A Quantum $\sqrt{\text { NOT }}$ Gate
 - 0
 1

 $|0\rangle-\sqrt{X}-\frac{|0\rangle+|1\rangle}{\sqrt{2}}$

 Classical Bit Qubit
 $|1\rangle-\sqrt{X}-\frac{|0\rangle-|1\rangle}{\sqrt{2}}$

 Quantum Gate Computing Basics

 Quantum Gate Computing Basics}

Structure of a Quantum Machine Learning Algorithm

Quantum

Input encoding

Quantum system
state preparation
\downarrow
unitary evolution
\downarrow
measurement

Algorithm Type

All the methods discussed in the lectures you had over the last 2 weeks

Classical data processed via quantum algorithms on quantum devices

```
lllllllllllllllll
```


Encoding

State of a quantum system

basis encoding of binary string $(1,0)$,
i.e. representing integer 2

$$
|\psi\rangle=\alpha_{0}|00\rangle+\alpha_{1}|01\rangle+\alpha_{2}|10\rangle+\alpha_{3}|11\rangle
$$

amplitude encoding of unit-length
complex vector ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$)
data encoding in different parts of the state and operator description

Basis encoding:

maps a collection of items into the states forming an orthonormal basis of the Hilbert space of the considered quantum system.

The orthonormal basis $\{|x\rangle\} x \in X$, called computational basis, is made by the eigenstates of a reference observable measured on the considered quantum system. For instance, a bit can be encoded into a qubit by the mapping $0 \rightarrow|0\rangle, 1 \rightarrow|1\rangle$. Then the n-bit strings ($x_{1} \cdots x_{n}$) can be encoded into the states of n qubits forming an orthonormal basis of a 2^{n}-dimensional Hilbert space H_{n} :

$$
\mathbb{B}^{n} \ni\left(x_{1} \cdots x_{n}\right) \mapsto\left|x_{1} \cdots x_{n}\right\rangle \in \mathrm{H}_{n}
$$

[^0]Binary encoding into basis states

Represent numbers as binaries, each binary digit requires a qubit
basis vector coefficient $\{0,1\}$

Time-Evolution Encoding

Associates the input data value \times with the time evolution parameter \dagger

$$
U(x)=e^{-i x H}
$$

In quantum machine learning, this kind of encoding is particularly popular when encoding classical trainable parameters into a quantum circuit. The most common choice are the Pauli rotation gates, in which $H=\frac{1}{2} \sigma_{a}$ and $a \in\{x, y, z\}$. Successive gates or evolutions of the form $U(x)$ can be used to encode a real-valued vector $x \in R^{N}$
data
-0.438
Encoded with RY gate applied to initial state 10>

$$
\begin{aligned}
|\psi(-0.438)\rangle & =\cos (-0.438 / 2)|0\rangle+\sin (-0.438 / 2)|1\rangle \\
& \approx 0.976|0\rangle-0.217|1\rangle
\end{aligned}
$$

sine/cosine structure typical for Time-Evolution Encoding \rightarrow leads to Fourier-type dependence of amplitudes on the inputs

Angle/Rotation encoding

When used on an n-qubit circuit, this feature map of angle encoding can take up to n numerical inputs x_{1}, \ldots, x_{n}. The action of its circuit consists in the application of a rotation gate on each qubit j parametrised by the value x_{j}. In this feature map, we are using the x_{j} values as angles in the rotations, hence the name of the encoding.

Example

In example of simple Pauli-X rotation, transforms real-valued N dimensional input vector $\mathbf{x} \in \mathbb{R}^{N}$ as

$$
\phi_{1}(\mathbf{x})=\left(\begin{array}{c}
\sin \left(x_{1}\right) \sin \left(x_{2}\right) \ldots \sin \left(x_{N}\right) \\
\sin \left(x_{1}\right) \sin \left(x_{2}\right) \ldots \cos \left(x_{N}\right) \\
\vdots \\
\cos \left(x_{1}\right) \cos \left(x_{2}\right) \ldots \sin \left(x_{N}\right) \\
\cos \left(x_{1}\right) \cos \left(x_{2}\right) \ldots \cos \left(x_{N}\right)
\end{array}\right)
$$

encoding can be repeated multiple times, e.g.

$$
\phi_{1}(\mathbf{x}) \otimes \cdots \otimes \phi_{1}(\mathbf{x})=\left(\begin{array}{c}
x_{1} x_{1} \ldots x_{1} \\
x_{1} x_{1} \ldots x_{2} \\
\vdots \\
x_{N} x_{N} \ldots x_{N}
\end{array}\right)
$$

\longrightarrow results in non-linearities and higher expressivity of model
\longrightarrow repeated encoding used to show universal approximation theorem for variational quantum circuits

Hamiltonian Encoding:

For some applications, it can be useful to encode matrices into the Hamiltonian of a time evolution. The basic idea is to associate a Hamiltonian H with a square matrix \mathbf{A}. In case \mathbf{A} is not Hermitian, one can sometimes use the trick of encoding

$$
H_{\mathbf{A}}=\left(\begin{array}{cc}
0 & \mathbf{A} \\
\mathbf{A}^{\dagger} & 0
\end{array}\right)
$$

instead, and to perform the computations in two subspaces of the Hilbert space. Hamiltonian encoding allows us to extract and process the eigenvalues of A, for example, to multiply \mathbf{A} or \mathbf{A}^{-1} with an amplitude-encoded vector.

Amplitude encoding:

Represent classical data as amplitudes of a quantum state

$$
\left|\psi_{\mathbf{x}}\right\rangle=\sum_{i=1}^{d} x_{i}\left|\phi_{i}\right\rangle \in \mathrm{H}
$$

or for composite systems with $\quad \sum_{i j}\left|a_{i j}\right|^{2}=1$

$$
\left|\psi_{A}\right\rangle=\sum_{i, j=1}^{d} a_{i j}\left|\phi_{i}\right\rangle \otimes\left|\phi_{j}\right\rangle \in \mathrm{H} \otimes \mathrm{H}
$$

Example:

$$
\begin{gathered}
\text { data vector } \begin{array}{c}
\text { normalised and padded data vect } \\
\mathbf{x}=(0.1,-0.6,1.0) \longrightarrow \\
\mathbf{x}=(0.073,-0.438,0.730,0.000) \\
\downarrow
\end{array} \\
\text { quantum state } \\
\left|\psi_{\mathbf{x}}\right\rangle=0.073|00\rangle-0.438|01\rangle+0.730|10\rangle+0|11\rangle
\end{gathered}
$$

This could also be encoded as a matrix A

$$
\mathbf{A}=\left(\begin{array}{cc}
0.073 & -0.438 \\
0.730 & 0.000
\end{array}\right)
$$

Amplitude encoding uses much less qubits than basis encoding, however, routines to prepare amplitude vectors can be costly

Qsample encoding:

Given a probability distribution p on the finite set X, it can be encoded in the state:

$$
\left|\psi_{p}\right\rangle=\sum_{x \in X} \sqrt{p(x)}|x\rangle \in \mathrm{H}
$$

Repeated measurements on the state $|\psi p\rangle$ with respect to the computational basis allow to sample the distribution p.

In a sense a hybrid case of basis and amplitude encoding since the information is represented by amplitudes, but the features are encoded in the qubits.

visualisation of data encoding

Equboding			
Basis	$N \tau$	Runtime	Input type
Amplitude	$\log N$	$\mathcal{O}(N \tau)$	Single input (binary)
Angle	N	$\mathcal{O}(N) / \mathcal{O}(\log (N))^{\mathrm{a}}$	Single input
Hamiltonian	$\log N$	$\mathcal{O}(N)$	Single input
${ }^{\text {a Only applies under strict assumptions. see Schuld \& Petruccione }}$			

Encoding can be important for runtime of algo - crucial aspect of QC

Quantum Circuits

Recover information of the target state

Classical quantum circuit simulator
(b)

Michael Spannowsky
July 2023

Need transition form classical to quantum:

$\bigcirc 0$
Classical
bits

Classical Bit
gates
algorithms

Quantum

Qubit

quantum algorithms

Single-Qubit Quantum Gates

Illustrative to write single-qubit operation as matrices
X-Gate: Quantum equivalent to classical NOT gate

$$
\begin{aligned}
|0\rangle & \mapsto|1\rangle \\
|1\rangle & \mapsto|0\rangle
\end{aligned}
$$

\longrightarrow Flips $\mid 0>$ to $\mid 1>$ and vice versa (hopping)
Represented by matrix $\quad \mathbf{X}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
concretely $\quad \mathbf{X}|0\rangle=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{0}{1}=|1\rangle$

It is unitary $\quad \mathbf{X X}^{\dagger}=\mathbf{X X}^{-1}=\mathbb{1}$

Z-Gate: \quad Represented by matrix $\quad\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Action

$$
\begin{array}{lr}
|0\rangle \mapsto & |0\rangle \\
|1\rangle \mapsto & -|1\rangle
\end{array}
$$

\longrightarrow Eigenvalues +- 1

Note, the X, Y and Z gates are represented by the Pauli matrices

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \\
& \operatorname{det} \sigma_{j}=-1 \\
& \operatorname{tr} \sigma_{j}=0 .
\end{aligned} \quad \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=-i \sigma_{1} \sigma_{2} \sigma_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I .
$$

Hadamard gate: \quad Matrix representation $\quad \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$

$$
\begin{aligned}
\text { Action: } \quad|0\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \longleftrightarrow|+\rangle:=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
|1\rangle & \mapsto \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \longleftrightarrow|-\rangle:=\frac{|0\rangle-|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Phase gate: Matrix representation $\quad P_{\phi}:=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \phi}\end{array}\right)$

With special phase values

$$
S:=P_{\pi / 2} \quad T:=P_{\pi / 4} \quad R:=P_{-\pi / 4}
$$

Summary of fixed 1-qubit gates:

Gate	Circuit representation	Matrix representation	Dirac representation
X	$-X-$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\|1\rangle\langle 0\|+\|0\rangle\langle 1\|$
Y	$-Y-$	$\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$	$i\|1\rangle\langle 0\|-i\|0\rangle\langle 1\|$
Z	$-Z-$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\|1\rangle\langle 0\|-\|0\rangle\langle 1\|$
H	$-H-$	$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$	$\frac{1}{\sqrt{2}}(\|0\rangle+\|1\rangle)\langle 0\|+\frac{1}{\sqrt{2}}(\|0\rangle-\|1\rangle)\langle 1\|$
S	$-S-$	$\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$	$\frac{1}{\sqrt{2}}\|0\rangle\langle 0\|+\frac{1}{\sqrt{2}} i\|1\rangle\langle 1\|$
T	$-T-$	$\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 0 \\ 0 & e^{(-i \pi / 4)}\end{array}\right)$	$\frac{1}{\sqrt{2}}\|0\rangle\langle 0\|+\frac{1}{\sqrt{2}} e^{(-i \pi / 4)}\|1\rangle\langle 1\|$

Quantum gate can be parametrised

Pauli rotations:

$$
\begin{aligned}
R_{x}(\theta)=e^{-i \frac{\theta}{2} \sigma_{x}}=\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -i \sin \left(\frac{\theta}{2}\right) \\
-i \sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X \\
R_{y}(\theta)=e^{-i \frac{\theta}{2} \sigma_{y}}=\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & -\sin \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Y \\
R_{z}(\theta)=e^{-i \frac{\theta}{2} \sigma_{z}}=\left(\begin{array}{cc}
e^{-i \frac{\theta}{2}} & 0 \\
0 & e^{i \frac{\theta}{2}}
\end{array}\right)=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z
\end{aligned}
$$

generalised form via $R\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=R_{z}\left(\theta_{1}\right) R_{y}\left(\theta_{2}\right) R_{z}\left(\theta_{3}\right)$

$$
R\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{cc}
e^{i\left(-\frac{\theta_{1}}{\theta_{1}}-\frac{\theta_{3}}{2}\right)} \cos \left(\frac{\theta_{2}}{2}\right) & -e^{i\left(\frac{\theta_{1}}{2}+\frac{\theta_{3}}{2}\right)} \sin \left(\frac{\theta_{2}}{2}\right) \\
e^{i\left(\frac{\theta_{1}}{2}-\frac{\theta_{3}}{2}\right)} \sin \left(\frac{\theta_{2}}{2}\right) & e^{i\left(\frac{\theta_{1}}{2}+\frac{\theta_{3}}{2}\right)} \cos \left(\frac{\theta_{2}}{2}\right)
\end{array}\right)
$$

Measurement process

Measurement process of a generic (normalised) qubit state $|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$
represented by projection onto eigenstates $P_{0}=|0\rangle\langle 0|$ and $P_{1}=|1\rangle\langle 1|$
Prob of measurement outcome 0 is then $p(0)=\operatorname{tr}\left(P_{0}|\psi\rangle\langle\psi|\right)=\langle\psi| P_{0}|\psi\rangle=\left|\alpha_{0}\right|^{2}$

$$
\text { and } p(1)=\left|\alpha_{1}\right|^{2}
$$

After measurement qubit is in state $\quad|\psi\rangle \leftarrow \frac{P_{0}|\psi\rangle}{\sqrt{\langle\psi| P_{0}|\psi\rangle}}=|0\rangle$

The observable corresponding to a computational basis measurement is Pauli-Z observable

$$
\sigma_{z}=|0\rangle\langle 0|-|1\rangle\langle 1| \quad \text { (we know eigenvalues }+1 \text { for }|0\rangle \text { and }-1 \text { for }|1\rangle \text {) }
$$

The expectation value $\left\langle\sigma_{z}\right\rangle$ in a value in [-1, 1]. Its error can be estimated as sampling from a Bernoulli distribution.

Wald interval gives
(suited for large s and $\mathrm{p} \sim 0.5$)

stat. z-value

\rightarrow For $\epsilon=0.1$ and conf level 99% one needs 167 samples For $\epsilon=0.01$ and conf level 99% one needs 17,000 samples
\rightarrow Overall might need a large number of shots on quantum computer This needs to be taken into account when comparing quantum and classical computers in terms of speedups and quantum advantage

The Bloch Sphere

Since $\quad|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad$ with $\quad|\alpha|^{2}+|\beta|^{2}=1$ one can find angles such that

$$
\alpha=e^{i \gamma} \cos \frac{\theta}{2} \quad \beta=e^{i \delta} \sin \frac{\theta}{2}
$$

Thus, with $\phi=\delta-\gamma$ single qubit can be parametrised as

$$
|\psi\rangle=e^{(i \gamma)}\left(\cos \frac{\theta}{2}|0\rangle+e^{(i \phi)} \sin \frac{\theta}{2}|1\rangle\right)
$$

$(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \phi)$
where a global imaginary phase has no measurable effect and can be omitted.

2-qubit states

Are built by tensor products, each qubit can be in state |0> or in state |1>
So, for two qubits we have four possibilities:

$$
|0\rangle \otimes|0\rangle,|0\rangle \otimes|1\rangle,|1\rangle \otimes|0\rangle,|1\rangle \otimes|1\rangle
$$

that we denote

$$
|0\rangle|0\rangle,|0\rangle|1\rangle,|1\rangle|0\rangle,|1\rangle|1\rangle
$$

or

$$
|00\rangle,|01\rangle,|10\rangle,|11\rangle
$$

We can have superposition as a generic state

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

with complex coefficients such that $\sum_{x, y=0}^{1}\left|\alpha_{x y}\right|^{2}=1$

2-qubit states

Furthermore, we can express the state as a vector

$$
\left(\begin{array}{l}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right)
$$

For which we find the inner products

$$
\begin{gathered}
\langle 00 \mid 00\rangle=\langle 01 \mid 01\rangle=\langle 10 \mid 10\rangle=\langle 11 \mid 11\rangle=1 \\
\langle 00 \mid 01\rangle=\langle 00 \mid 10\rangle=\langle 00 \mid 11\rangle=\cdots=\langle 11 \mid 00\rangle=0
\end{gathered}
$$

A 2-qubit quantum gate is a unitary matrix U of size 4×4

2-qubit gates

CNOT gate:
unitary matrix representation $\quad\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
In words: if the first qubit is $\mid 0>$ nothing changes. If it is $\mid 1>$ we flip the second bit (and first stays the same)

Action:

$$
\begin{aligned}
|00\rangle & \rightarrow|00\rangle & & |01\rangle
\end{aligned} \rightarrow|01\rangle
$$

As a gate: $\quad x, y \in\{0,1\} \longrightarrow \quad \begin{aligned} & |x\rangle \longrightarrow \backsim|x\rangle \\ & |y\rangle \longrightarrow \oint\end{aligned}|y \oplus x\rangle$

- A set of gates that can approximate any quantum operation -> Universal quantum computer
e.g. Rotation gates $R_{x}(\theta), R_{y}(\theta), R_{z}(\theta)+$ phase shift gate $P(\varphi)+$ CNOT

The CNOT gate is an extremely important gate

- It realises conditional probabilities
- It creates entanglement

- It can copy classical information, because

$$
\begin{aligned}
|00\rangle & \rightarrow|00\rangle \\
|10\rangle & \rightarrow|11\rangle
\end{aligned}
$$

- Constructs other control gates

SWAP gate

Can swap two qubits.
In basis $|00\rangle,|01\rangle,|10\rangle,|11\rangle$
it is represented by $\quad\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

In gate notation:

Can be decomposed by Pauli operators

$$
\mathrm{SWAP}=\frac{I \otimes I+X \otimes X+Y \otimes Y+Z \otimes Z}{2}
$$

N-qubit states

When we have n qubits, each of them can be in state $|0\rangle$ or |1>
Thus for n qubit states we have $2^{\wedge} n$ possibilities:

$$
|00 \ldots 0\rangle,|00 \ldots 1\rangle, \ldots,|11 \ldots 1\rangle
$$

or simply

$$
|0\rangle,|1\rangle, \ldots,\left|2^{n}-1\right\rangle
$$

A generic state of the system will be

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle+\ldots+\alpha_{2^{n}-1}\left|2^{n}-1\right\rangle
$$

With complex coefficients, such that $\quad \sum_{i=0}^{2^{n}-1}\left|\alpha_{i}\right|^{2}=1$

Suppose we have the N qubit state

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle+\ldots+\alpha_{2^{n}-1}\left|2^{n}-1\right\rangle
$$

If we measure all its qubits, we obtain:

- 0 with probability $\left|\alpha_{0}\right|^{2}$ and the new state will be $|0 \ldots 00\rangle$
- 1 with probability $\left|\alpha_{1}\right|^{2}$ and the new state will be $|0 \ldots 01\rangle$
- ...
- $2^{n}-1$ with probability $\left|\alpha_{2^{n}-1}\right|^{2}$ and the new state is $|1 \ldots 11\rangle$

Completely analogous to 1 and 2 qubit situation but now with 2^{n} possibilities

Toffoli gate (CCNOT)

controls from two qubits

Matrix representation

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Truth table

Toffoli gate can also be decomposed into Pauli operators

$$
\text { Toff }=e^{i \frac{\pi}{8}\left(I-Z_{1}\right)\left(I-Z_{2}\right)\left(I-X_{3}\right)}=e^{-i \frac{\pi}{8}\left(I-Z_{1}\right)\left(I-Z_{2}\right)\left(I-X_{3}\right)}
$$

Example: Turning a Hamiltonian term into a gate

Recall

Assume, universal gate operations on device are $\left\{H, R_{Z}, C X\right\}$

Example 1 Assume $H_{1}=Z \longrightarrow U=e^{-i Z t} \longrightarrow$
Example 2 Assume $H_{2}=X \longrightarrow$ since $H X H=Z \Rightarrow X=H Z H$

$$
\begin{aligned}
& \rightarrow U=H e^{-i Z t} H \quad \text { (proof via CBH Formula) } \\
& \rightarrow H \quad R_{Z}(2 t) \quad H
\end{aligned}
$$

Example 3

$$
H=Z \otimes Z
$$

$$
\text { note } e^{-Z \otimes Z t} \neq e^{-i Z t} \otimes e^{-i Z t}
$$

$$
\text { with }(Z \otimes Z)^{2}=\mathbb{I} \text { one finds } e^{i(Z \otimes Z) t}=\cos (t) \mathbb{I}-i \sin (t) Z \otimes Z
$$

for the action on states we find

$$
\begin{aligned}
e^{i(Z \otimes Z) t}|00\rangle & =(\cos (t) \mathbb{I}-i \sin (t) Z \otimes Z)|00\rangle=(\cos (t)-i \sin (t))|00\rangle \\
e^{i(Z \otimes Z) t}|11\rangle & =(\cos (t) \mathbb{I}-i \sin (t) Z \otimes Z)|11\rangle=(\cos (t)-i \sin (t))|11\rangle \\
e^{i(Z \otimes Z) t}|01\rangle & =\cos (t)|01\rangle-i \sin (t) Z|0\rangle \otimes Z|1\rangle=(\cos (t)+i \sin (t))|01\rangle
\end{aligned}
$$

which can be written in matrix form as

Overlap of Quantum States

SWAP test:

Is a way to extract $|\langle a \mid b\rangle|^{2}$ of tensor product state $|a\rangle \otimes|b\rangle=|a\rangle|b\rangle$ One adds an ancilla qubit $|0\rangle|a\rangle|b\rangle$
then apply an H to the ancilla $\longrightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|a\rangle|b\rangle$
apply SWAP gate to $|a\rangle$ and $|b\rangle$
condition to ancilla being in state 1 $\longrightarrow \frac{1}{\sqrt{2}}(|0\rangle|a\rangle|b\rangle+|1\rangle|a\rangle|b\rangle)$
another H on the ancilla $\longrightarrow|\psi\rangle=\frac{1}{2}|0\rangle \otimes(|a\rangle|b\rangle+|b\rangle|a\rangle)+\frac{1}{2}|1\rangle \otimes(|a\rangle|b\rangle-|b\rangle|a\rangle)$
Measure ancilla. Probability it is in 0 is:

$$
p_{0}=\frac{1}{2}-\left.\frac{1}{2}|\langle a \mid b\rangle|^{2} \longrightarrow| | a|b\rangle\right|^{2}=1-2 p_{0}
$$

Hadamard test:

Elegant way to measure overlap/scalar product of quantum states
Start with superposition of ancilla and 1 register $|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle|a\rangle+|1\rangle|b\rangle)$
Then apply H on ancilla $\quad|\psi\rangle=\frac{1}{2}|0\rangle \otimes(|a\rangle+|b\rangle)+\frac{1}{2}|1\rangle \otimes(|a\rangle-|b\rangle)$
The acceptance probability of ancilla to be in $0 \quad p(0)=\frac{1}{4}(\langle a|+\langle b|)(|a\rangle+|b\rangle)$,
$=\frac{1}{4}(2+\langle a \mid b\rangle+\langle b \mid \mathbf{a}\rangle$,
$=\frac{1}{2}+\frac{1}{2} \operatorname{Re}(\langle a \mid b\rangle)$.
Starting with ancilla in $\quad|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)$ gives $\quad p(0)=\frac{1}{4}(\langle a|-i\langle b|)(|a\rangle+i|b\rangle)$,

0	-	,	+
1			

$$
\begin{aligned}
& =\frac{1}{4}(2-i\langle b \mid a\rangle+i\langle a \mid b\rangle, \\
& =\frac{1}{2}-\frac{1}{2} \operatorname{Im}(\langle a \mid b\rangle) .
\end{aligned}
$$

Grover Algorithm

- Well-known algorithm to give quadratic speedup in finding element in unordered list. Classically, this takes on average K/2 steps in a list of length K...
- Idea is based on amplitude amplification. One encodes the elements as basis states and iteratively increases the value of the amplitude of the element of interest.
- For example:

[^0]: \longrightarrow can prepare superposition of data that can be processed in parallel, e.g.

 $$
 |\psi\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle
 $$

