In this case, we sometimes want to know the
real value of the inner product 〈ψa|ψb〉. The absolute value of the inner product
can be derived by taking the square root of expression (3.73), but this still leaves
the sign of the inner product unknown. With a little trick in the way information is
encoded into the amplitudes [40], it is possible to reveal the sign using the swap test.
One simply has to extend the vectors to encode by an extra dimension N + 1 whose
amplitude is set to the constant value 1. To renormalise, we have to then multiply the
entire N + 1-dimensional vector with 1√

2
. This way, the vector to encode becomes

(1√
2
a1, . . . , 1√

2
aN , 1√

2
). If part of the amplitude vector has been padded with zeros

for amplitude encoding, this extension comes at no extra cost in the number of qubits.

Measure ancilla. Probability it is in 0 is:

overlap between
both states

MITP Summer School Lecture Michael Spannowsky July 2023 84

swap

Hadamard test:

Elegant way to measure overlap/scalar product of quantum states

3.6 Important Quantum Algorithms 125

Only if we have already N = 2n features to encode, this requires us to add one qubit
to extend the dimensions of the Hilbert space.

With the extra constant dimension, the result of the swap test between |ψa〉, |ψb〉
will be

p(0) = 1
2

− 1
2
|〈ψa|ψb〉|2,

= 1
2

− 1
2
|1
2
a1b1 + · · · + 1

2
aNbN + 1

2
|2,

= 1
2

− 1
2
|1
2
aTb+ 1

2
|2.

Since aTb ∈ [−1, 1], the expression | 12aTb+ 1
2 | is guaranteed to lie in the positive

interval [0, 1]. As opposed to Eq. (3.73), we therefore do not have to worry about
only retrieving the absolute value. Hence, we can extract the inner product of the
original vectors via

aTb = 2
√
1 − 2p0 − 1,

and since p0 ∈ [0, 1
2], this value does indeed lie in the interval [−1, 1].

3.6.1.2 Hadamard Test

There is another, slightly more elegant routine to extract inner products of quantum
states (and, thereby, overlaps), but it requires more sophisticated state preparation
or data encoding. First, let us note that for unit vectors there is a close relationship
between the vector sum and the inner product: Given two real-valued unit-length
vectors a,b whose inner product one wishes to compute, then

(a + b)T (a + b) =
∑

i

(ai + bi)2 (3.75)

=
∑

i

a2i +
∑

i

b2i + 2
∑

i

ai bi (3.76)

= 2+ 2aTb. (3.77)

A geometric illustration is given in Fig. 3.16.
This fact has implicitly been used in the swap test routine, and helps to evaluate

the inner product of two quantum states together with the correct sign without tricks
like the constant shift introduced above. As a precondition, we need to be able to
prepare the initial state

|ψ〉 = 1√
2
(|0〉|a〉 + |1〉|b〉) . (3.78)Start with superposition of ancilla and 1 register126 3 Quantum Computing

Fig. 3.16 Geometric illustration showing the relation between inner products of two normalised
vectors a and b with their sum. The sum of parallel normalised vectors is at the maximum value,
while the sum of antiparallel vectors is zero. This is exploited in the interference circuits introduced
in this section

Fig. 3.17 Schematic illustration of the Hadamard test for the calculation of inner products. The
two states (blue and red shape) are initially entangled with the 0 and 1 state of an ancilla. Interfering
the two branches through a Hadamard gate applied to the ancilla writes the sum and difference of
the two states into each branch

Note that in comparison with the swap test routine, here there is a superposition of
states |a〉, |b〉 in one register, as opposed to each state having its own register (see
Fig. 3.17). In other words, ifα,β are the amplitude vector representations of |a〉, |b〉,
the quantum state (3.78) corresponds to an amplitude vector 1√

2
(α,β) rather than

α ⊗ β. If we have a routine A to prepare |a〉 and another routine B to prepare |b〉, one
has to implement these routines conditioned on the respective states of the ancilla
qubit prepared in |+〉 = 1√

2
(|0〉 + |1〉).

Once state (3.78) is prepared, a Hadamard gate on the ancilla will result in

|ψ〉 = 1
2
|0〉 ⊗ (|a〉 + |b〉)+ 1

2
|1〉 ⊗ (|a〉 − |b〉). (3.79)

One can think of this state as the ancilla |0〉 being entangled to an unnormalised quan-
tum state |a + b〉 that corresponds to the sum of α + β. The acceptance probability
p(0) = |(〈0| ⊗ 1)|ψ〉|2 of the ancilla being measured in state 0 is given by

p(0) = 1
4
(〈a| + 〈b|) (|a〉 + |b〉) ,

= 1
4
(2+ 〈a|b〉 + 〈b|a〉,

= 1
2
+ 1

2
Re(〈a|b〉).

126 3 Quantum Computing

Fig. 3.16 Geometric illustration showing the relation between inner products of two normalised
vectors a and b with their sum. The sum of parallel normalised vectors is at the maximum value,
while the sum of antiparallel vectors is zero. This is exploited in the interference circuits introduced
in this section

Fig. 3.17 Schematic illustration of the Hadamard test for the calculation of inner products. The
two states (blue and red shape) are initially entangled with the 0 and 1 state of an ancilla. Interfering
the two branches through a Hadamard gate applied to the ancilla writes the sum and difference of
the two states into each branch

Note that in comparison with the swap test routine, here there is a superposition of
states |a〉, |b〉 in one register, as opposed to each state having its own register (see
Fig. 3.17). In other words, ifα,β are the amplitude vector representations of |a〉, |b〉,
the quantum state (3.78) corresponds to an amplitude vector 1√

2
(α,β) rather than

α ⊗ β. If we have a routine A to prepare |a〉 and another routine B to prepare |b〉, one
has to implement these routines conditioned on the respective states of the ancilla
qubit prepared in |+〉 = 1√

2
(|0〉 + |1〉).

Once state (3.78) is prepared, a Hadamard gate on the ancilla will result in

|ψ〉 = 1
2
|0〉 ⊗ (|a〉 + |b〉)+ 1

2
|1〉 ⊗ (|a〉 − |b〉). (3.79)

One can think of this state as the ancilla |0〉 being entangled to an unnormalised quan-
tum state |a + b〉 that corresponds to the sum of α + β. The acceptance probability
p(0) = |(〈0| ⊗ 1)|ψ〉|2 of the ancilla being measured in state 0 is given by

p(0) = 1
4
(〈a| + 〈b|) (|a〉 + |b〉) ,

= 1
4
(2+ 〈a|b〉 + 〈b|a〉,

= 1
2
+ 1

2
Re(〈a|b〉).

Then apply H on ancilla

The acceptance probability of ancilla to be in 0

126 3 Quantum Computing

Fig. 3.16 Geometric illustration showing the relation between inner products of two normalised
vectors a and b with their sum. The sum of parallel normalised vectors is at the maximum value,
while the sum of antiparallel vectors is zero. This is exploited in the interference circuits introduced
in this section

Fig. 3.17 Schematic illustration of the Hadamard test for the calculation of inner products. The
two states (blue and red shape) are initially entangled with the 0 and 1 state of an ancilla. Interfering
the two branches through a Hadamard gate applied to the ancilla writes the sum and difference of
the two states into each branch

Note that in comparison with the swap test routine, here there is a superposition of
states |a〉, |b〉 in one register, as opposed to each state having its own register (see
Fig. 3.17). In other words, ifα,β are the amplitude vector representations of |a〉, |b〉,
the quantum state (3.78) corresponds to an amplitude vector 1√

2
(α,β) rather than

α ⊗ β. If we have a routine A to prepare |a〉 and another routine B to prepare |b〉, one
has to implement these routines conditioned on the respective states of the ancilla
qubit prepared in |+〉 = 1√

2
(|0〉 + |1〉).

Once state (3.78) is prepared, a Hadamard gate on the ancilla will result in

|ψ〉 = 1
2
|0〉 ⊗ (|a〉 + |b〉)+ 1

2
|1〉 ⊗ (|a〉 − |b〉). (3.79)

One can think of this state as the ancilla |0〉 being entangled to an unnormalised quan-
tum state |a + b〉 that corresponds to the sum of α + β. The acceptance probability
p(0) = |(〈0| ⊗ 1)|ψ〉|2 of the ancilla being measured in state 0 is given by

p(0) = 1
4
(〈a| + 〈b|) (|a〉 + |b〉) ,

= 1
4
(2+ 〈a|b〉 + 〈b|a〉,

= 1
2
+ 1

2
Re(〈a|b〉).

Starting with ancilla in

3.6 Important Quantum Algorithms 127

Starting with the ancilla in state |−〉 = 1√
2
(|0〉 − i |1〉) will instead reveal the

imaginary value via

p(0) = 1
4
(〈a| − i〈b|) (|a〉 + i |b〉) ,

= 1
4
(2 − i〈b|a〉 + i〈a|b〉,

= 1
2

− 1
2
Im(〈a|b〉).

3.6.1.3 Inversion Test

The third interference routine, which we call the “inversion test”, can be used to
reduce the number of qubits required to a bare minimum when computing state
overlaps of the form |〈a|b〉|2. However, it requires the quantum computer to be able
to implement the inverse of one of the state preparation circuits. If, as above, we have
a routine A to prepare |a〉 = A|0〉 and another routine B to prepare |b〉 = B|0〉, the
idea is to run the circuit B†A|0〉 and measure the state of each qubit. The probability
of observing the quantum computer back in the initial state |0〉 is—according to the
fundamental Born rule—given by |〈0| (B†A|0〉)|2, which is just the desired property.

Mathematically, this can be seen by writing out the expectation value of the
projective measurement M = |0〉〈0|, which is given by

〈0|A†B (|0〉〈0|) B†A|0〉 = 〈0|A†B|0〉 〈0|B†A|0〉 (3.80)

= |〈0|B†A|0〉)|2 (3.81)

= |〈a|b〉|2. (3.82)

The inverse of a quantum circuitU = UL . . .U1 is given byU
†
1 . . .U

†
L . The quan-

tum computer must therefore be able to implement the complex-conjugate transpose
version of every gate in the circuit. For many data-encoding strategies, this is very
simple: a lot of the fundamental quantum gates are their own inverse, or can be
inverted by feeding the parameter times a factor of −1. For example, a Pauli rotation
fulfils R(z)† = R(−z). However, especially near-term quantum computers may not
be able to invert a routine exactly, in which case one can always revert to the two
methods presented previously.

Overall, estimating the inner product or overlap of two n-qubit quantum states via
measurements requires at most 2n + 1 qubits and a number of gates that is linear in
the number of qubits.

3.6 Important Quantum Algorithms 127

Starting with the ancilla in state |−〉 = 1√
2
(|0〉 − i |1〉) will instead reveal the

imaginary value via

p(0) = 1
4
(〈a| − i〈b|) (|a〉 + i |b〉) ,

= 1
4
(2 − i〈b|a〉 + i〈a|b〉,

= 1
2

− 1
2
Im(〈a|b〉).

3.6.1.3 Inversion Test

The third interference routine, which we call the “inversion test”, can be used to
reduce the number of qubits required to a bare minimum when computing state
overlaps of the form |〈a|b〉|2. However, it requires the quantum computer to be able
to implement the inverse of one of the state preparation circuits. If, as above, we have
a routine A to prepare |a〉 = A|0〉 and another routine B to prepare |b〉 = B|0〉, the
idea is to run the circuit B†A|0〉 and measure the state of each qubit. The probability
of observing the quantum computer back in the initial state |0〉 is—according to the
fundamental Born rule—given by |〈0| (B†A|0〉)|2, which is just the desired property.

Mathematically, this can be seen by writing out the expectation value of the
projective measurement M = |0〉〈0|, which is given by

〈0|A†B (|0〉〈0|) B†A|0〉 = 〈0|A†B|0〉 〈0|B†A|0〉 (3.80)

= |〈0|B†A|0〉)|2 (3.81)

= |〈a|b〉|2. (3.82)

The inverse of a quantum circuitU = UL . . .U1 is given byU
†
1 . . .U

†
L . The quan-

tum computer must therefore be able to implement the complex-conjugate transpose
version of every gate in the circuit. For many data-encoding strategies, this is very
simple: a lot of the fundamental quantum gates are their own inverse, or can be
inverted by feeding the parameter times a factor of −1. For example, a Pauli rotation
fulfils R(z)† = R(−z). However, especially near-term quantum computers may not
be able to invert a routine exactly, in which case one can always revert to the two
methods presented previously.

Overall, estimating the inner product or overlap of two n-qubit quantum states via
measurements requires at most 2n + 1 qubits and a number of gates that is linear in
the number of qubits.

gives

MITP Summer School Lecture Michael Spannowsky July 2023 85

Grover Algorithm

• Well-known algorithm to give quadratic speedup in finding element in
unordered list. Classically, this takes on average K/2 steps in a list of
length K…

• Idea is based on amplitude amplification. One encodes the elements
as basis states and iteratively increases the value of the amplitude of
the element of interest.

128 3 Quantum Computing

3.6.2 Grover Search

Grover’s algorithm, and its core routine of amplitude amplification, is a quantum
algorithm that finds one or multiple entries in an unstructured (i.e., arbitrarily sorted)
database of K entries in basis encoding, a task that on classical computers takes K
operations at worst and K/2 on average. More generally, it is a routine that given a
quantum state in superposition increases the amplitude of some desired basis states,
which is a crucial tool for quantum computing.

To illustrate this, imagine one had a 3-qubit register in uniform superposition that
serves as an index register, joint with a flag ancilla qubit in the ground state as well
as the database entries ei in basis encoding,

|ψ〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|0〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Further, assume that there was a known quantum algorithm that marks the desired
output |011〉 of the computation by setting the flag ancilla to 1. This could be a
quantum version of a classical routine that analyses an entry and flags it if it is
recognised as the correct one, with the typical quantum property of applying it in
parallel to an exponential amount of entries. The result is state

|ψ′〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|1〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Grover search is an iterative quantum algorithm that increases the desired amplitude
α3 so that |α3|2 ≈ 1 and a measurement reveals the result of the computation. It turns
out that in order to increase the amplitude, one requires

√
2n iterations (where n is

the number of qubits) and that this is a lower bound for quantum algorithms for this
kind of task [41, 42]. That means that for search in unstructured databases (a very

• For example:
Basis
state Ancilla

Basis
encoded
entries

128 3 Quantum Computing

3.6.2 Grover Search

Grover’s algorithm, and its core routine of amplitude amplification, is a quantum
algorithm that finds one or multiple entries in an unstructured (i.e., arbitrarily sorted)
database of K entries in basis encoding, a task that on classical computers takes K
operations at worst and K/2 on average. More generally, it is a routine that given a
quantum state in superposition increases the amplitude of some desired basis states,
which is a crucial tool for quantum computing.

To illustrate this, imagine one had a 3-qubit register in uniform superposition that
serves as an index register, joint with a flag ancilla qubit in the ground state as well
as the database entries ei in basis encoding,

|ψ〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|0〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Further, assume that there was a known quantum algorithm that marks the desired
output |011〉 of the computation by setting the flag ancilla to 1. This could be a
quantum version of a classical routine that analyses an entry and flags it if it is
recognised as the correct one, with the typical quantum property of applying it in
parallel to an exponential amount of entries. The result is state

|ψ′〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|1〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Grover search is an iterative quantum algorithm that increases the desired amplitude
α3 so that |α3|2 ≈ 1 and a measurement reveals the result of the computation. It turns
out that in order to increase the amplitude, one requires

√
2n iterations (where n is

the number of qubits) and that this is a lower bound for quantum algorithms for this
kind of task [41, 42]. That means that for search in unstructured databases (a very

Gover algorithm iteratively
increases amplitdue of
element of interest

element of
interest

requires

128 3 Quantum Computing

3.6.2 Grover Search

Grover’s algorithm, and its core routine of amplitude amplification, is a quantum
algorithm that finds one or multiple entries in an unstructured (i.e., arbitrarily sorted)
database of K entries in basis encoding, a task that on classical computers takes K
operations at worst and K/2 on average. More generally, it is a routine that given a
quantum state in superposition increases the amplitude of some desired basis states,
which is a crucial tool for quantum computing.

To illustrate this, imagine one had a 3-qubit register in uniform superposition that
serves as an index register, joint with a flag ancilla qubit in the ground state as well
as the database entries ei in basis encoding,

|ψ〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|0〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Further, assume that there was a known quantum algorithm that marks the desired
output |011〉 of the computation by setting the flag ancilla to 1. This could be a
quantum version of a classical routine that analyses an entry and flags it if it is
recognised as the correct one, with the typical quantum property of applying it in
parallel to an exponential amount of entries. The result is state

|ψ′〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|1〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Grover search is an iterative quantum algorithm that increases the desired amplitude
α3 so that |α3|2 ≈ 1 and a measurement reveals the result of the computation. It turns
out that in order to increase the amplitude, one requires

√
2n iterations (where n is

the number of qubits) and that this is a lower bound for quantum algorithms for this
kind of task [41, 42]. That means that for search in unstructured databases (a very

iterations
for n qubits to get to

128 3 Quantum Computing

3.6.2 Grover Search

Grover’s algorithm, and its core routine of amplitude amplification, is a quantum
algorithm that finds one or multiple entries in an unstructured (i.e., arbitrarily sorted)
database of K entries in basis encoding, a task that on classical computers takes K
operations at worst and K/2 on average. More generally, it is a routine that given a
quantum state in superposition increases the amplitude of some desired basis states,
which is a crucial tool for quantum computing.

To illustrate this, imagine one had a 3-qubit register in uniform superposition that
serves as an index register, joint with a flag ancilla qubit in the ground state as well
as the database entries ei in basis encoding,

|ψ〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|0〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Further, assume that there was a known quantum algorithm that marks the desired
output |011〉 of the computation by setting the flag ancilla to 1. This could be a
quantum version of a classical routine that analyses an entry and flags it if it is
recognised as the correct one, with the typical quantum property of applying it in
parallel to an exponential amount of entries. The result is state

|ψ′〉 = α0|000〉|0〉|e0〉
+ α1|001〉|0〉|e1〉
+ α2|010〉|0〉|e2〉
+ α3|011〉|1〉|e3〉
+ α4|100〉|0〉|e4〉
+ α5|101〉|0〉|e5〉
+ α6|110〉|0〉|e6〉
+ α7|111〉|0〉|e7〉.

Grover search is an iterative quantum algorithm that increases the desired amplitude
α3 so that |α3|2 ≈ 1 and a measurement reveals the result of the computation. It turns
out that in order to increase the amplitude, one requires

√
2n iterations (where n is

the number of qubits) and that this is a lower bound for quantum algorithms for this
kind of task [41, 42]. That means that for search in unstructured databases (a very

MITP Summer School Lecture Michael Spannowsky July 2023 86

