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\
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.
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Structure of a Quantum Machine

Classical

Dataset D/
Input x

A 4

Machine learning
algorithm

Output y

MITP Summer School

Quantum

Dataset D/
Input x

N

Input encoding

A

Processing

h 4

Read out

h 4

Output y
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Learning Algorithm

Quantum system

state preparation

N\

unitary evolution

{

measurement
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| Algorithm Type
Classical Quantum

@ @
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Algorithm Type

Classical Quanturh
S
Q
47 All the methods
—S CC discussed in the

lectures you had
over the last 2
weeks

Data Type

Quantum
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| Algorithm Type
Classical Quantum

Classical

Data Type

Quantum
-
@

% Also Tensor Networks
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Algorithm Type
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Encoding

Data /\ State of a

quantum system

basis encoding of binary string (1,0 . . . . .
S Ly g (1,0), Hamiltonian encoding of a matrix A

l.e. representing integer 2 \ ‘

1) = p|00) + a1]01) + a2|10) + ag|11) U — e—iH__«,/l,
| | | |

time-evolution encoding of a scalar ¢

amplitude encoding of unit-length
complex vector (aq, oy, g, a3)

data encoding in different parts of the state and
operator description
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Basis encoding:

maps a collection of items into the states forming an orthonormal basis of the Hilbert
space of the considered quantum system.
The orthonormal basis {|x)}xeX , called computational basis, is made by the

eigenstates of a reference observable measured on the considered quantum system. For

instance, a bit can be encoded into a qubit by the mapping 0 — |0), 1 — |1). Then the

n-bit strings (x1 - + - Xn) can be encoded into the states of n qubits forming an

orthonormal basis of a 2N-dimensional Hilbert space Hn:

B" > (z1---xp) — |z1---2) € Hy,

can prepare superposition of data that ! 2" -1
can be processed in parallel, e.g. ) = o Z |z)

—
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Binary encoding into basis states

basis vector coefficient {0,1}

/

Represent numbers as binaries, each binary ="1
4 e— bk—
D ok

k=1

digit requires a qubit

binary fraction rf/
data vector sign quantum state

0.1 —/0\0001...
x =(0.1,-0.6,1.0)0 — —-0.6 —»1/1001... — [00001 11001 01111)
1.0 > 0/1111....

MITP Summer School Lecture 56 Michael Spannowsky July 2023



Time-Evolution Encoding

Associates the input data value x with the time evolution parameter t

U(.X) — e—ixH

In quantum machine learning, this kind of encoding is particularly popular when
encoding classical trainable parameters intfo a quantum circuit. The most common choice
are the Pauli rotation gates, in which H = 30, and a € {x, y, z}. Successive gates or

evolutions of the form U(x) can be used to encode a real-valued vector x € R»

data Encoded with RY gate applied to initial state |0>
—0.438 11 (—0.438)) = cos(—0.438/2)|0) + sin(—0.438/2)|1)

~ (0.976/0) — 0.217]|1)

sine/cosine structure typical for Time-Evolution Encoding -> leads to
Fourier-type dependence of amplitudes on the inputs
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Angle/Rotation encoding

When used on an n-qubit circuit, this feature map of angle encoding can take

up to n numerical inputs x1, ..., xn. The action of its circuit consists in the

application of a rotation gate on each qubit j parametrised by the value x;. In

this feature map, we are using the x;values as angles in the rotations, hence

the name of the encoding.

Example
as Rz|0> doesnt do anything
x normalised [0,2pi) l
0) — Rx(x1) — 10) —{ Ry(x1) — 1[0) — H Rz(xy) —
0) — Rx(x2) — 10) —{ Ry(xz) — [0) — H Rz(x2) —
|O> — RX(xn) - |O> ] RY(xn) . |O> — H RZ(xn) .
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In example of simple Pauli-X rotation, transforms real-valued N-

dimensional input vector x € RY as

sin(xp) sin(x,) . . .sin(xy) \
sin(x;) sin(xy) ...cos(xy)

(need N qubits)

¢P1(X) = :
cos(xy) cos(xy) ...sin(xy)
\cos(xl) cos(xy) ...cos(xy)
X1X1...X1
encoding can.be repeated 5D - ® by (x) = X1X1...X
multiple times, e.qg.
XNXN ... XN

—> results in non-linearities and higher expressivity of model

— repeated encoding used to show universal approximation theorem
for variational quantum circuits
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Hamiltonian Encoding:

For some applications, it can be useful to encode matrices into the Hamiltonian of
a time evolution. The basic idea is to associate a Hamiltonian H with a square

matrix A. In case A is not Hermitian, one can sometimes use the trick of encoding

0 A
Ha = (AT o)

instead, and to perform the computations in two subspaces of the Hilbert space.
Hamiltonian encoding allows us fo extract and process the eigenvalues of A, for

example, to multiply A or A~l with an amplitude-encoded vector.
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Amplitude encoding:

Represent classical data as amplitudes of a quantum state
d
Px) = ZCEZVM c H
1=1

or for composite systems with Zij \aij\Z =1

d
Pa) = Z a;j|¢i) ® |¢;) e H®H
i,j=1
Example:
data vector normalised and padded data vector

x = (0.1,—0.6,1.00 —— x = (0.073,—-0.438, 0.730, 0.000)

l

quantum state
[1x) = 0.073]00) — 0.438|01) + 0.730{10) 4 0|11)
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This could also be encoded as a matrix A

A — 0.073 —0.438
~\0.730 0.000

Amplitude encoding uses much less qubits than basis encoding, however,
routines to prepare amplitude vectors can be costly

Qsample encoding:

Given a probability distribution p on the finite set X, it can be encoded in the

state:
Wp) =Y V/pla)|z) € H

Repeated measurements on the state |{p) with respect o the computational
basis allow to sample the distribution p.

In a sense a hybrid case of basis and amplitude encoding since the information
is represented by amplitudes, but the features are encoded in the qubits.
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visualisation of data encoding

2 -

To 11

Amplitude encoding Rotation encoding (simple Pauli-X)

0 - N 1 o
° l ah\ = < ®
Basis encoding - 024
L 0) 0) |0)
. 3 ; 3 ) )
1) ® ®
o 0 b
Encoding # qubits Runtime Input type
Basis Nt O(NT) Single input (binary)
Amplitude log N O(N)! O(log(N))? Single input
Angle N O(N) Single input
Hamiltonian log N O(MN)/ Entire dataset
O(log(M N))*

4Only applies under strict assumptions.  see Schuld & Petruccione

Encoding can be important for runtime of algo - crucial aspect of QC

N= # features tau=#bits in binary rep 3 Michael Spannowsky July 2023
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Need fransition form classical to quantum:

Quantum

0 Classical
. bits < >
Classical Bit
gates -
algorithms -
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qubits

quantum
gates

Target qubit

quantum algorithms

b) 1R ﬁ Rt |x)

10) N T 10)

1) Ry(0) —AF 1
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Single-Qubit Quantum Gates

Illustrative to write single-qubit operation as matrices

X-Gate: Quantum equivalent to classical NOT gate

0) — |1)
1) — |0)

— Flips |0> to |1> and vice versa (hopping)

Represented by matrix X-= (? é)

concretely  X|0) = ((1) (1)) ((1)) = ((1)) = |1)

It is unitary XX ' =XX'=1
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Z-Gate: Represented by matrix ((1) _Ol)

Action O> s O)
1) — =|1)

— Eigenvalues +- 1
Note, the X, Y and Z gates are represented by the Pauli matrices
_ (01 0 —i 10 .
Ox = (1 O) Oy = (i 0) o, = (0 _1> [O’i, O'j] = 22€ijk0'k

det o; —1 1 0
’ J%ZG%:U?):—iUlOQUg:(O 1)2[

tI'O'j — 0
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1 1
Hadamard gate: Matrix representation \% (1 _1)

. 1 0) +|1)
Action: 0) > —(0) + 1), «— |+) :=

1 J—
1) > —=(10) — 1)) e | = 102 =11

V2 V2
| | 1 0
Phase gate: Matrix representation P := ( 0 ¢ )

With special phase values

S=Lyp T:=Pys R:=P .,
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Summary of fixed 1-qubit gates:

Gate| Circuit representation| Matrix representation| Dirac representation
X 01 [1) (0] + [0) (1]
X 10
0 —i
Y 111)(0] —i]0)(1
Y <i0) [1)(0] = £]0) (1]
1 0
4 Z <0 _1) [1)(0] = [0) (1]
(11 1 1
T 1 1 1 _
H AR 7 (0 + IO+ 5 (10) = [1)){1]
10 :
S S %2<Oi) —10)(0] + —=i[1){1]
1 1 0 1 0\ (0 1 (=im/4)11y(1
T T V2 0 (—iT/4 Til ) |+7§€ | 1) (1}
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Quantum gate can be parametrised

Pauli rotations:

COS

0
R, (0) = o130 — ( 2
—i sin (

) —i sm(
9
P

) ¢

. (cos(
R,(0) =e 2% = (

0
2
0
S1n )

)

.0
.0 e ‘2 0 0 6
R 9 - 1290 = . — —] —1s81n —
(0) =e < 0 e,g) (3052[ zstZ

generadlised form via R(01, 02, 65) = R.(61)Ry(62) R, (03)

i (— 53— 93>COS(92) ol (=1 +%) sin(92)

R0, 0>, 05) = |
( 2 el (3= 93)sm(92) el (F+ 3)008(92)
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Measurement process

Measurement process of a generic (normalised) qubit state [¢) = a0|0) + ai[1)

represented by projection onto eigenstates Py, =|0)(0|] and P; = [1)(]]

Prob of measurement outcome O is then p(0) = tr(Po|w)(]) = (| Pyleb) = |agl?

and p(1) = ||’

L o Rly)y
After measurement qubit is in state  [¥) < = 10)

VAW Polth)

The observable corresponding to a computational basis measurement is
Pauli-Z observable

o, = |O> (()| — |1> (1| (we know eigenvalues +1 for |0> and -1 for [1>)
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The expectation value (0;) in a value in [-1, 1]. Its error can be estimated
as sampling from a Bernoulli distribution.

Wald interval gives

n 100 .
(suited for large s and p~0.5) share of % / e = 0.001 \
0% L sample in 5 10°
n
€ = Z\/P - p state 1 ui T S T .-
) '/ s\
f \ = 1000 ¢/ |
stat. z-value T 100 f e e SO —

- So

estimate for p

— For € =0.1 and conf level 99% one needs 167 samples

For e =0.01 and conf level 99% one needs 17,000 samples

—> Overall might need a large number of shots on quantum computer

This needs fto be taken into account when comparing quantum and

classical computers in ferms of speedups and quantum advantage
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The Bloch Sphere

Since  [¢9) =a|0) +B[1) with |af?+|B> =1
one can find angles such that

. s . 0
a = e"Ycosg B = € sin 5

Thus, with ¢ =0 —7 single qubit can be
parametrised as

. 0 . 0
1)) = e (cos §|O) + P sin 5'”)

(sin @ cos ¢, sin  sin ¢, cos @)

where a global imaginary phase has no measurable
effect and can be omitted.

MITP Summer School Lecture 73 Michael Spannowsky July 2023



2-qubit states

Are built by tensor products, each qubit can be in state |0> or in state 1>

So, for two qubits we have four possibilities:

0)®10),]0)® [1),[1) ®0),[1) ®[1)
that we denote
0)10),10)[1),[1)10),[1) 1)

or
00),|01),{10), [11)

We can have superposition as a generic state

14) = ago [00) + gy |01) +Of10 110) + aq1|11)

with complex coefficients such that Z Iozxyl2 = 1
x,y=0
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2-qubit states
Furthermore, we can express the state as a vector
(00
Q01
Q10
\aﬁ/

For which we find the inner products

(00|00) = (01]01) = (10|10) = (11[11) =1

(00]01) = (00]|10) = (00[11) = --- = (11|00) = O

A 2-qubit quantum gate is a unitary matrix U of size 4 x 4
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2-qubit gates

0100
unitary matrix representation \8 8 ? g) )

In words: if the first qubit is [0> nothing changes. If it is |1> we flip
the second bit (and first stays the same)

Action: |00) — |00) 01) — |01)
10) — |11) 11) — [10)

As a gate: x,ye€{0,1} — |x) —e— |X)
y) —b— ly®x)

¢ A set of gates that can approximate any quantum operation
-> Universal quantum computer

e.g. Rotation gates R (0), Ry(0), R,(0) + phase shift gate: P(¢) + CNOT
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The CNOT gate is an extremely important gate
e It realises conditional probabilities

e It creates entanglement

read circuit from
left to right

02 —{ H
0)2 j >  CNOT((H, ® 11)(|0)2 ® 0)1))

|O>1 jj/

1 1 1
CNOT(—[0)» ® [0} + — |1}, ® |0 = —(10), K |0}y 4+ |1} ® |1
(ﬁ| )2 @ 10); ﬁl )2 ®10)1) ﬁ(| )2 ®10)1 + [1)2 ® |1)1)

Bell state (fully entangled)

e It can copy classical information, because
|00) — |00)
110) — |11)
e Constructs other control gates
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SWAP gate

Can swap two qubits.

1000
In basis [00), [01), [10), [11) 0010
It is represented by 0100
0001

In gate notation: %

Can be decomposed by Pauli operators

IQI+XQX+YRY+2Q7Z

SWAP =
2
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N-qubit states

When we have n qubits, each of them can be in state |0> or |1>

Thus for n qubit states we have 2"n possibilities:

00...0),[00...1),...,[11...1)

or simply

|O),|1),...,|2”—1>
A generic state of the system will be
) = ag|0) + a1 [1) + ... +agn_q 2" — 1)

2n_1
With complex coefficients, such that Z a]? = 1
i=0
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Suppose we have the N qubit state

P) = a0 |0) + a1 [1) + ... +o2nq 27— 1)
If we measure all its qubits, we obtain:

e 0 with probability |ag|? and the new state will be |0...00)

e 1 with probability |a1|° and the new state will be [0...01)

e 27— 1 with probability |a2n_1|? and the new state is [1...11)

Completely analogous to 1 and 2 qubit situation but now with 27
possibilities
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Toffoli gate (CCNOT)

Matrix Truth table

controls from .
representation

two qubits

INPUT | OUTPUT

(10000000) 0|0

o 01000000

00100000
® 00010000
AN 00001000
N 00000100
00000001 1)1
\00000010) 1]

0 1

- | =1 O O O o

0
0
0|1
0
1
1

- | O | = | O

0
1
0
1

1
0
0

1111

- | O

1710

Toffoli gate can also be decomposed into Pauli operators

Toff — 's I ZVU-2)(I=X3) _ —ig(I=21)(I-2)(I-X;)
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Example: Turning a Hamiltonian tferm into a gate

Recall H = H + H, + --- + Hyn

— vy H vy — - — vy | —

Assume, universal gate operations on device are {H,R;,CX}

Example 1 Assume H=Z— U= —s  —Rs2)|—

Example 2 Assume  Ho =X —> Since HXH=7=X=HZH

— U =He ““'H (proof via CBH Formula)

— > H Rz(Qt) H —
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Example 3 H=72®Z note

e—Z®Zt 7& e—zZt ® e—zZt

with (Z® Z)2=1 one finds e 2O — cos(t) —isin(t)Z @ Z

for the action on states we find

e!(ZBZ)100) = (cos(t)l — isin(t)Z @ Z)|00) = (cos(t) — isin(t)) |00)

L(Z82)t

Li(ZR2)t

11) = (cos(t)l —isin(t)Z ® Z) |11) = (cos(t) — ¢sin(t)) |11)

01) = cos(t) |01) —isin(¢)Z |0) ® Z |1) = (cos(t) + isin(t)) |01)

which can be written in matrix form as

e 0 0 0]
| 0 et o 0o |01) if # of 1lis even one gets - :
WWLIRL)t
ISR = it o |10 if #of 1is odd one gets +  (Parify of state)
0 0 0 e it 111)
. . —t
circuit that l l with Rz(2t) = [60 e(gt]
implements that D—| R, (2t) D
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Overlap of Quantum States

SWAP test:

Is a way to extract |{alb)|* of tensor product state |a) ® |b) = |a)|b)

One adds an ancilla qubit [0)|a)|b)

then apply an H to the ancilla

apply SWAP gate to [a> and |b>
condition to ancilla being in state 1

another H on the ancilla — [¥) =

Measure ancilla. Probability it is in O is:
po =5 — Sl alb)* — [alb)|* =1 —2po

overlap between
both states
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— %(I()) + [1))]a)|b)

swap

: 0 b 1 {\l:
ﬁﬂ )a)|b) + [1)]a)|b))

1 1
5100 @ ()b} + [bila)) + F11) ® (Ja)|b) — b} |a)

OI.”L[O PRI 0 DDHO PP:BD
1 DB-1 BB 1 DB-PD
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Hadamard test:

Elegant way to measure overlap/scalar product of quantum states

1
Start with superposition of ancilla and 1 register [¥) = NG (10)|a) + [1)]b))

1 1
Then apply H on ancilla ) = §|0> ® (la) +10)) + Ell) ® (la) —10))

1
The acceptance probability of ancilla to be in 0 p(0) = 7 ({al + (b]) (la) + (b)) .
1
= 7@+ (alb) + (bla),
R R .
=5 + 5 e({alb)).
Starting with ancilla in |-) = 5(0) —i|1)) gives p(0) = %((a| —i(b]) (la) +i|b)),
r S 1 . .
o/BLio/B+D] = 2(2—1(b|a)—|—z(a|b),
1 I 1
| S
11 D-9 = 5 — 5 Im((a[b))
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Grover Algorithm

e Well-known algorithm fo give quadratic speedup in finding element in
unordered list. Classically, this takes on average K/2 steps in a list of
length K...

e Idea is based on amplitude amplification. One encodes the elements
as basis states and iteratively increases the value of the amplitude of
the element of inferest.

Basis
Basis encoded
e For example: s’ra’ri‘ Ancillla /en+ries
1) = ap|000)|0)|eo) 7)Y = ap|000)|0) |eo)
element of
+ a1{001)[0)fer) Gover algorithm iteratively + a1|001)]0)[er) interest
+ a»[010)]0)|es) increases amplitdue of + a]010)]0)|e,)
+ a3 Oll) O) e3> element of interest g + a3 011> 1) 63>/
+ a4 [100)|0)|e 1
* 101> O> 4 requires /2" iterations sl 100710 es)
T 10 ]es) for n qubits to get to |asl> ~ 1 + as[101)]0)es)
+ a|110)]0) |eg) + a|110)|0)|eg)
+ a7|111)|0)]e7) + a7|111)]0)]eq)
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