Machine Learning in Particle Theory - MITP Summer School 2023

Eilam Gross

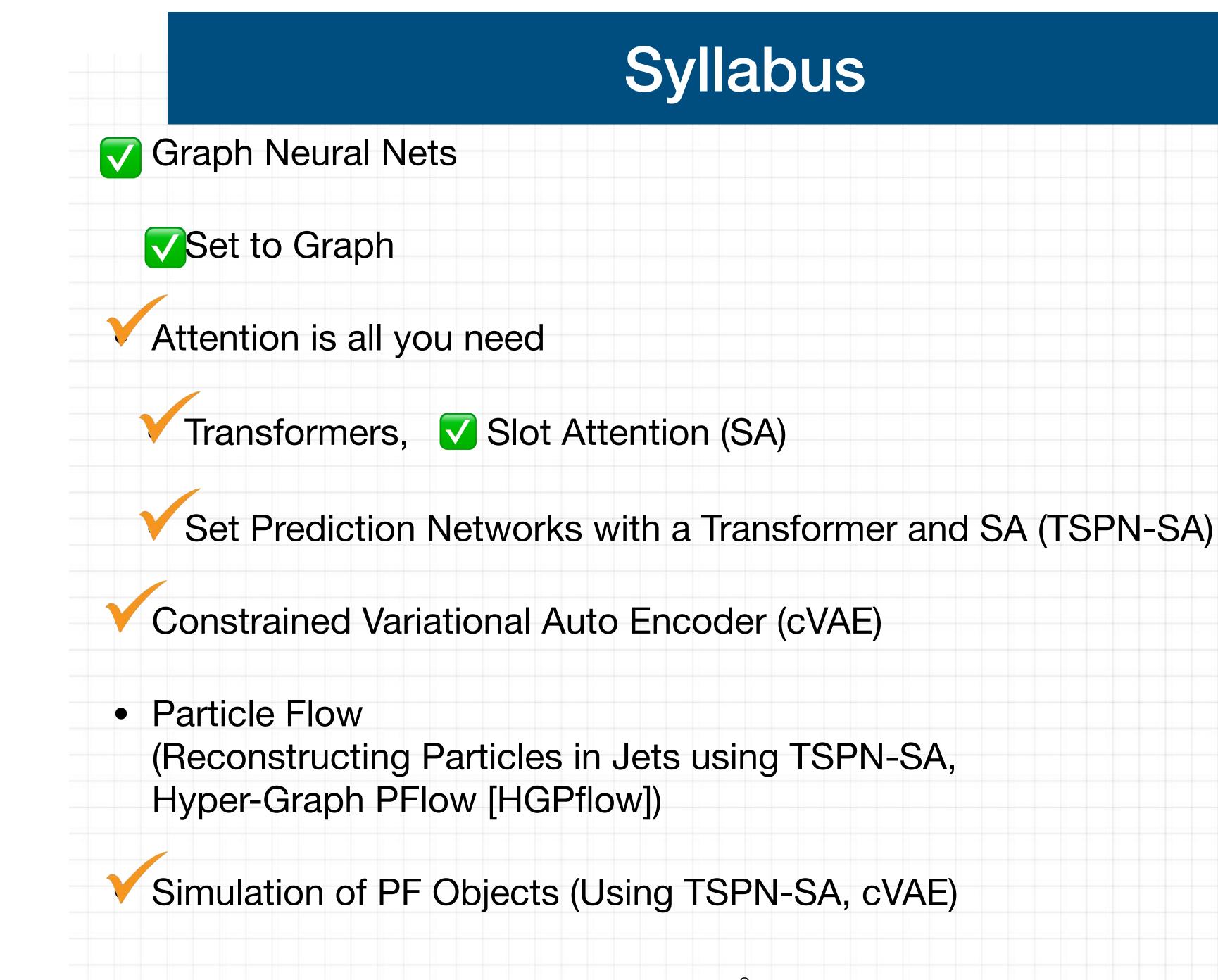
Particle Flow with Deep Learning

Lecture 1: GNN+Attention

Lecture 2: Transformers + Set Generation (with the help of **N. Kakati** and **N. Soybelman**)

• Lecture 3: Hyper Graphs + TSPN Particle Flow (with the help of N. Kakati)

Eilam Gross, Weizmann, 2023



Syllabus

Attention Is All You Need

https://arxiv.org/abs/1706.03762

Ashish Vaswani*

Google Brain avaswani@google.com Noam Shazeer*Niki Parmar*Google BrainGoogle Researchnoam@google.comnikip@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Illia Polosukhin* [‡]
illia.polosukhin@gmail.com

Jakob Uszkoreit* Google Research usz@google.com

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

A T - 4

Attention is All You Need

Level 1 N. Kakati



One bright summer morning, a paper showed up

Weizmann Institute of Science

The field was making good progress

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

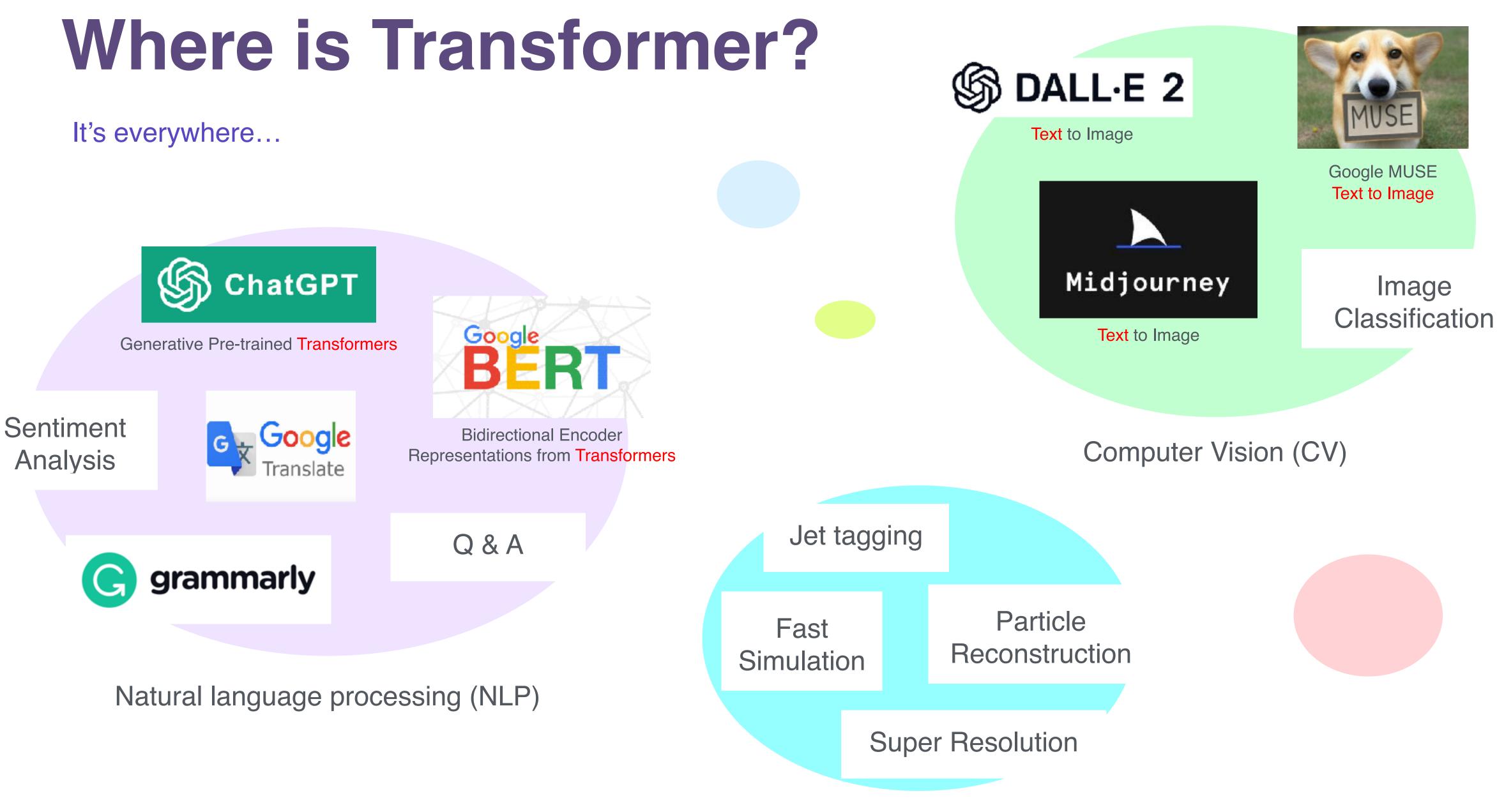
Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

AND THEN EVERYTHING CHANGED!



Weizmann Institute of Science

What is a Transformer?

- Looks very complicated
- It'll make sense once we understand the components

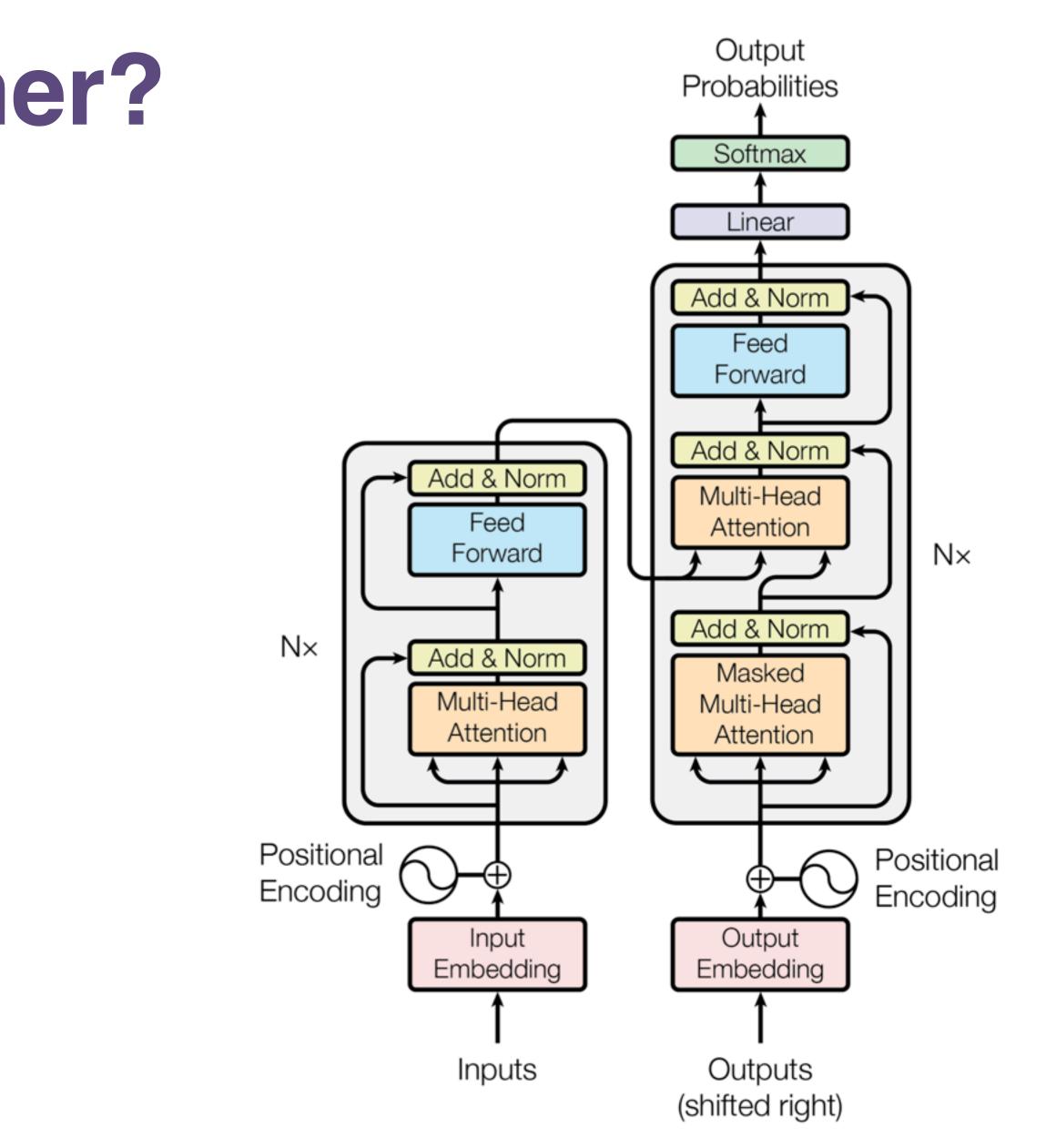
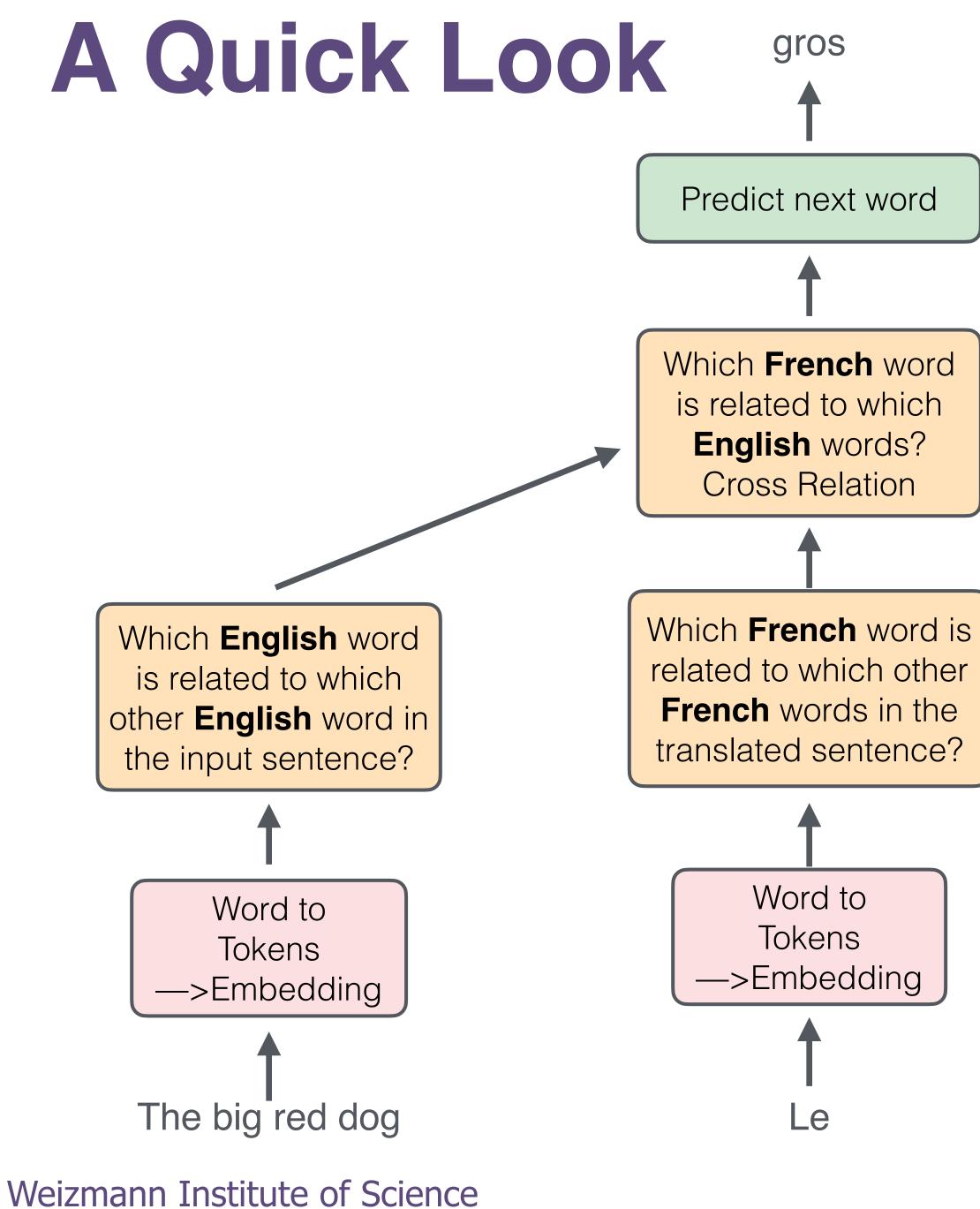
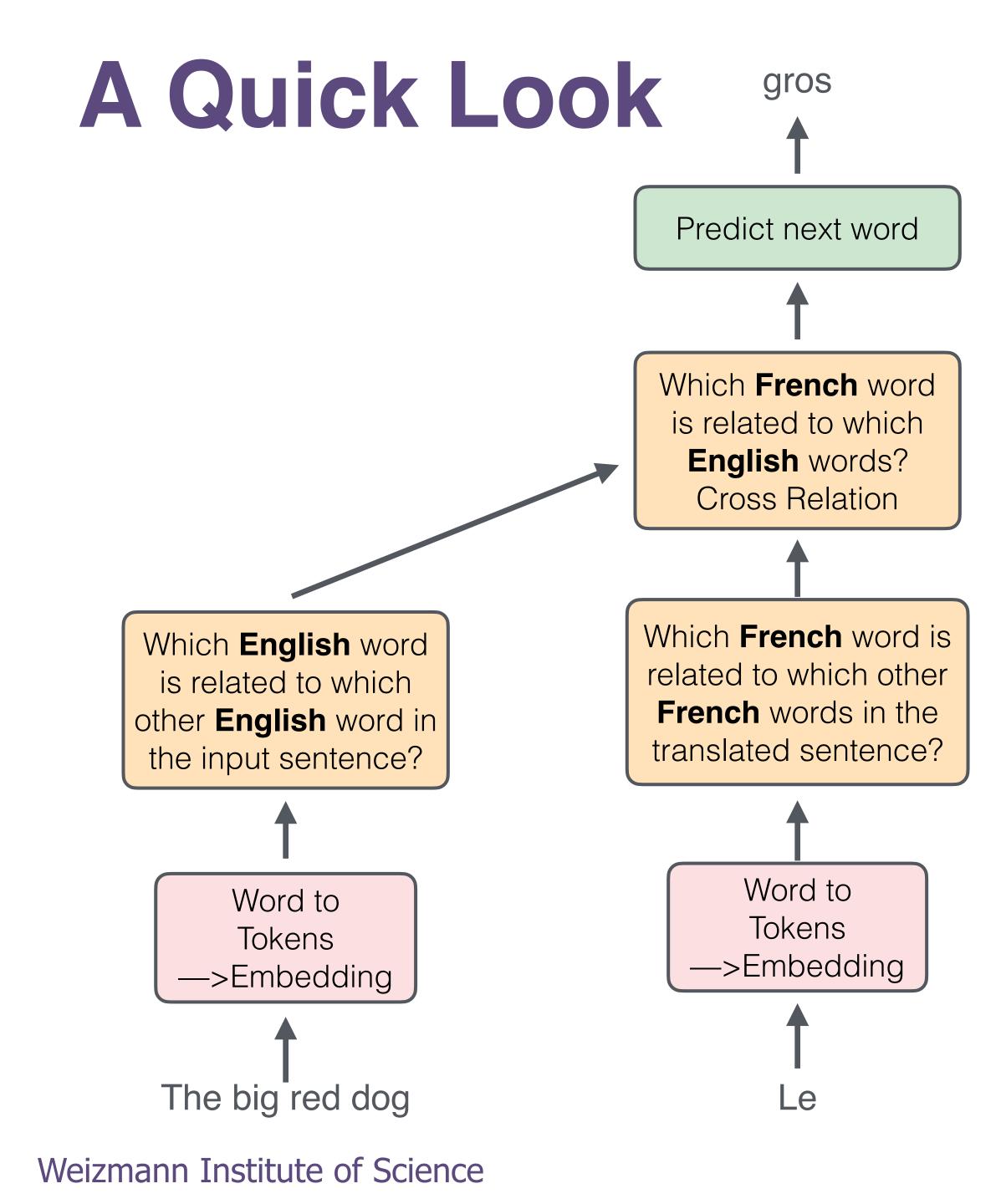


Figure 1: The Transformer - model architecture.



- We are doing translation ◆
 - English to French
- English sentence +
 - The big red dog
- Someone told you that the first word in + French is "Le"
 - You need to predict the next words one by one and complete the sentence



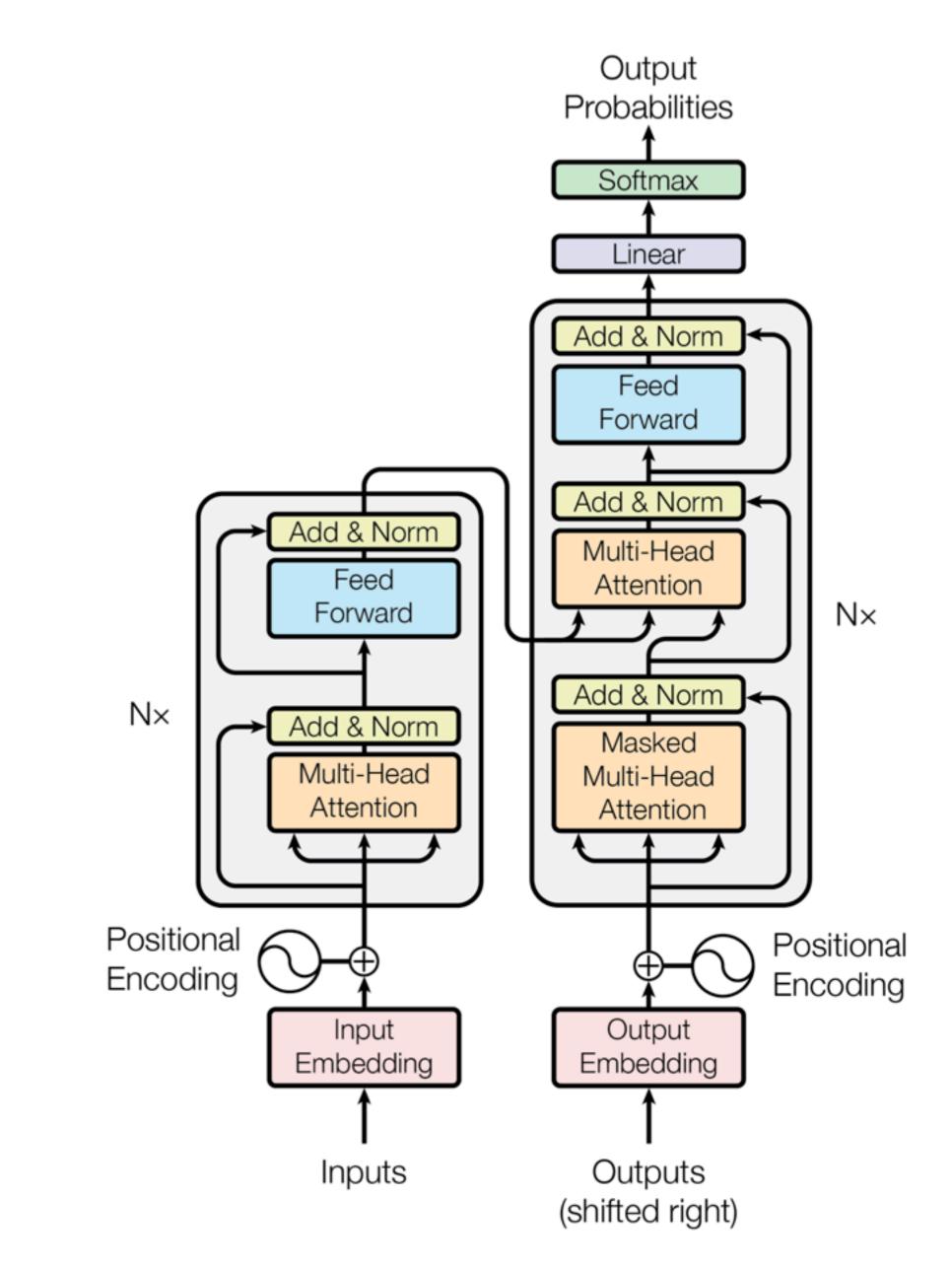


Figure 1: The Transformer - model architecture.

Attention is All You Need

Level 2 N. Kakati

- Pretty good explanation here

 - YouTube channel link
- This part of the lecture is mainly based on that video

https://www.youtube.com/watch?v=TQQIZhbC5ps

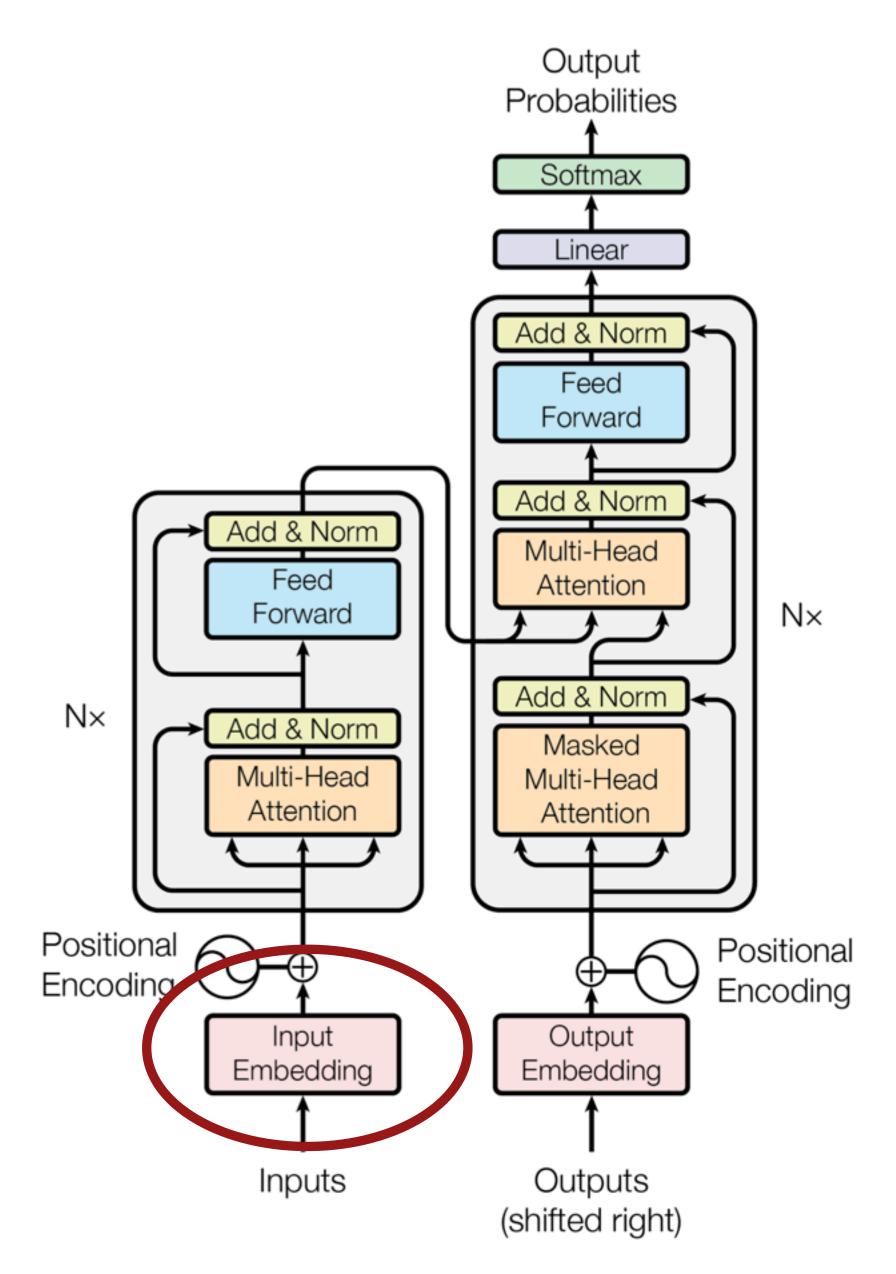
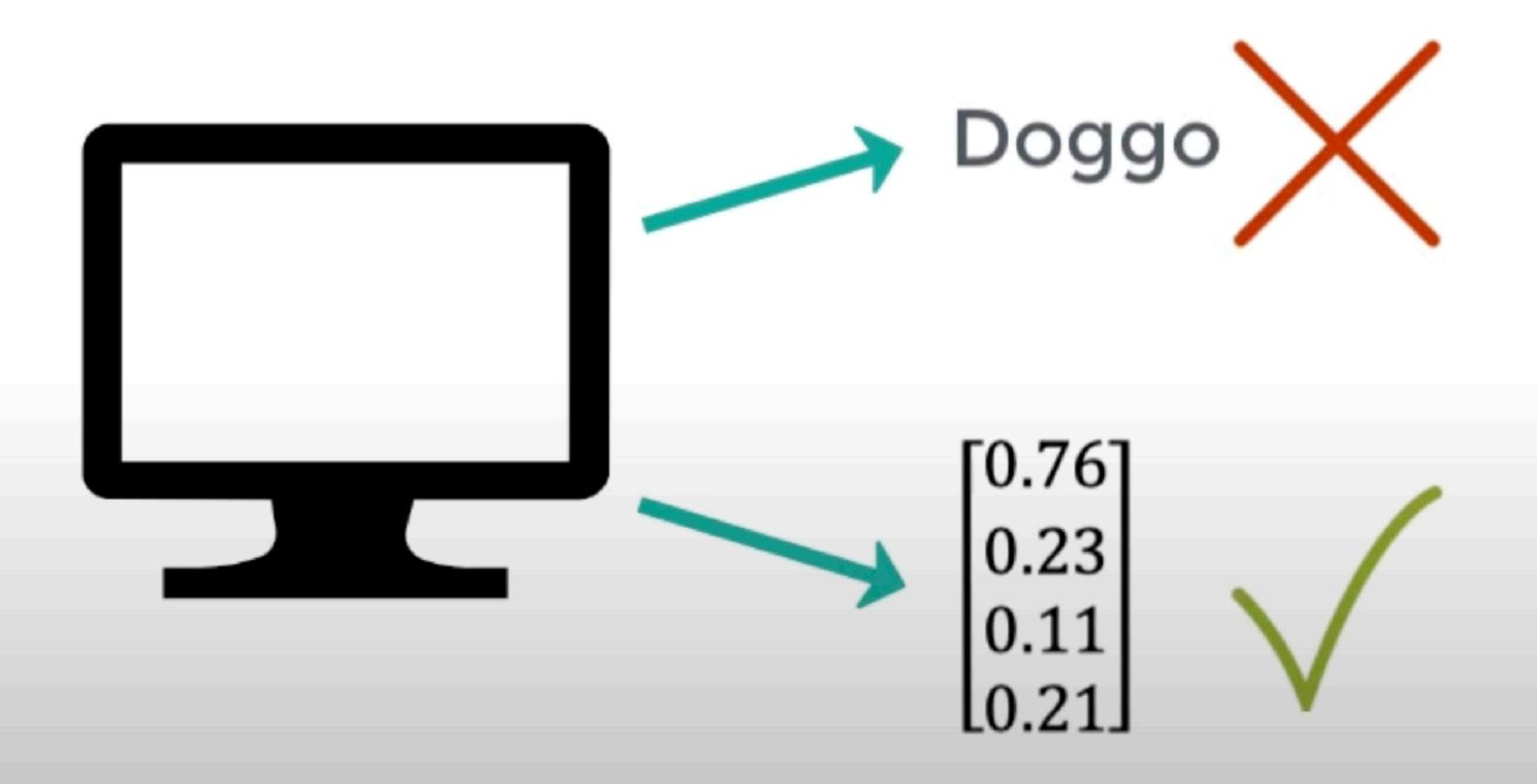
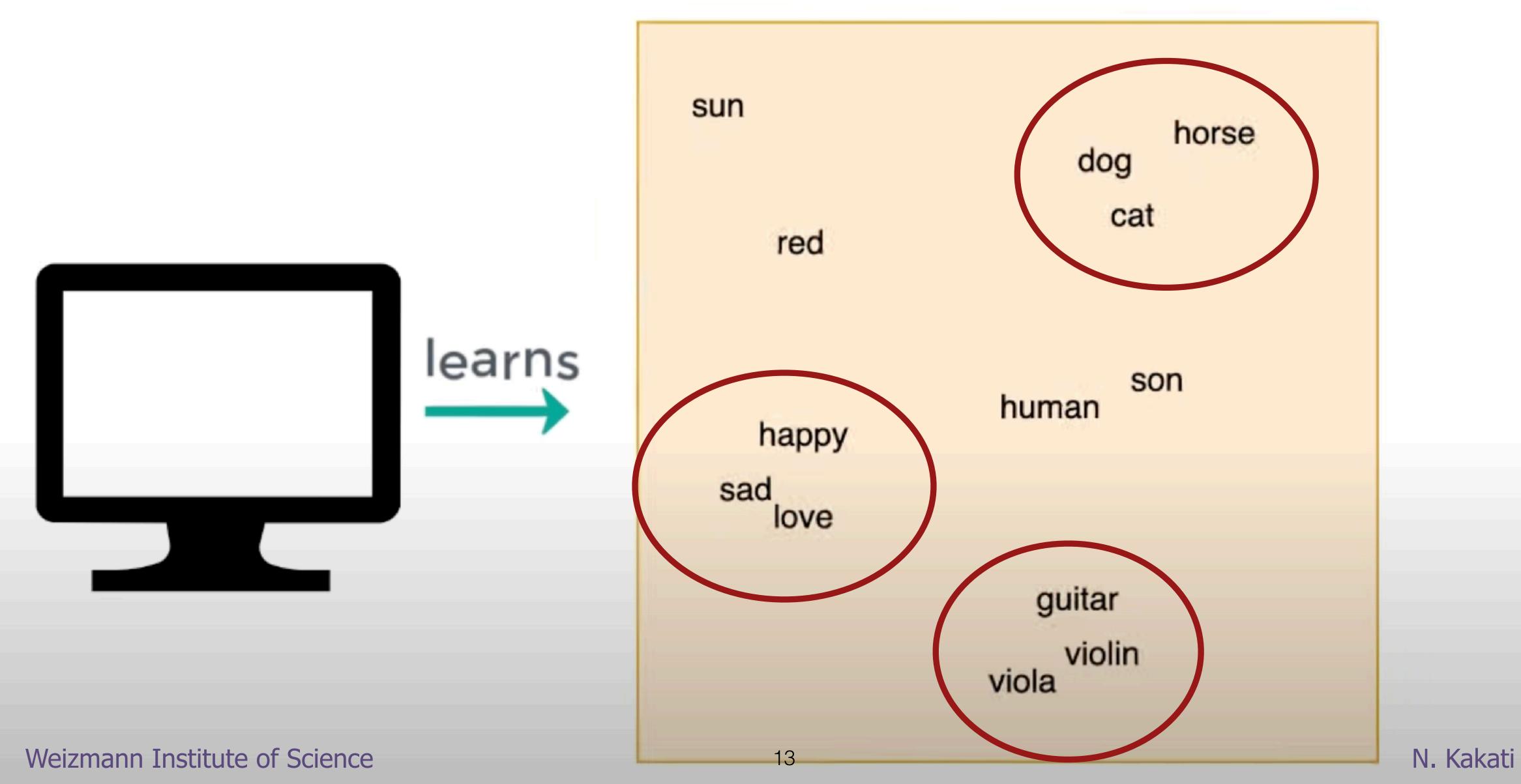


Figure 1: The Transformer - model architecture.

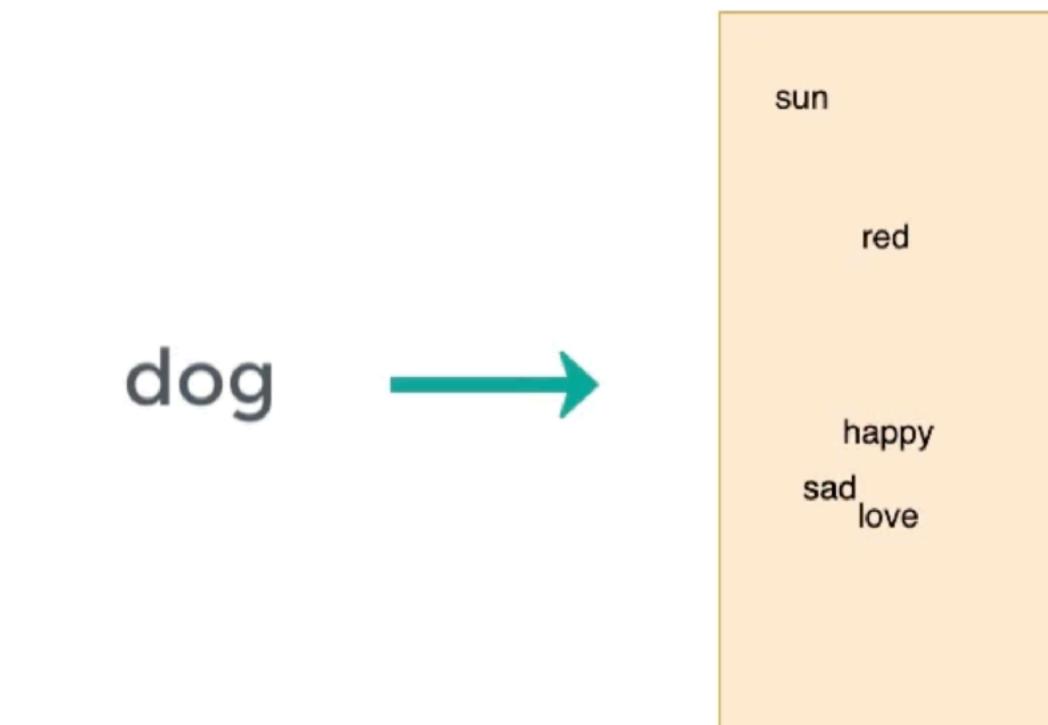


Weizmann Institute of Science



Embedding space

Embedding



Weizmann Institute of Science

[0.37] 0.99 0.01 0.08]

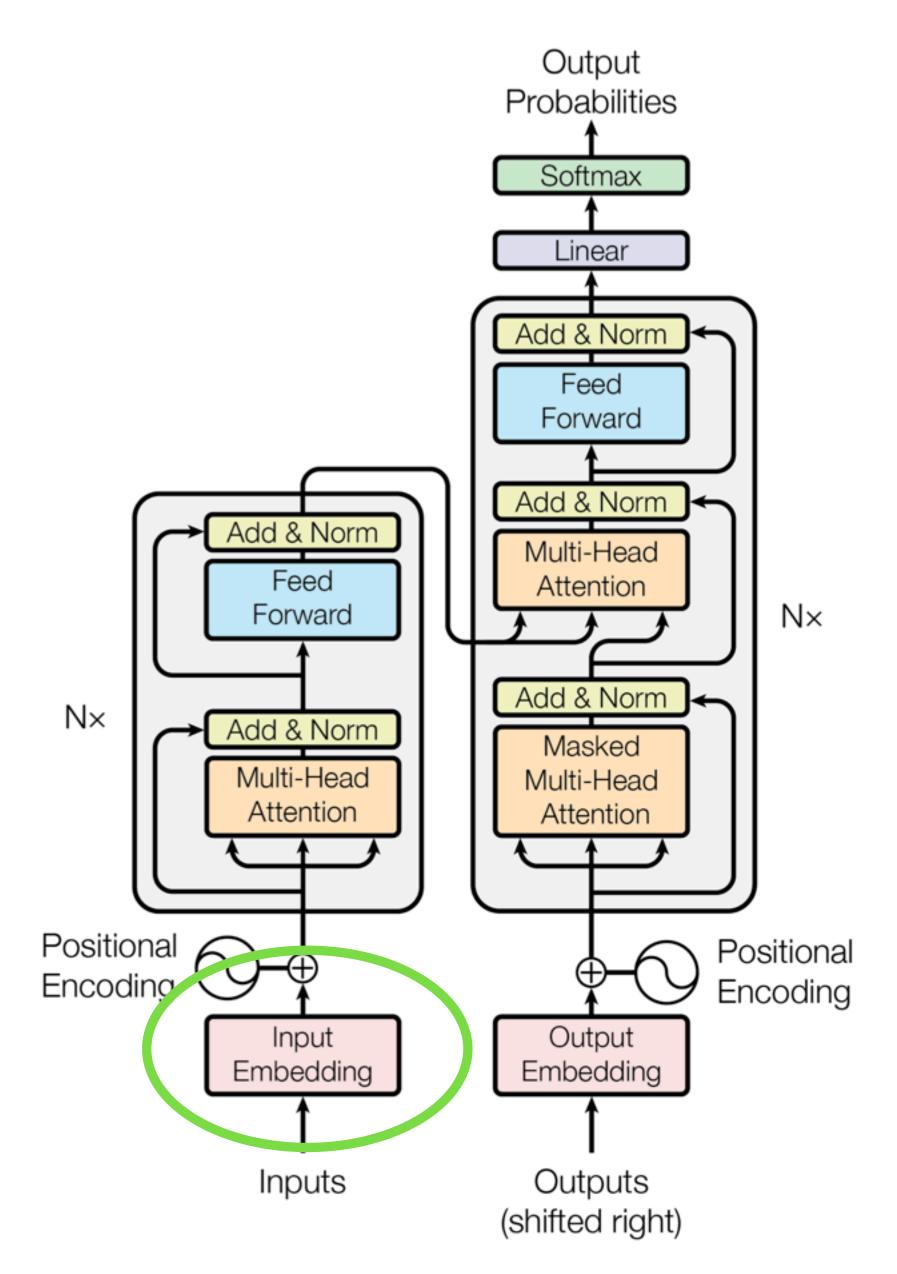


Figure 1: The Transformer - model architecture.

Positional encoding

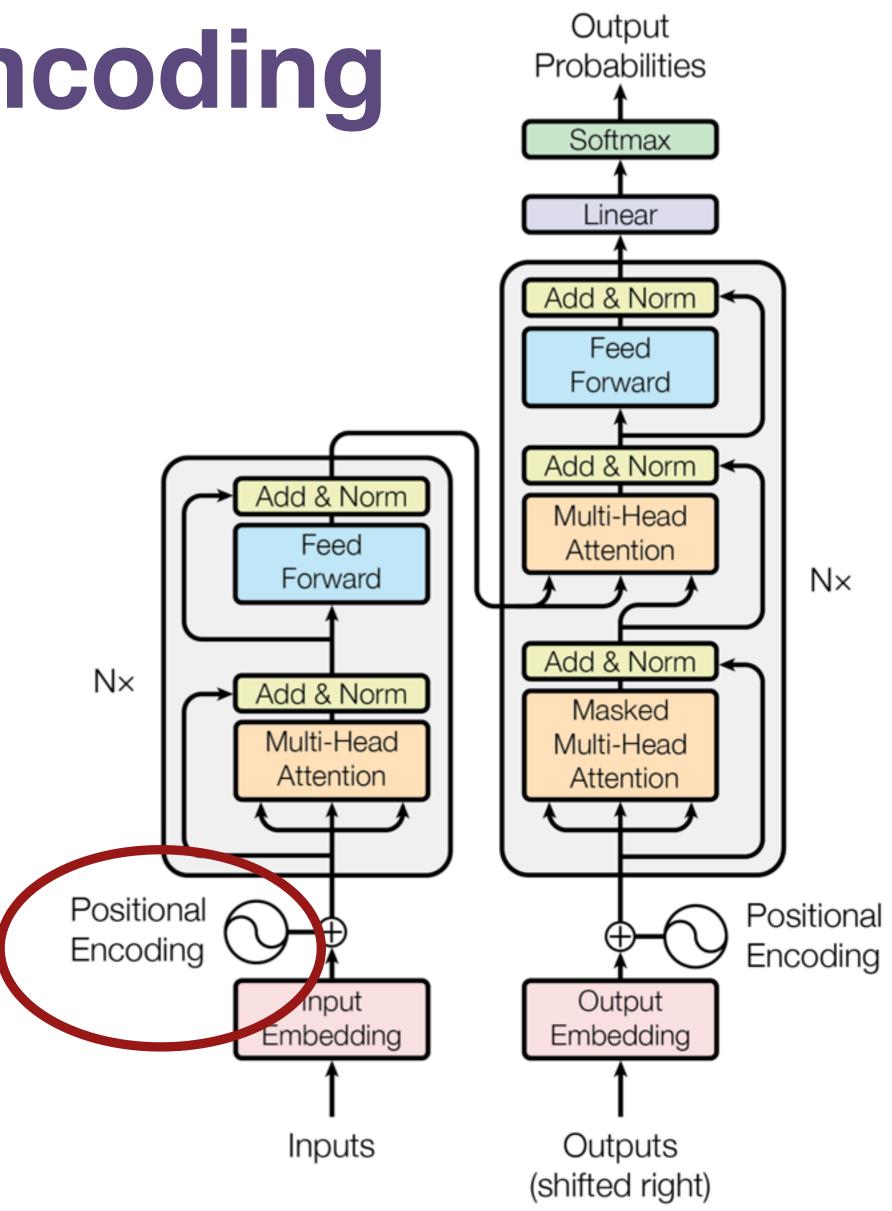
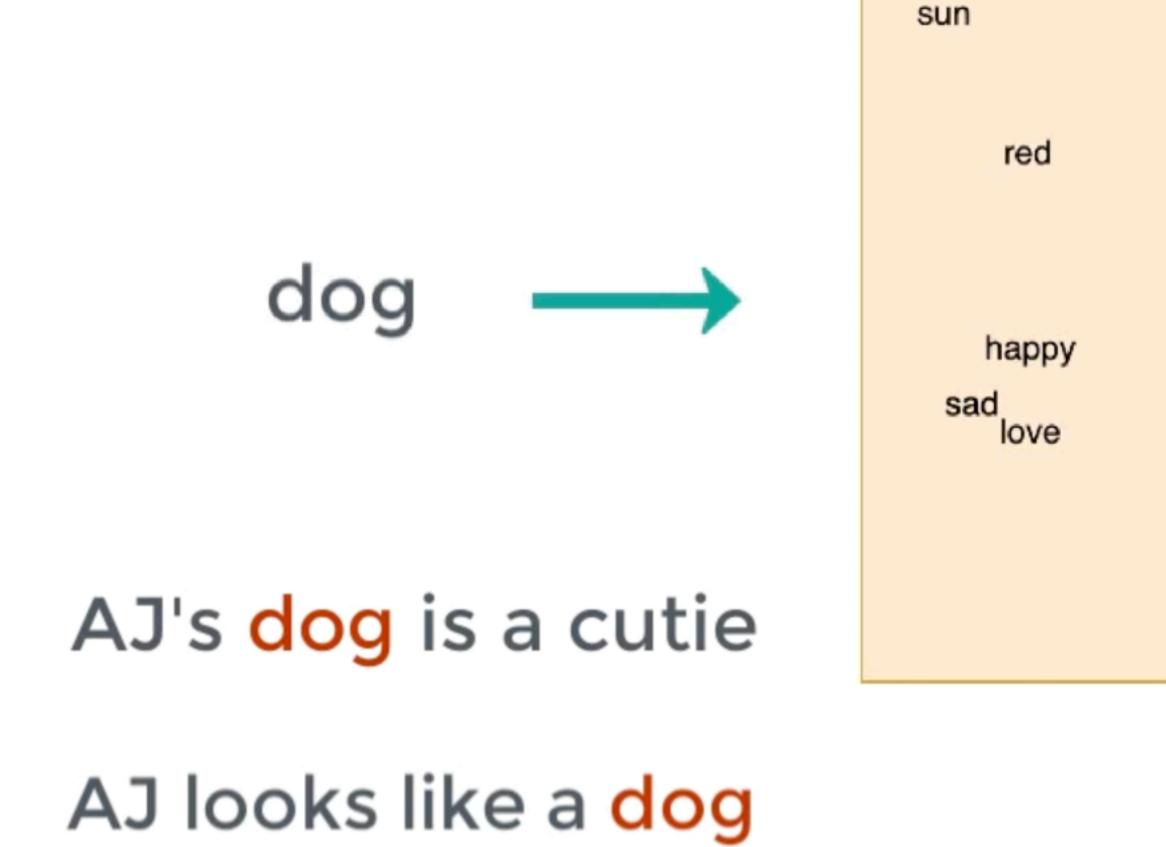
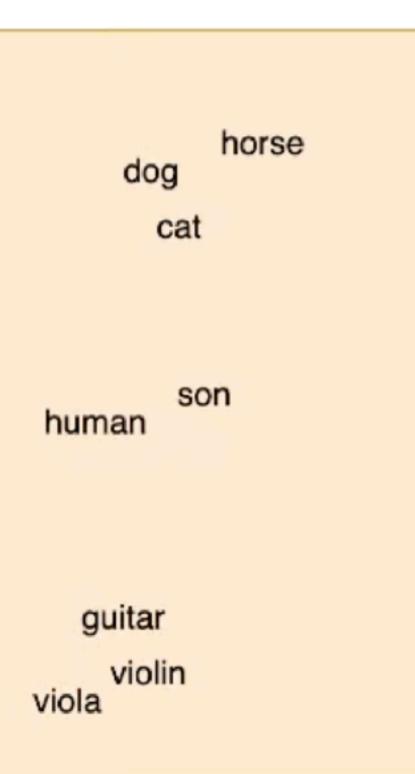


Figure 1: The Transformer - model architecture.

Positional encoding



Weizmann Institute of Science



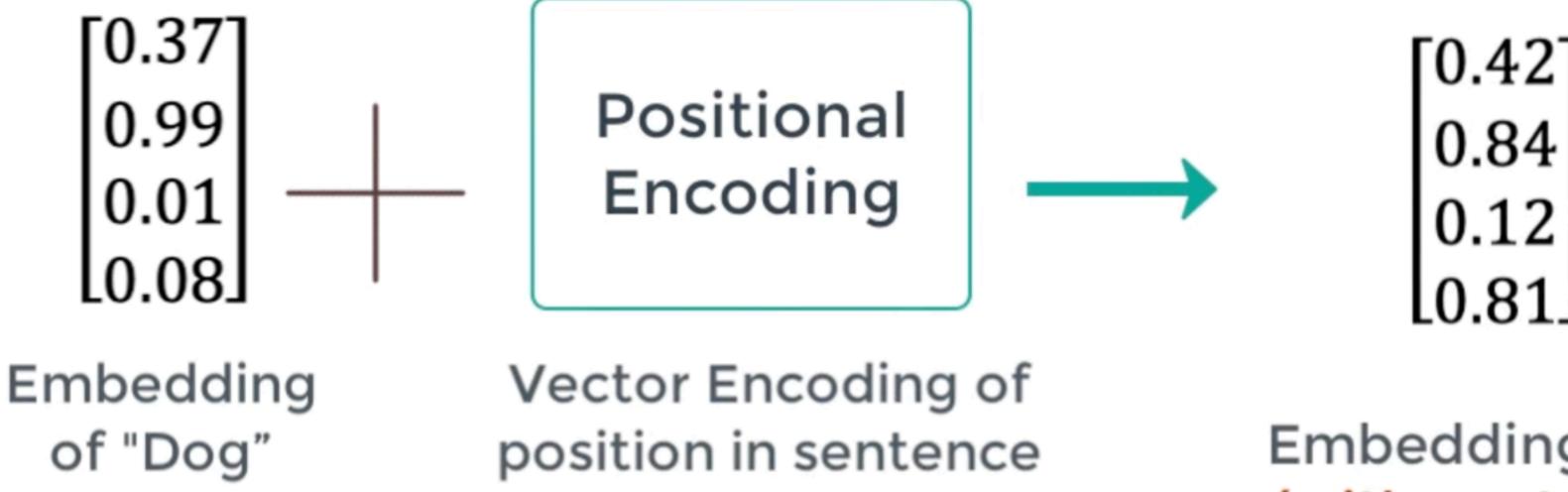
0.37 0.99 0.01 0.08

Positional Encoding

Weizmann Institute of Science

Positional encoder: Vector that gives context based on position of word in sentence

Positional Encoding



Weizmann Institute of Science

Embedding of Dog (with context info)

Positional encoding

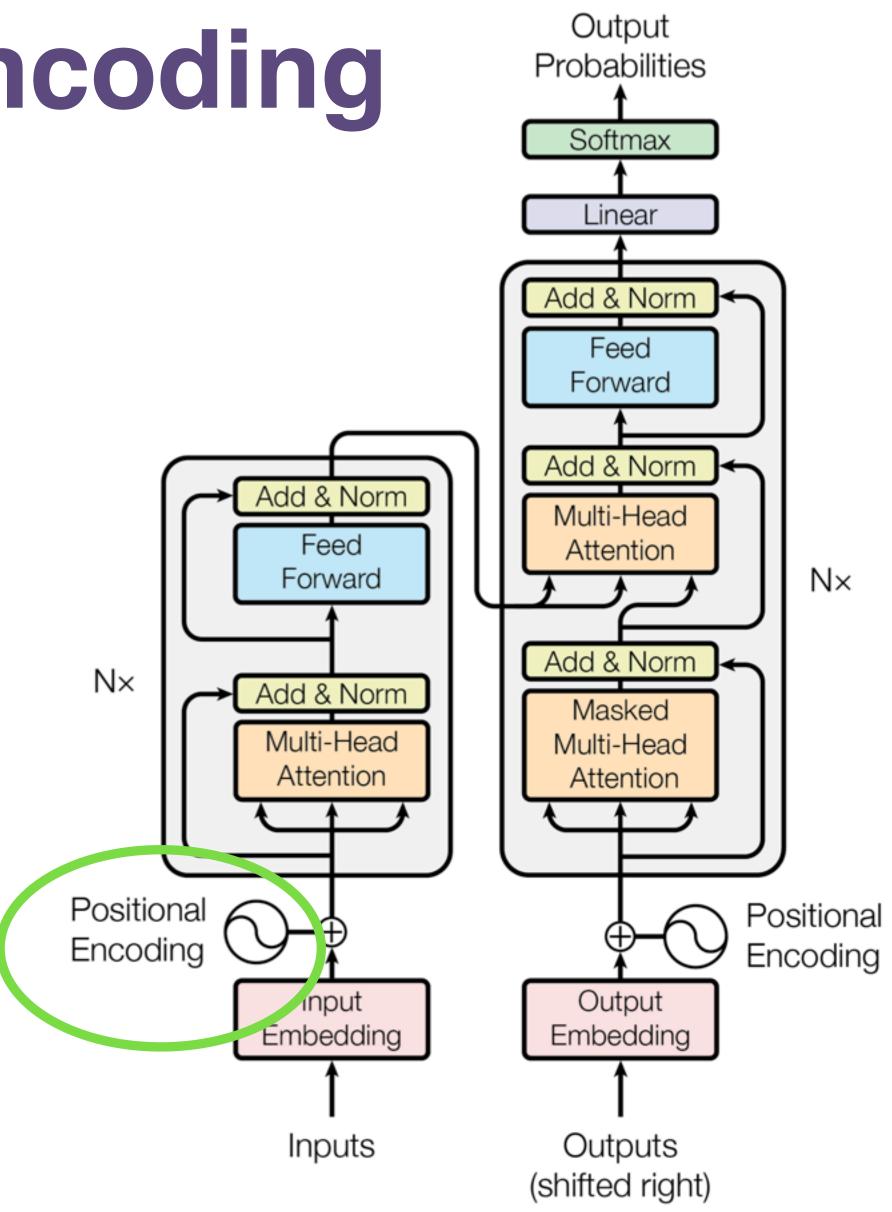


Figure 1: The Transformer - model architecture.

Attention

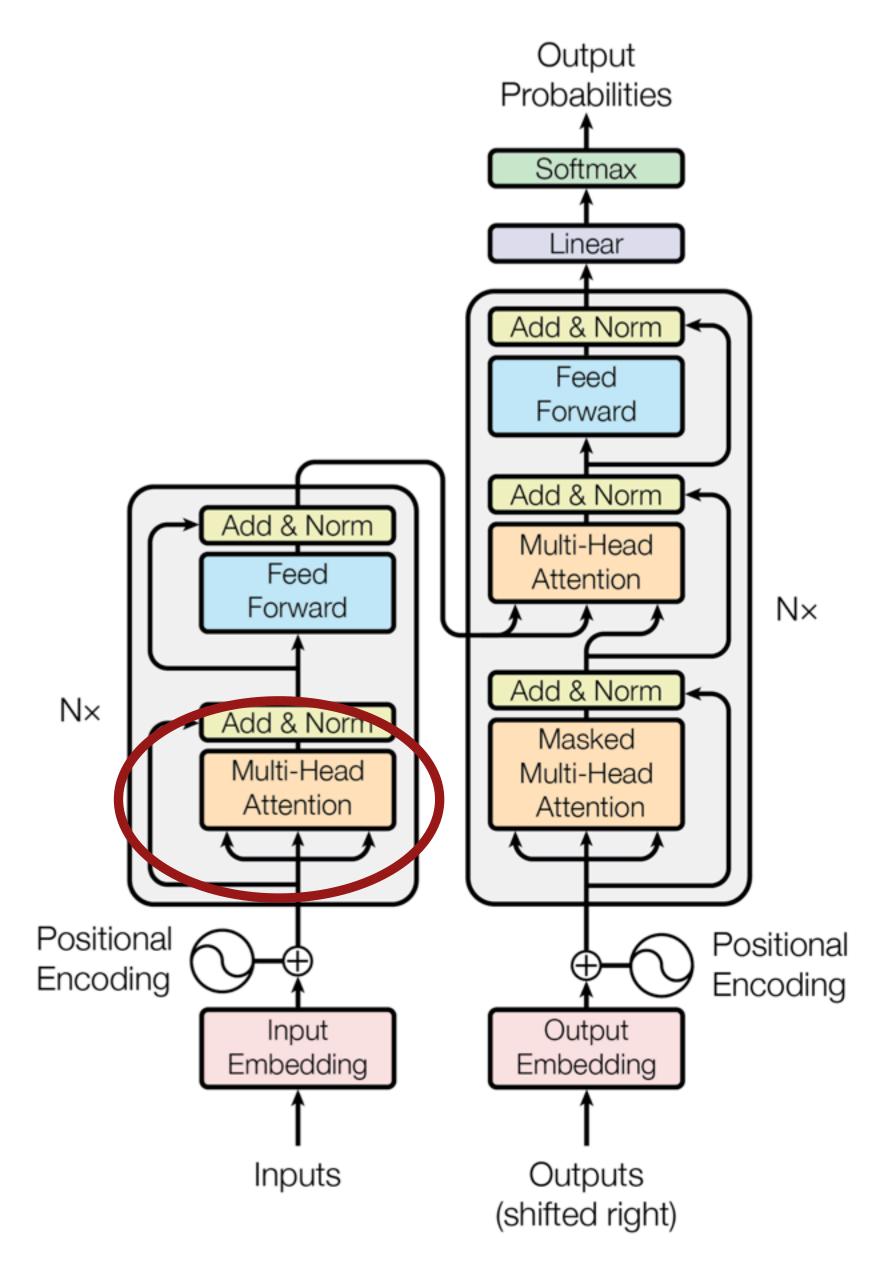


Figure 1: The Transformer - model architecture.

Attention

How relevant one word is to the others?

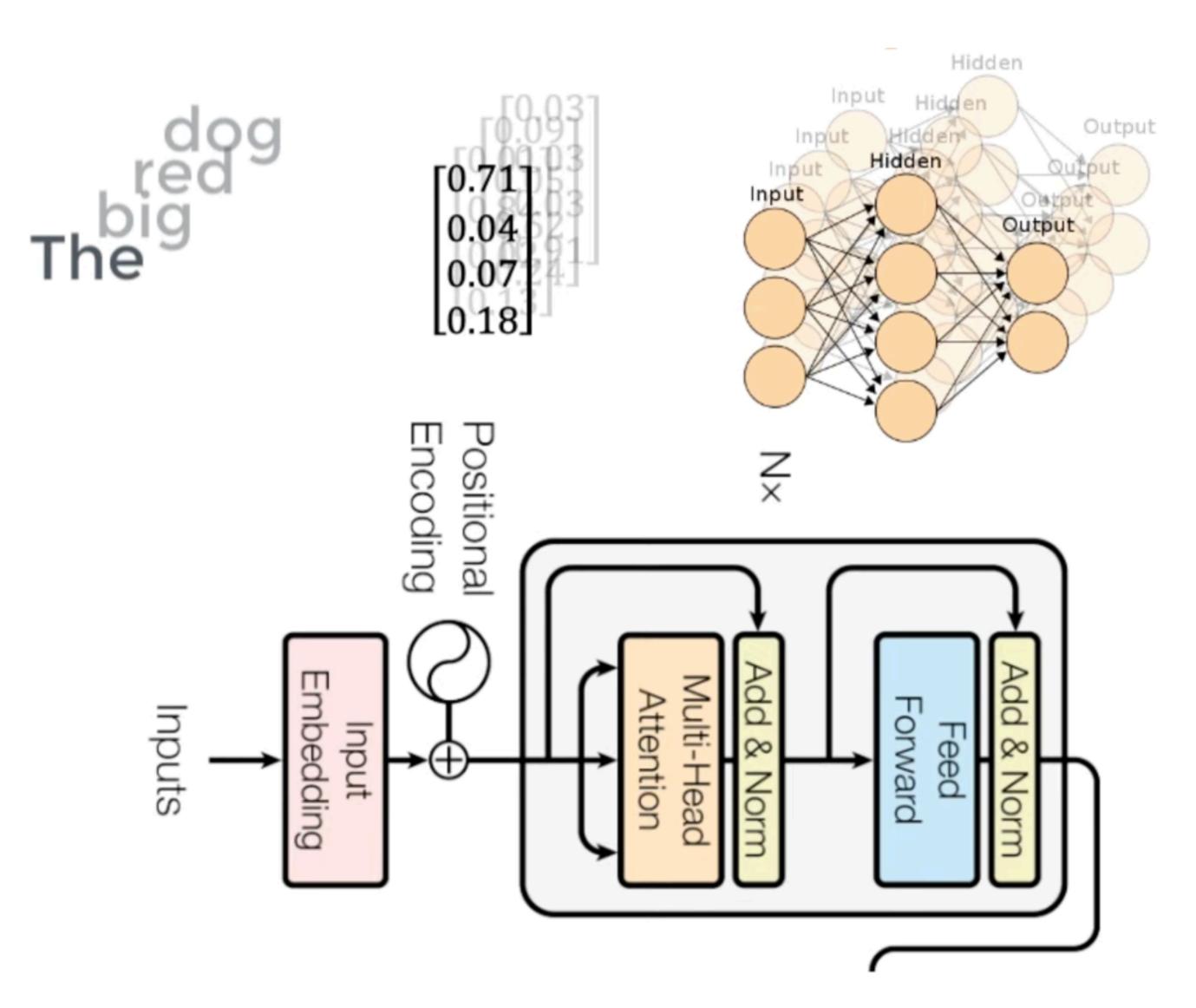
The big red dog big \rightarrow The big red dog red -> The big red dog dog -> The big red dog

Weizmann Institute of Science

Attention matrix

[0.71	0.04	0.07	0.18]
[0.01	0.84	0.02	0.13
[0.09	0.05	0.62	0.24
[0.03	0.03	0.03	0.91

FeedForward



Attention + FeedForward

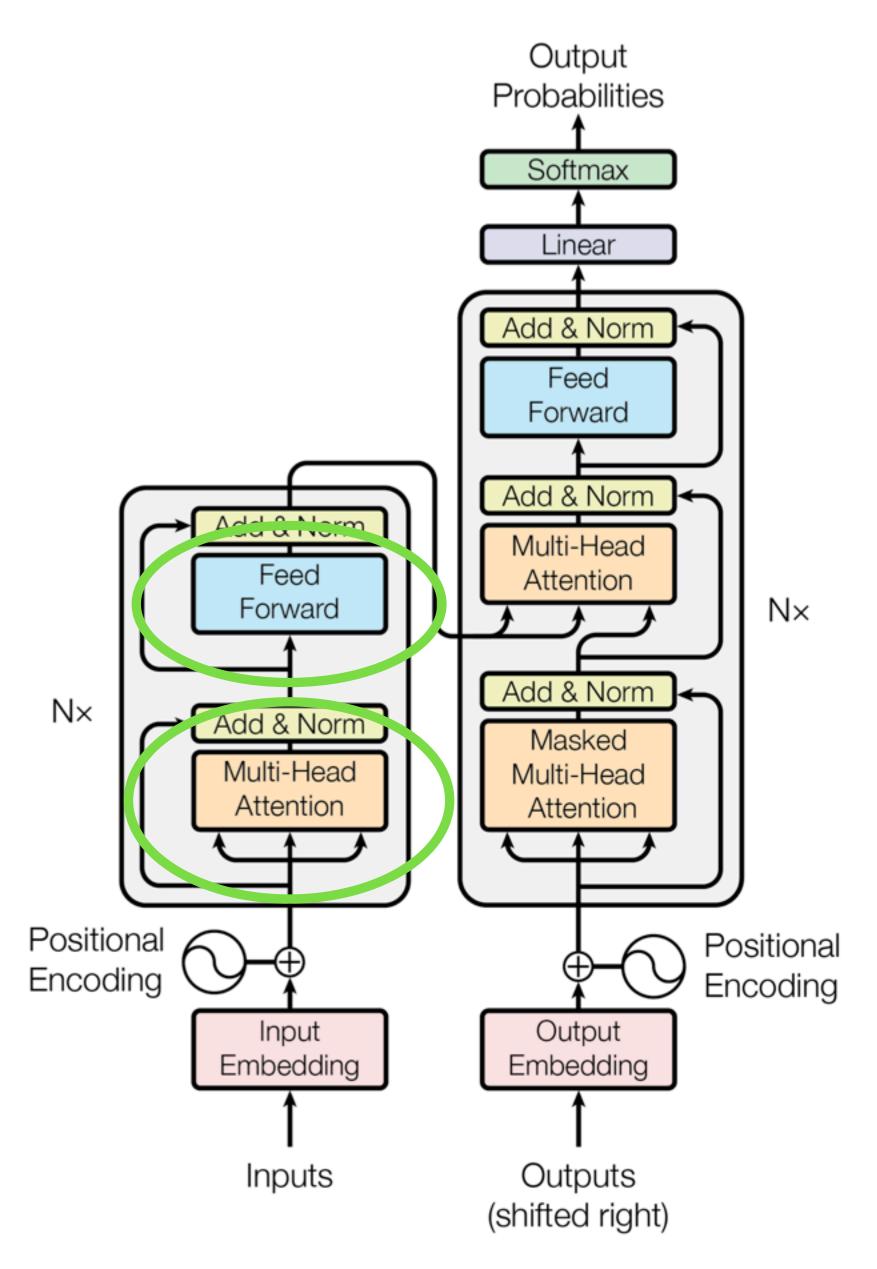


Figure 1: The Transformer - model architecture.

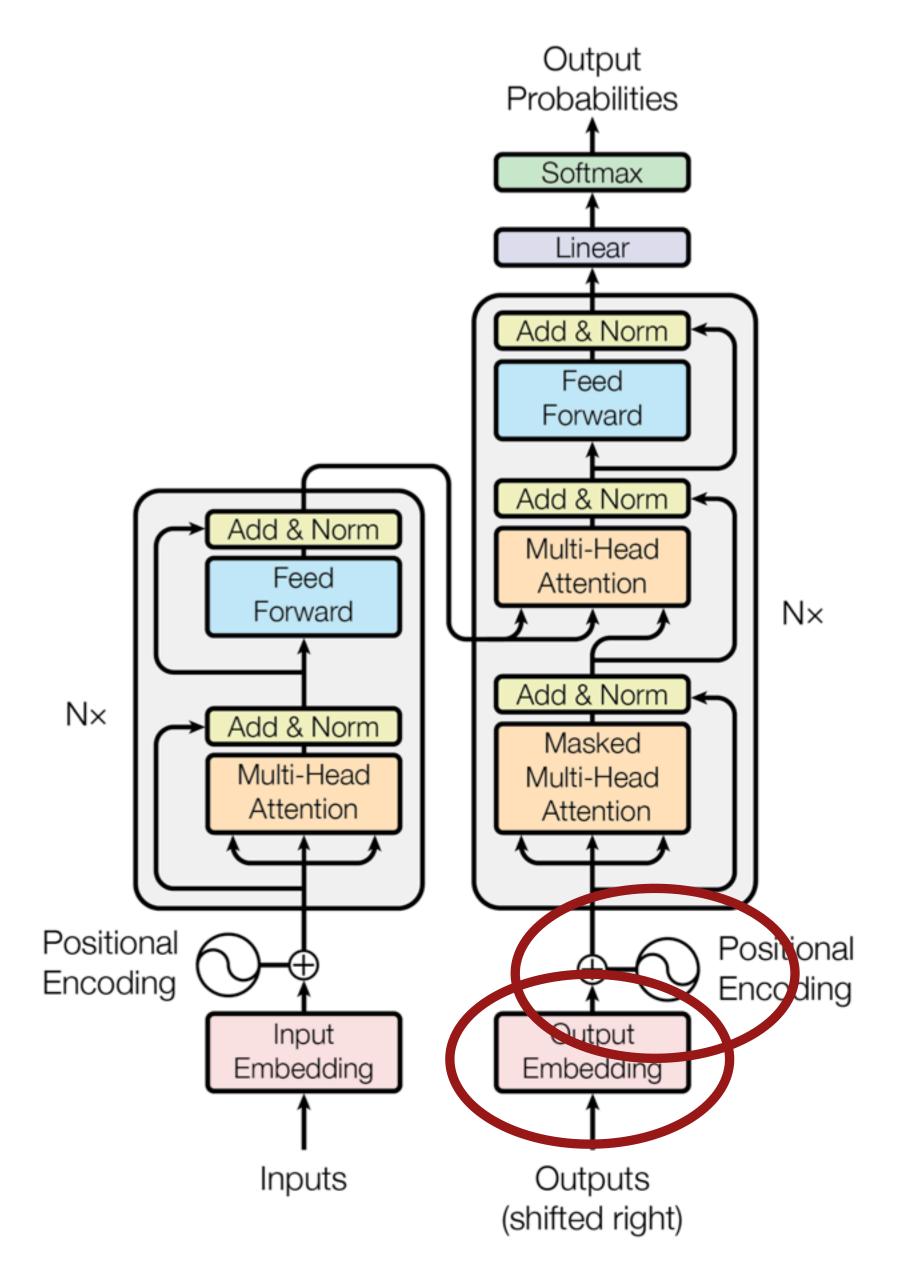


Figure 1: The Transformer - model architecture.

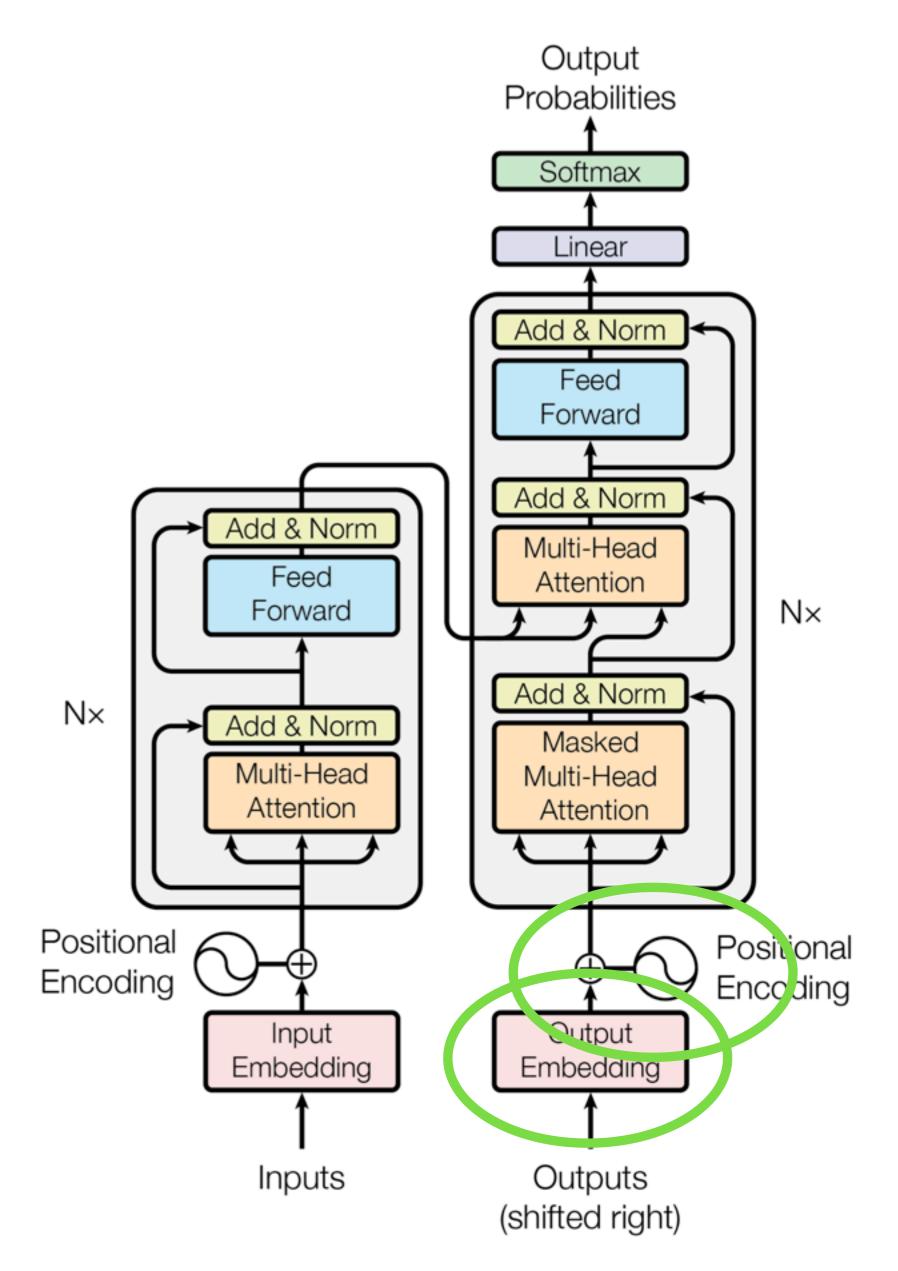


Figure 1: The Transformer - model architecture.

Masked attention

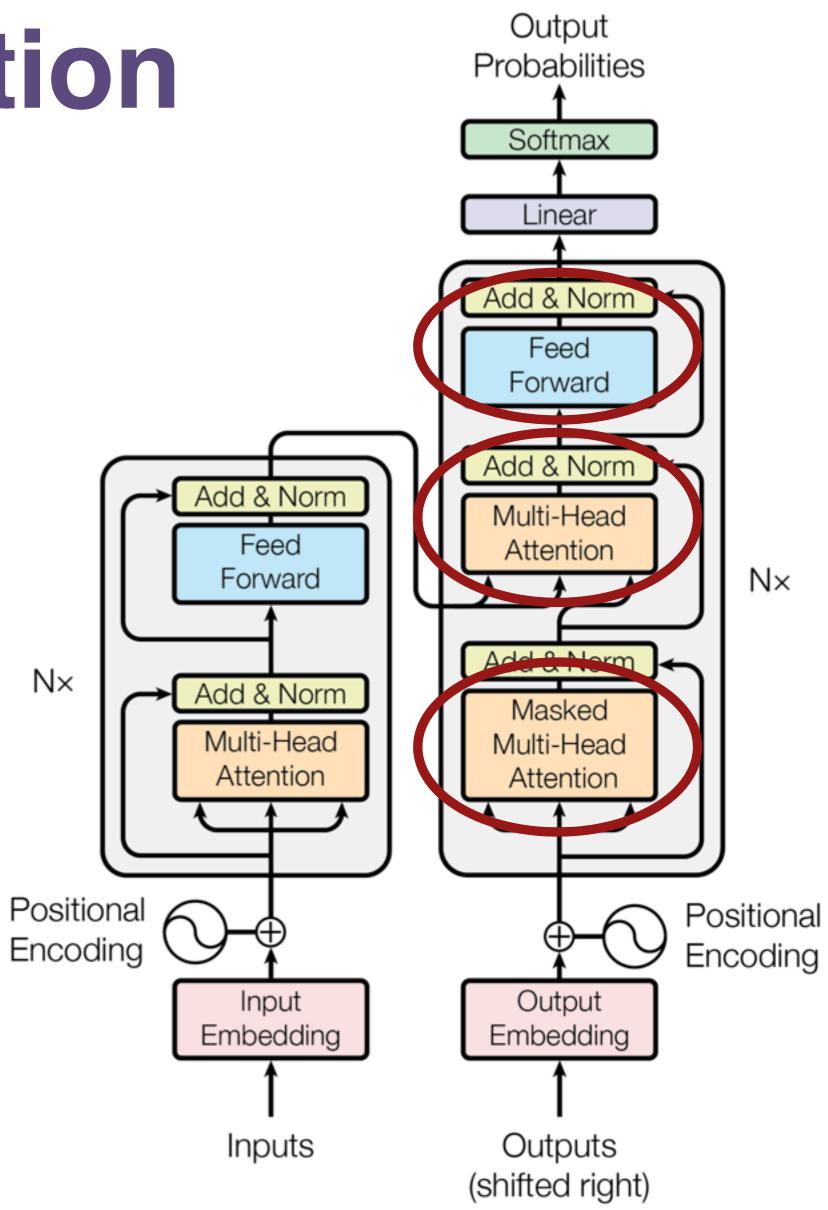


Figure 1: The Transformer - model architecture.

Self attention

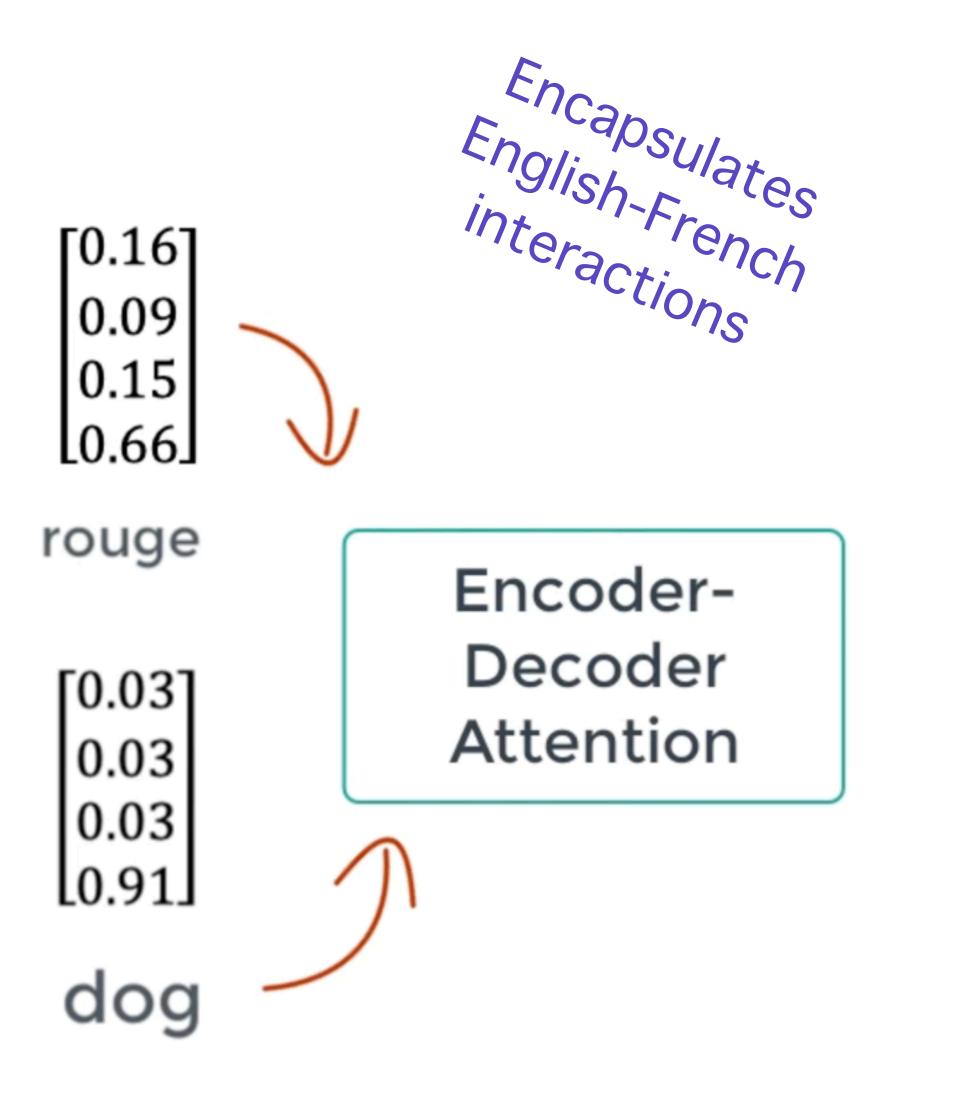
Weizmann Institute of Science

Le gros chien rouge gros \longrightarrow Le gros chien rouge chien \rightarrow Le gros chien rouge rouge -> Le gros chien rouge

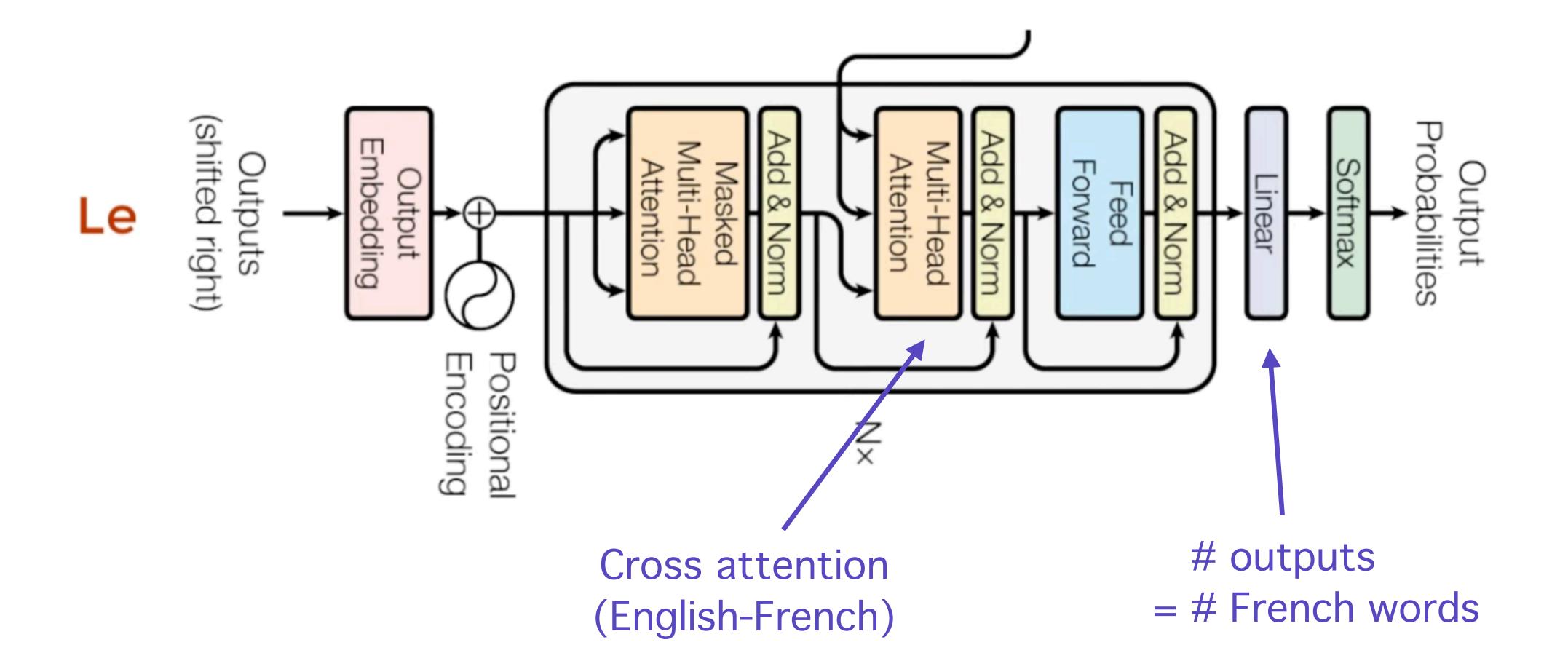
Cross attention

[1] 0 0	$\begin{bmatrix} 0.1 \\ 0.9 \\ 0 \\ 0 \end{bmatrix}$	0.05 0.40 0.55 0
Le	gros	chien
0.71 0.04 0.07 0.18	[0.01] 0.84 0.02 0.13]	[0.09] 0.05 0.62 0.24]
The	big	red

Weizmann Institute of Science



Cross attention



That's pretty much it. Now let's look at some details we dropped

"Multihead" attention

- There can be multiple relationships to learn
 - Positional
 - ➡ "Is there" question. "There is" affirmative
 - Subject verb relationship
- Let's have multiple attentions
 - Multihead attention
- We'll combine all of them once they are computed

Weizmann Institute of Science

The \rightarrow The big red dog big \rightarrow The big red dog red \rightarrow The big red dog dog \rightarrow The big red dog

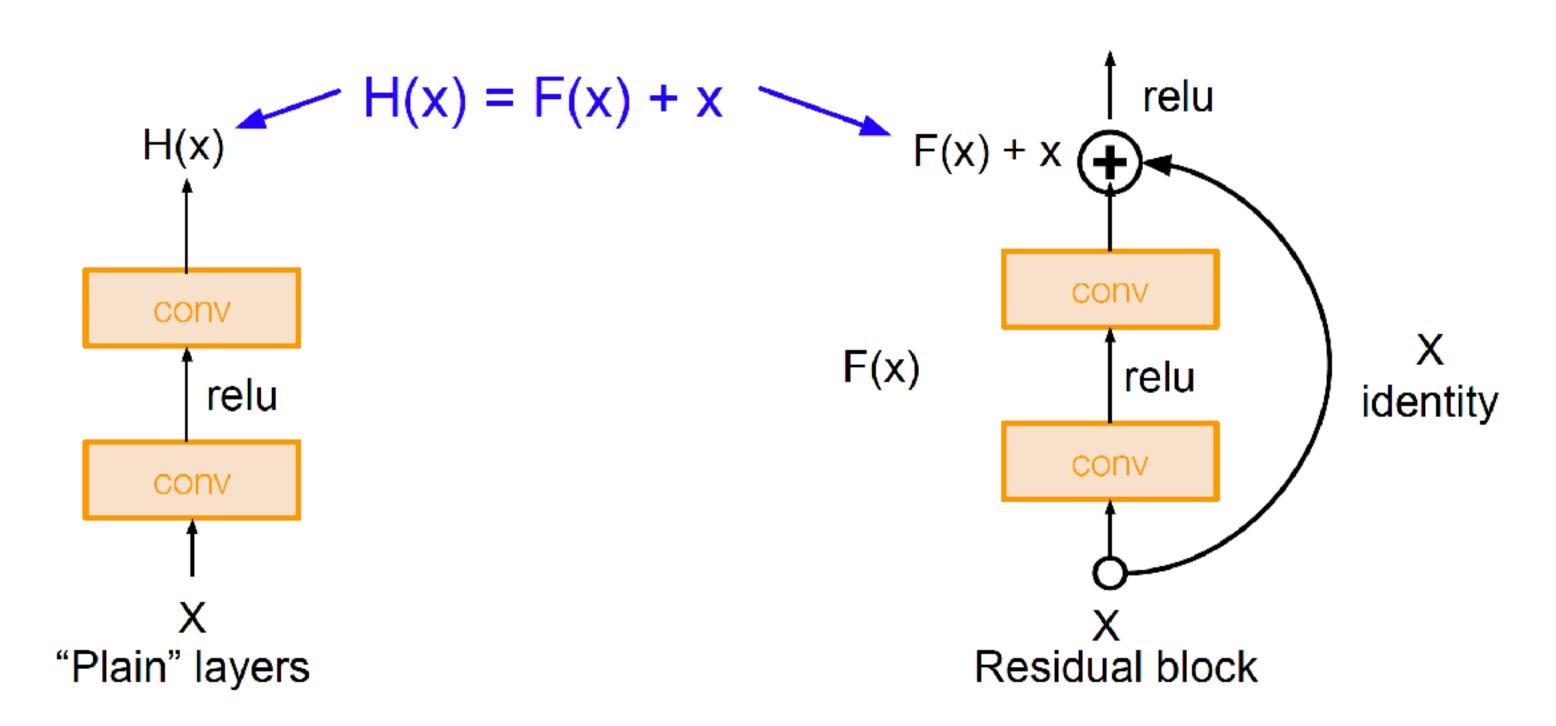
The \rightarrow The big red dog big \rightarrow The big red dog red \rightarrow The big red dog dog \rightarrow The big red dog

"Masked" attention

- + The initial problem we talked about
 - ➡ English: The big red dog.
 - → French: Le gros chien rouge
- But, when we start we only know the first French word
 - While computing attention, during training, we only need to look at the first word
 - Mask the rest \rightarrow Masked attention

Le \rightarrow Le gros chien rouge gros \rightarrow Le gros chien rouge chien \rightarrow Le gros chien rouge rouge \rightarrow Le gros chien rouge

Add & Norm (RESIDUAL NETWORK)



Weizmann Institute of Science

Use layers to fit residual F(x) = H(x) - xinstead of H(x) directly

Add & Norm

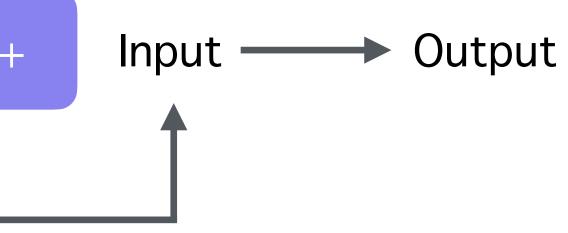
Add = skip connections



- + Helps remembering where it started from
- Useful in deeper networks (in general)

Norm = normalize (layer-wise or batch-wise)

Weizmann Institute of Science



Now we understand the principle

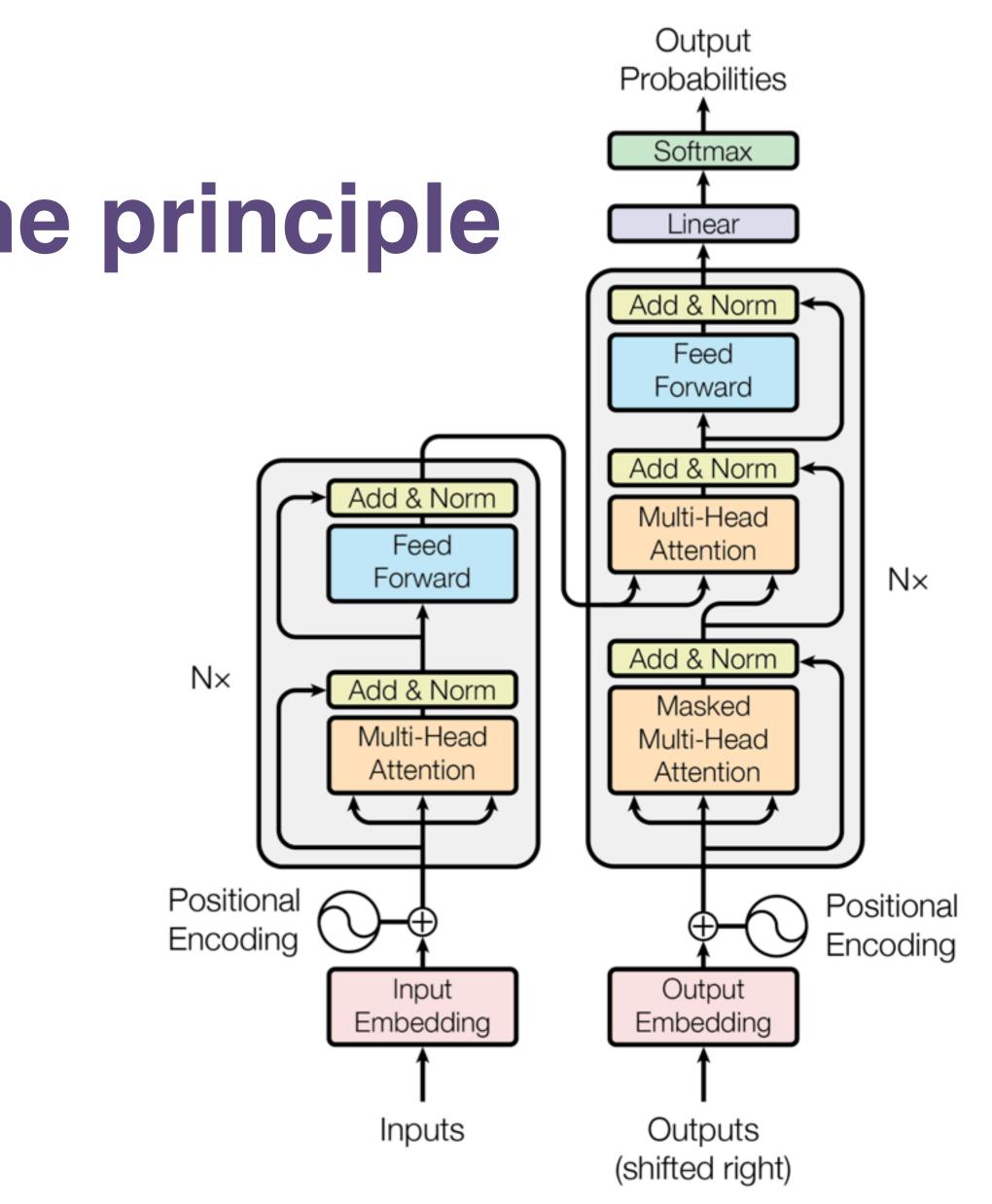


Figure 1: The Transformer - model architecture.

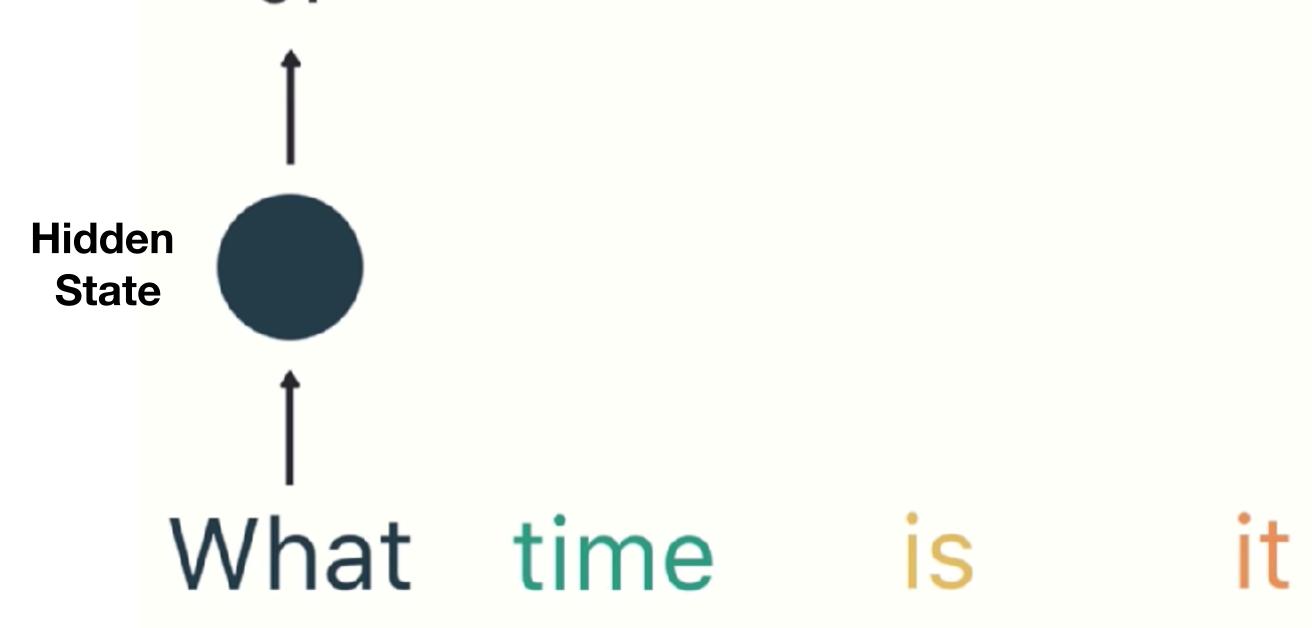
Attention is Al You Need Level 3 E. Gross

Jay Alammar: The Illustrated Transformer Mehreen Saeed: Positional Encoding https://arxiv.org/abs/1706.03762

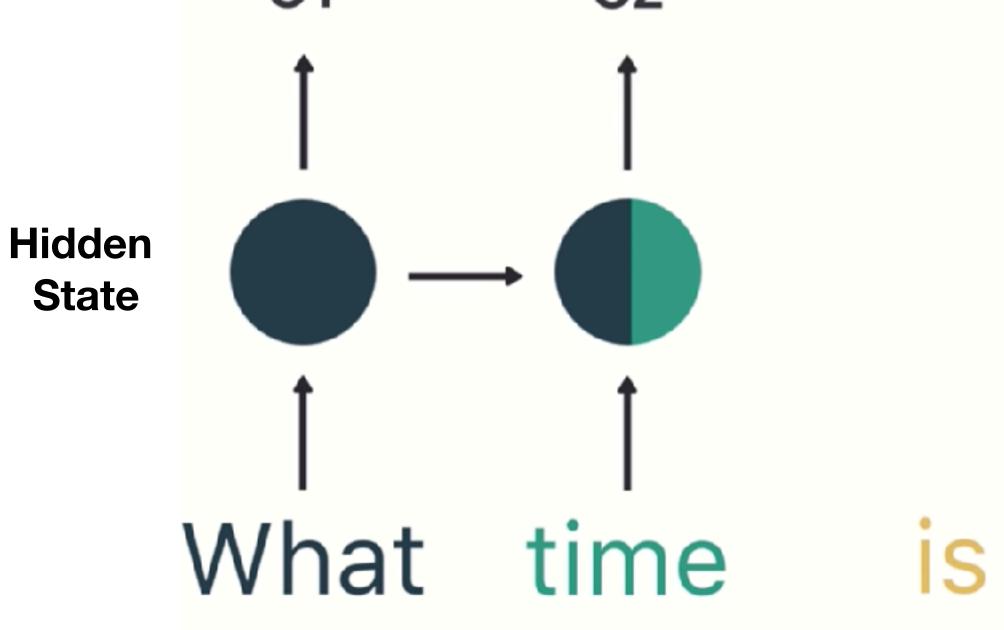
RNN's are good at processing sequence data for predictions

https://www.youtube.com/watch?v=LHXXI4-IEns

- How do we do it?
- We use hidden states as memory (they represent information from all previous states)

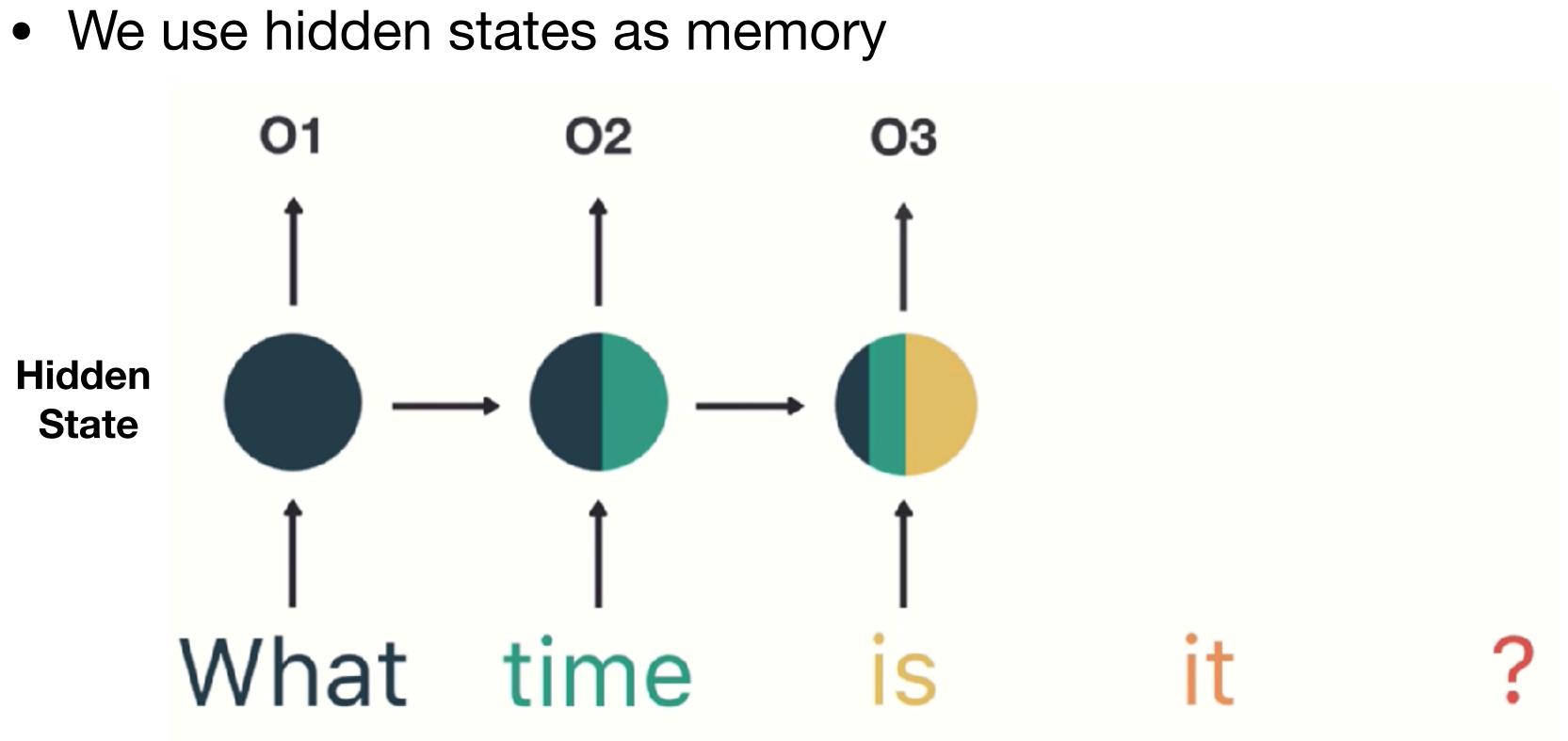


- How do we do it?
- We use hidden states as memory (they represent information from all previous states)



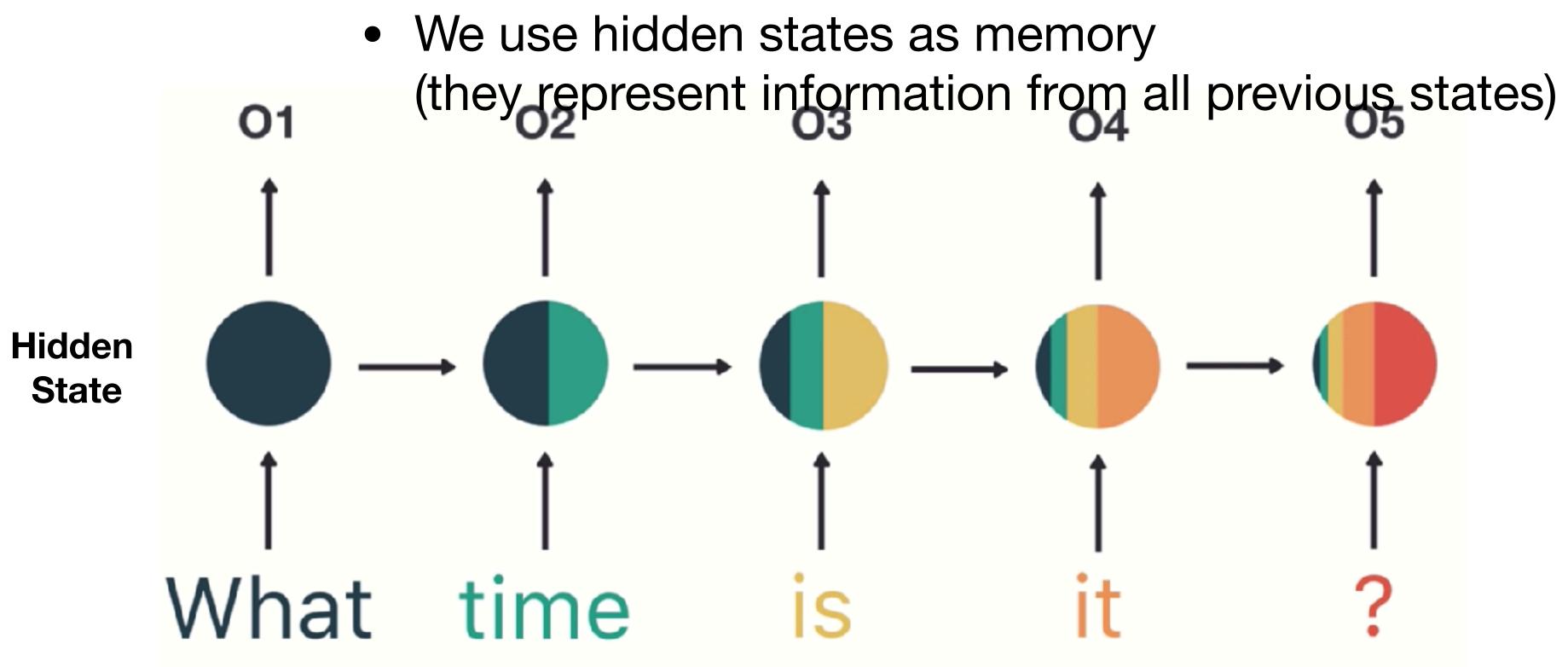
it

- How do we do it?

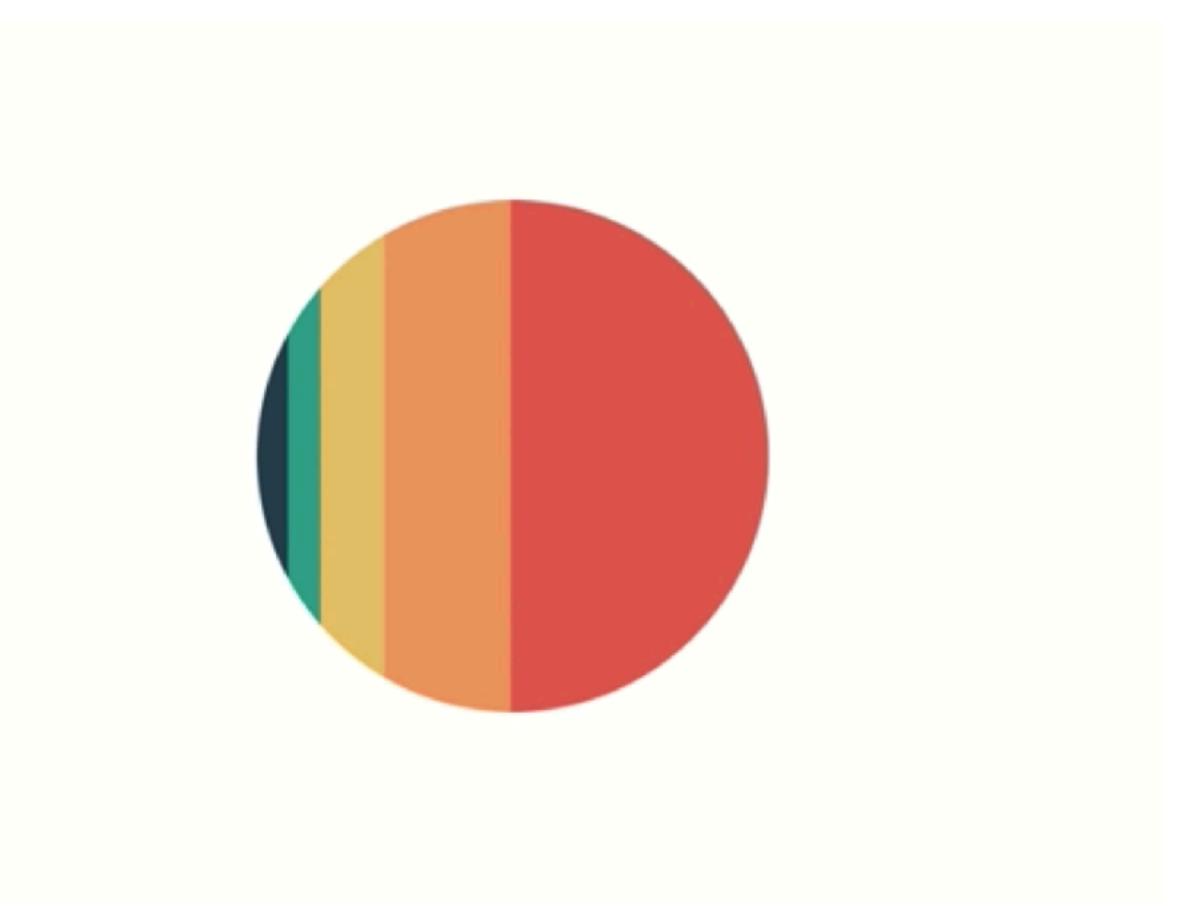


https://www.youtube.com/watch?v=LHXXI4-IEns

Recurrent Neural Net in a NutShell • How do we do it?



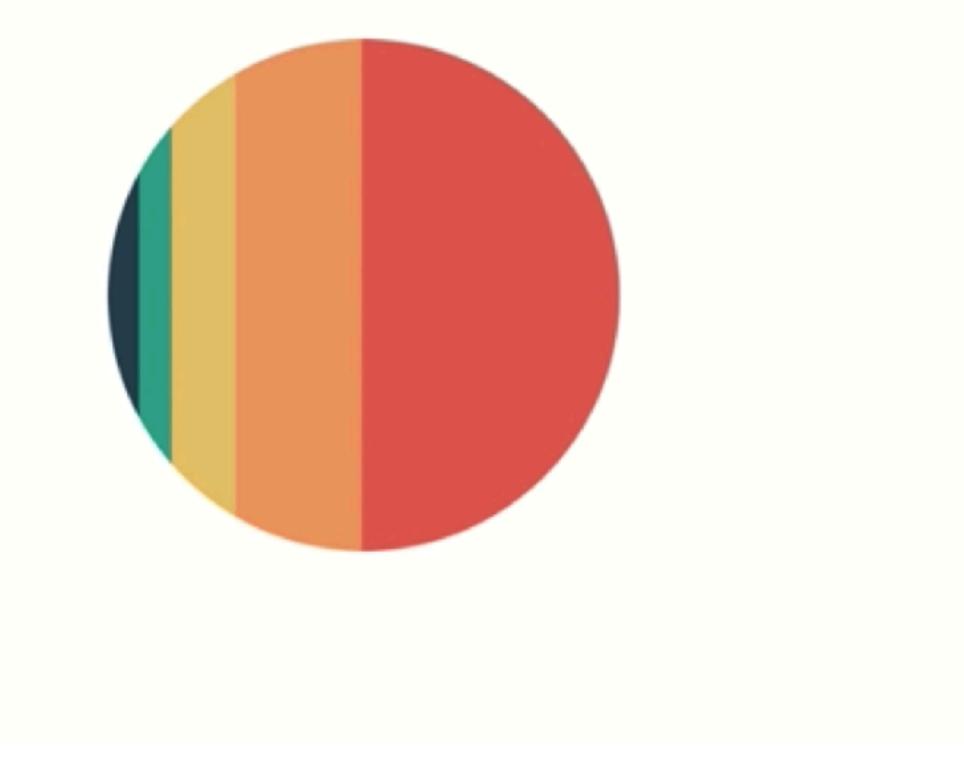
Recurrent Neural Net in a NutShell Issue of RNN with Short Time Memory



https://www.youtube.com/watch?v=LHXXI4-IEns

Recurrent Neural Net in a NutShell Issue of RNN with Short Time Memory

- Back propagation with time -> Vanishing Gradient We do not learn very early layers....



https://www.youtube.com/watch?v=LHXXI4-IEns

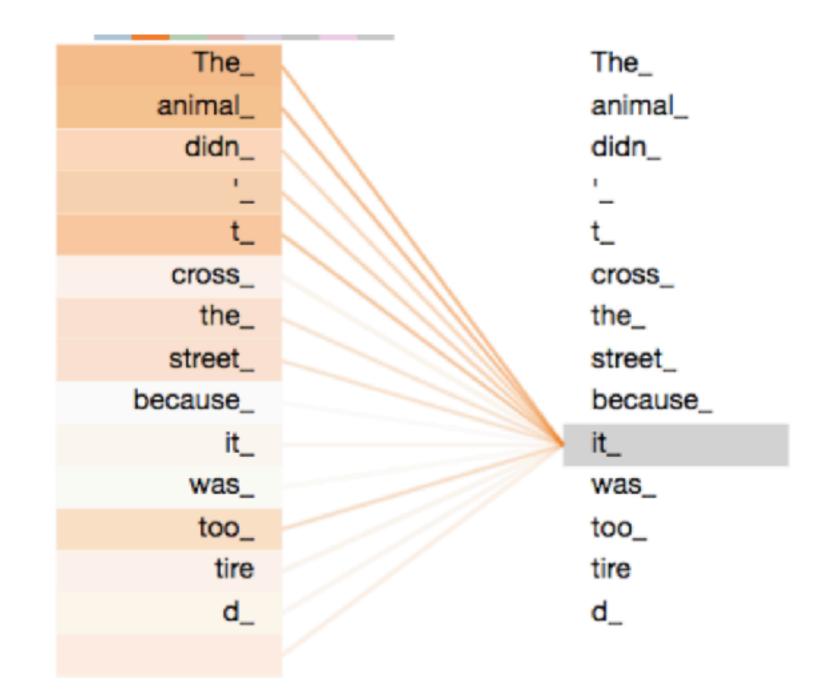
Transformer Keypoints

- RNN: Seq to Seq Suffers from long term memory Transformer not sequential like RNN once
- Introduce the concept of Self Attention
- Multi Head Attention

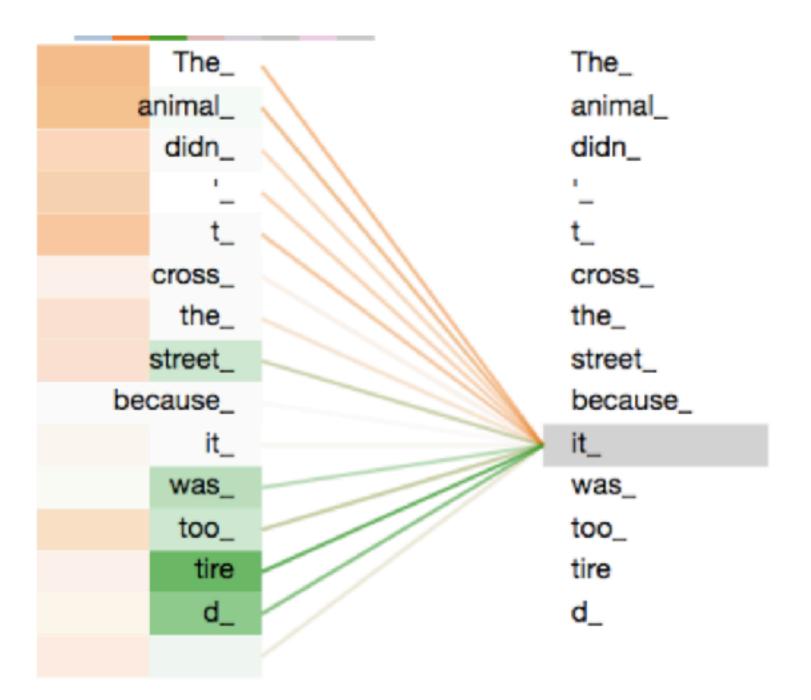
God commanded Abraham to sacrifice his son in order to test his faith

All input fed once through the model and calculation is performed

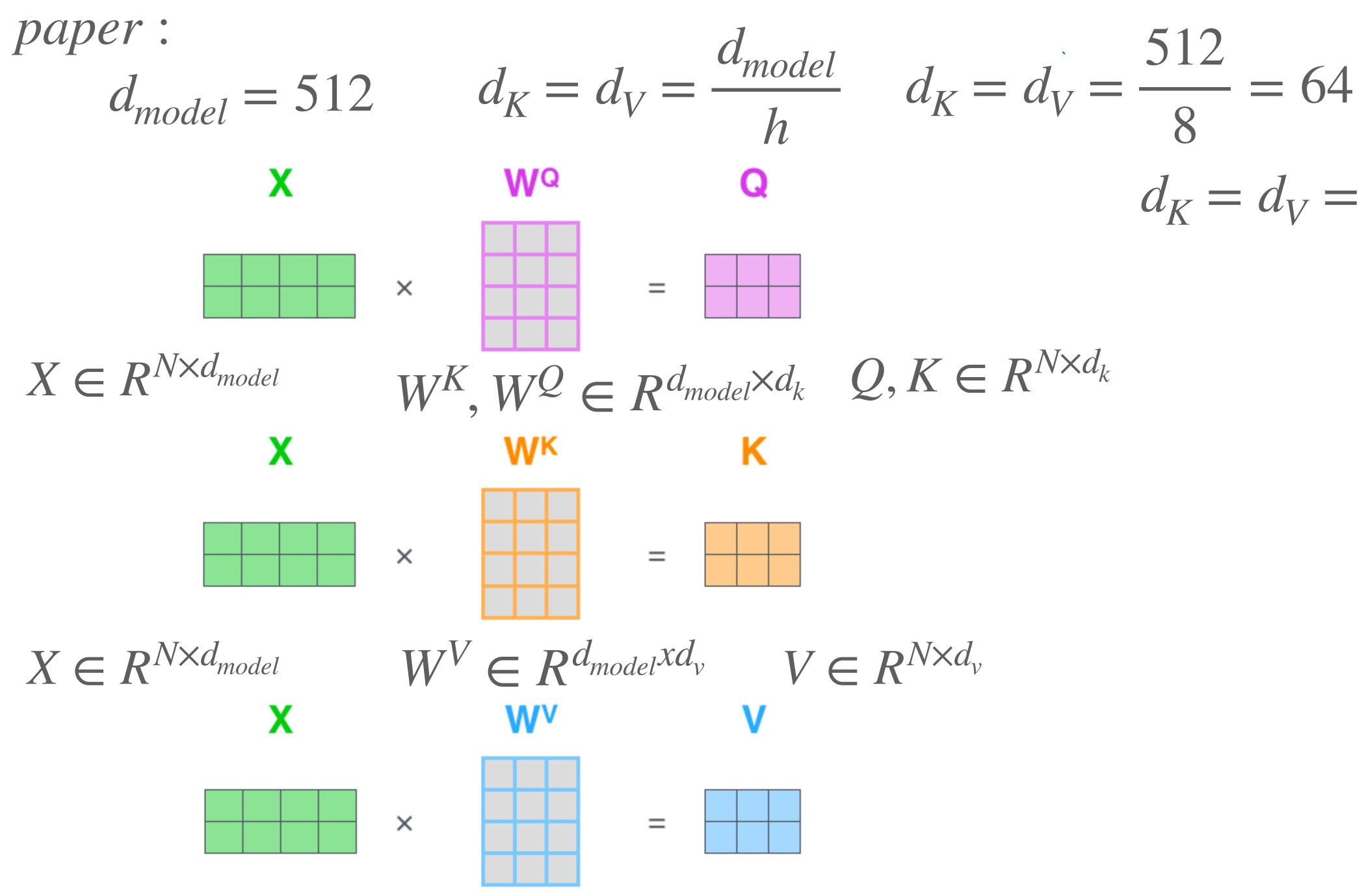
One Attention



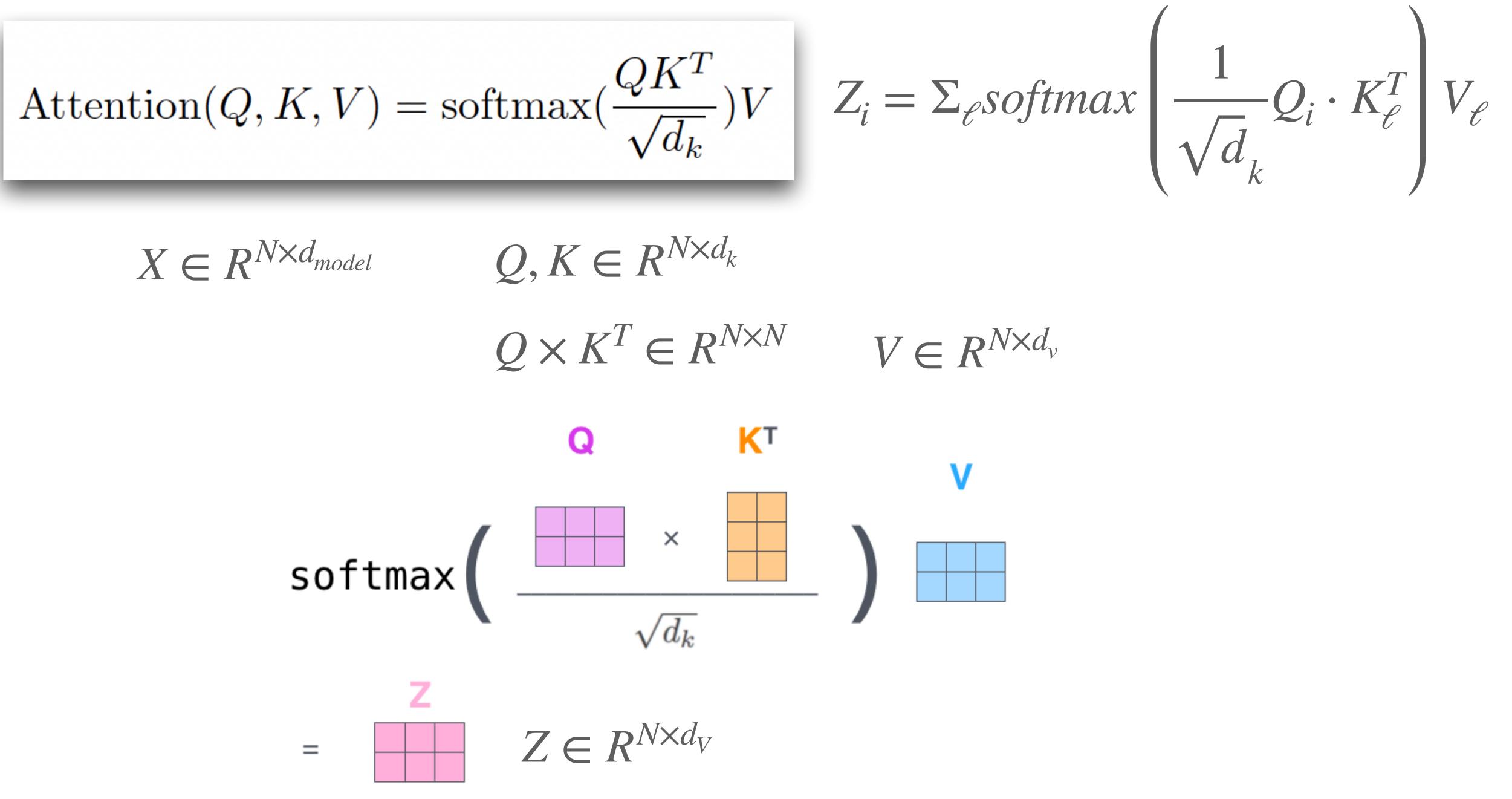
http://jalammar.github.io/illustrated-transformer/

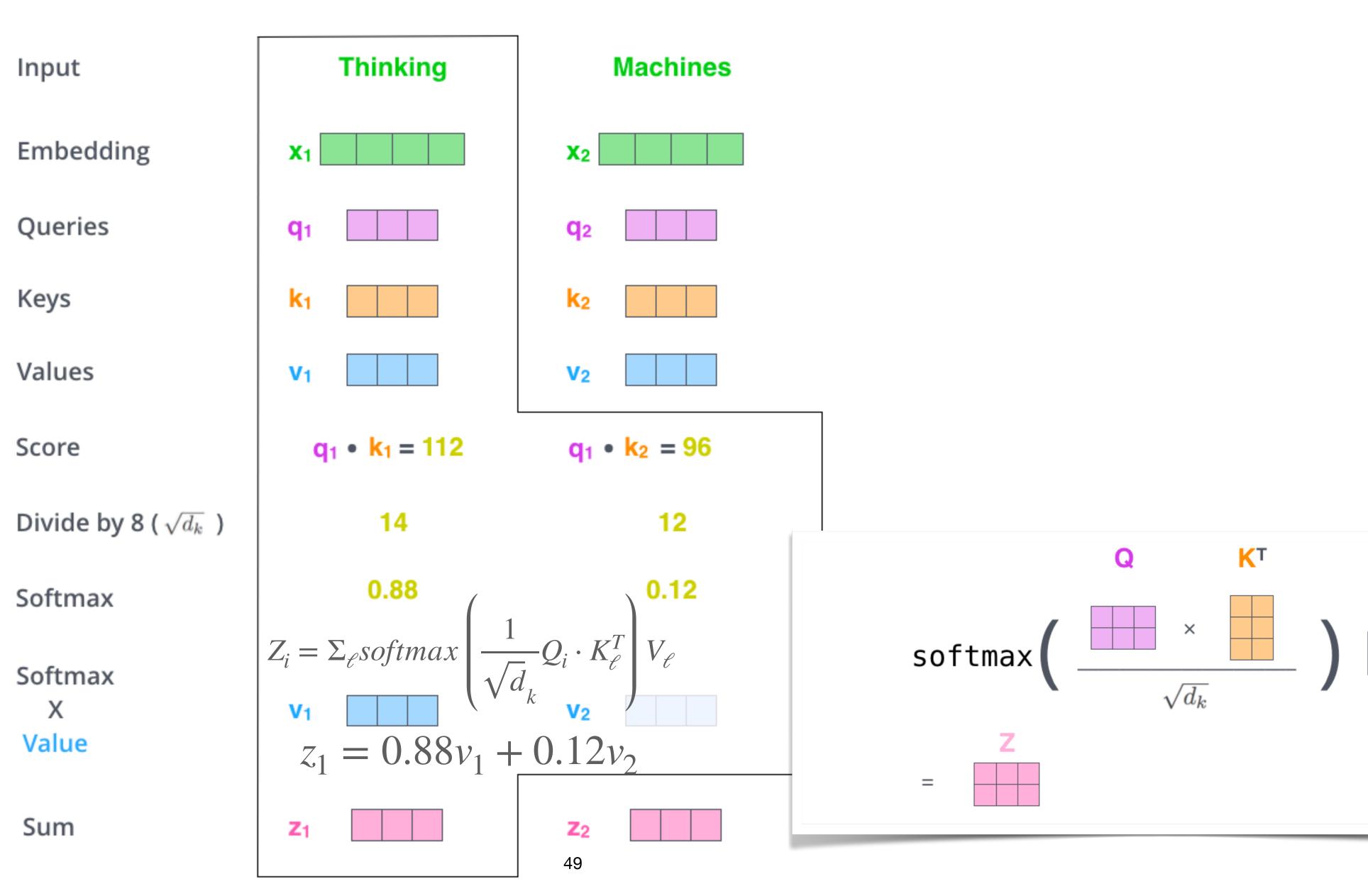


two Heads



 $d_{K} = d_{V} = \frac{d_{model}}{h}$





 $head_i = Attention(Q_i, K_i, V_i)$

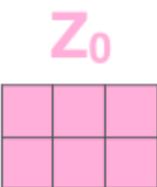
 $X \in R^{N \times d_{model}}$



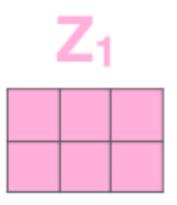
 $d_K = d_V = \frac{d_{model}}{h}$

ATTENTION HEAD #0

ATTENTION HEAD #1



 $Z \in R^{N \times d_V}$

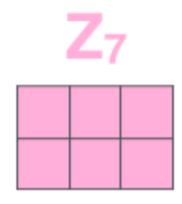


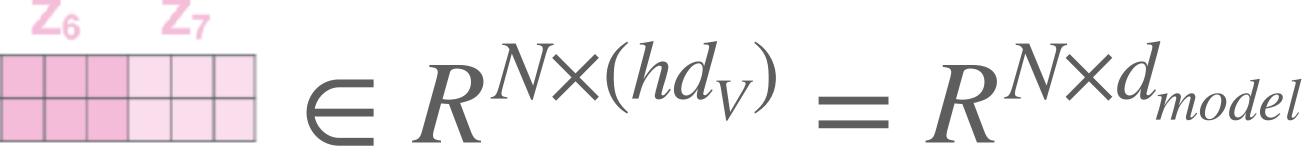
Z₀ $Z_3 Z_4 Z_5 Z_6 Z_7$ Z_2 Z₁ $Concat(head_1, ..., head_h)$

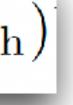
Calculating attention separately in eight different attention heads

...

ATTENTION HEAD #7

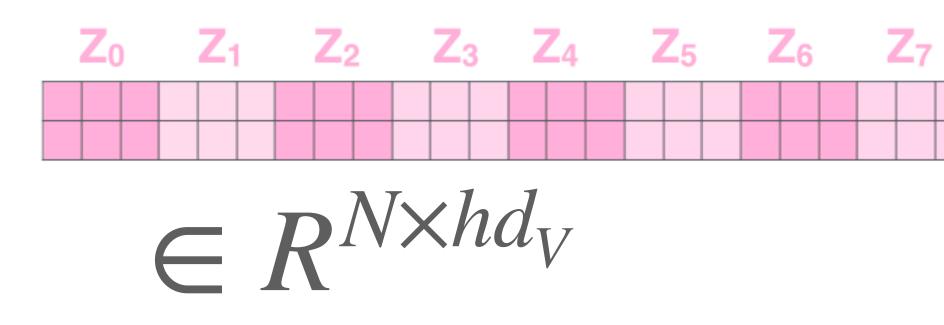






 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$

1) Concatenate all the attention heads



3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

2) Multiply with a weight matrix W^o that was trained jointly with the model

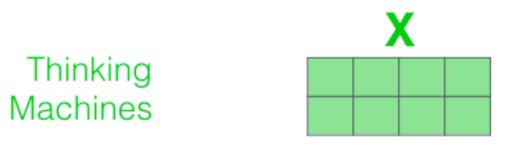
Х

 $W^{O} \in R^{hd_{V} \times d_{model}}$

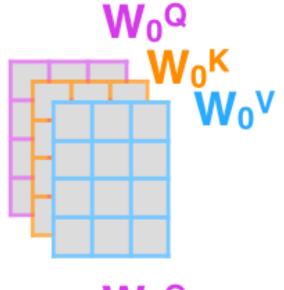
_	_	_	_	
_				
_				14/0
				Wo

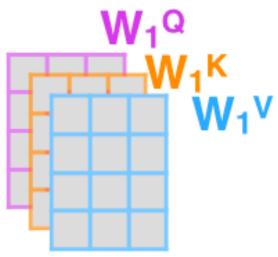
1) This is our 2) We embed input sentence* each word*

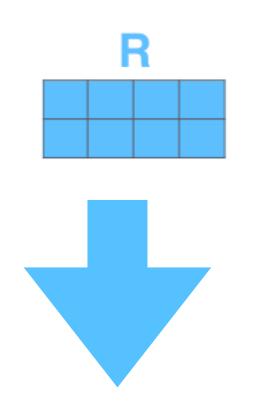
3) Split into 8 heads.
We multiply X or
R with weight matrices

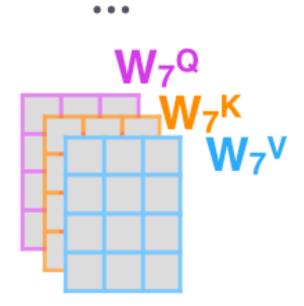


* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one



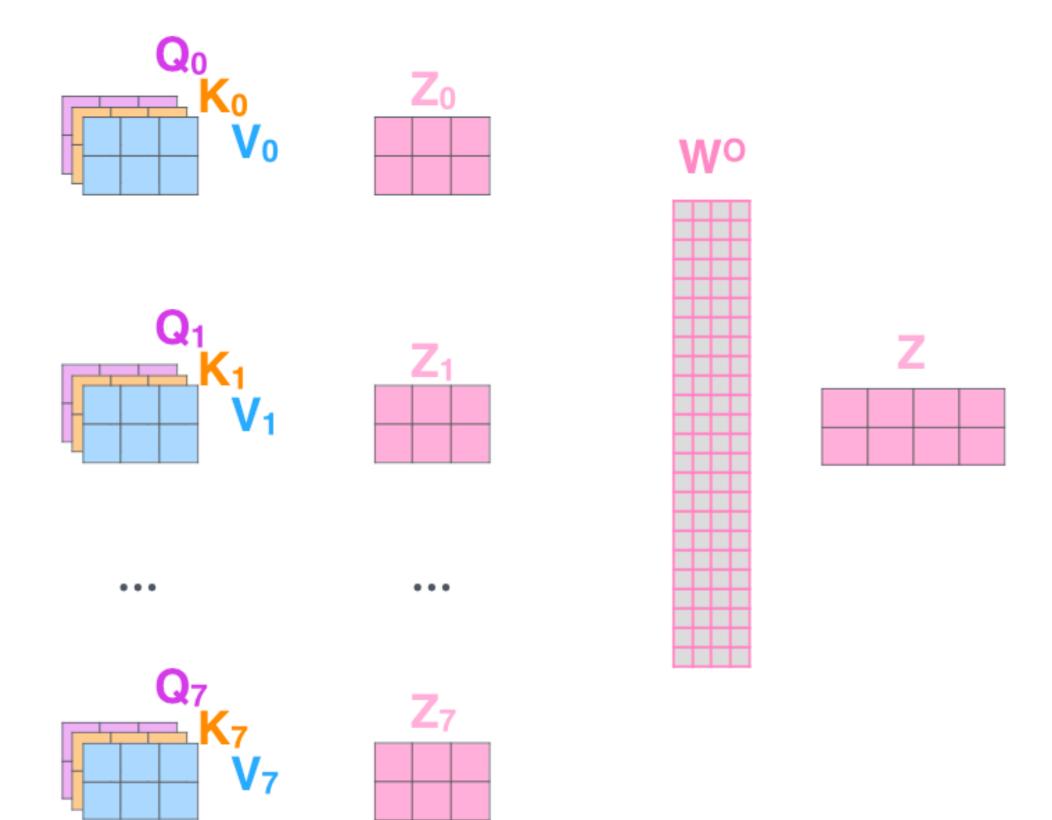


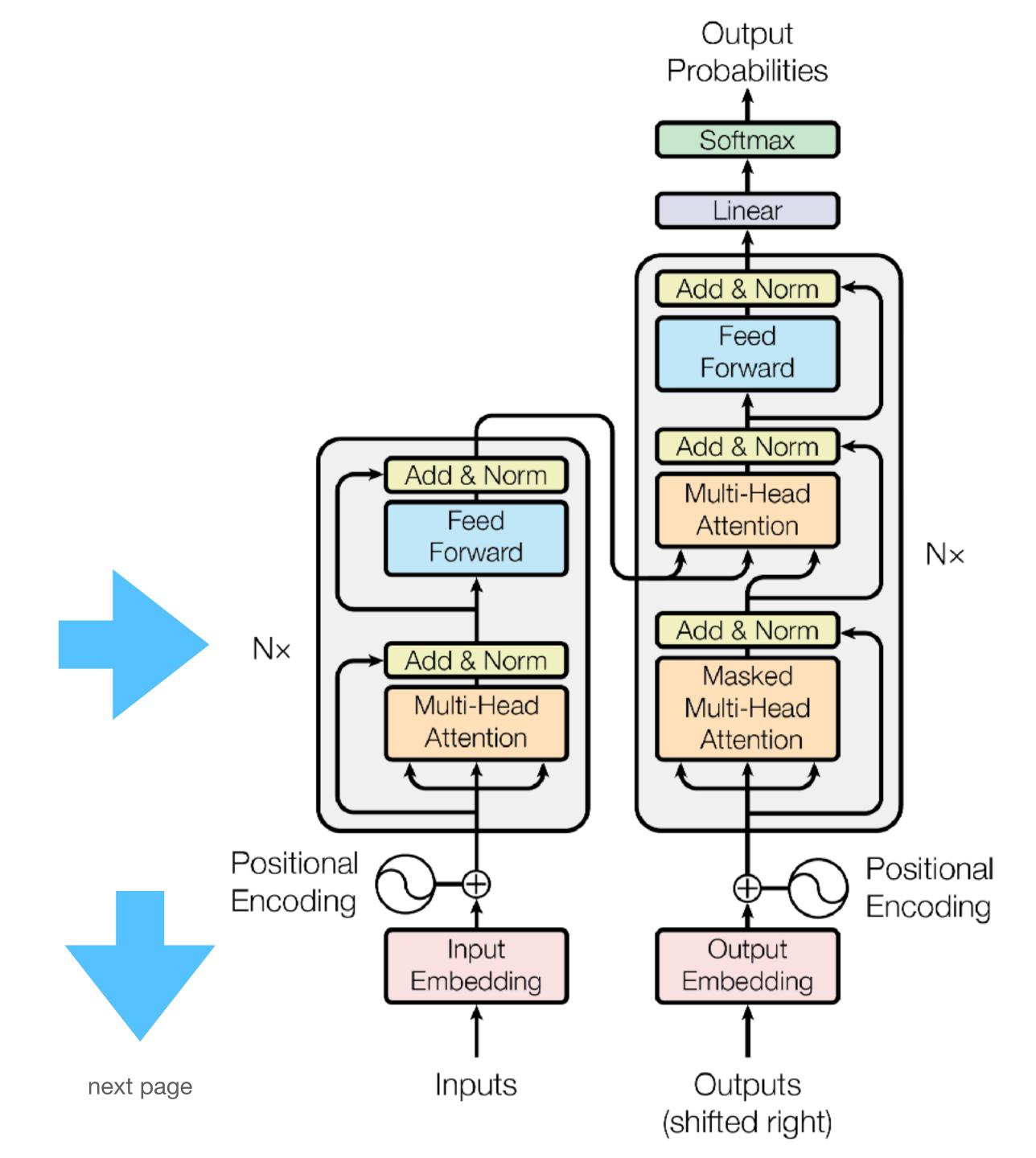


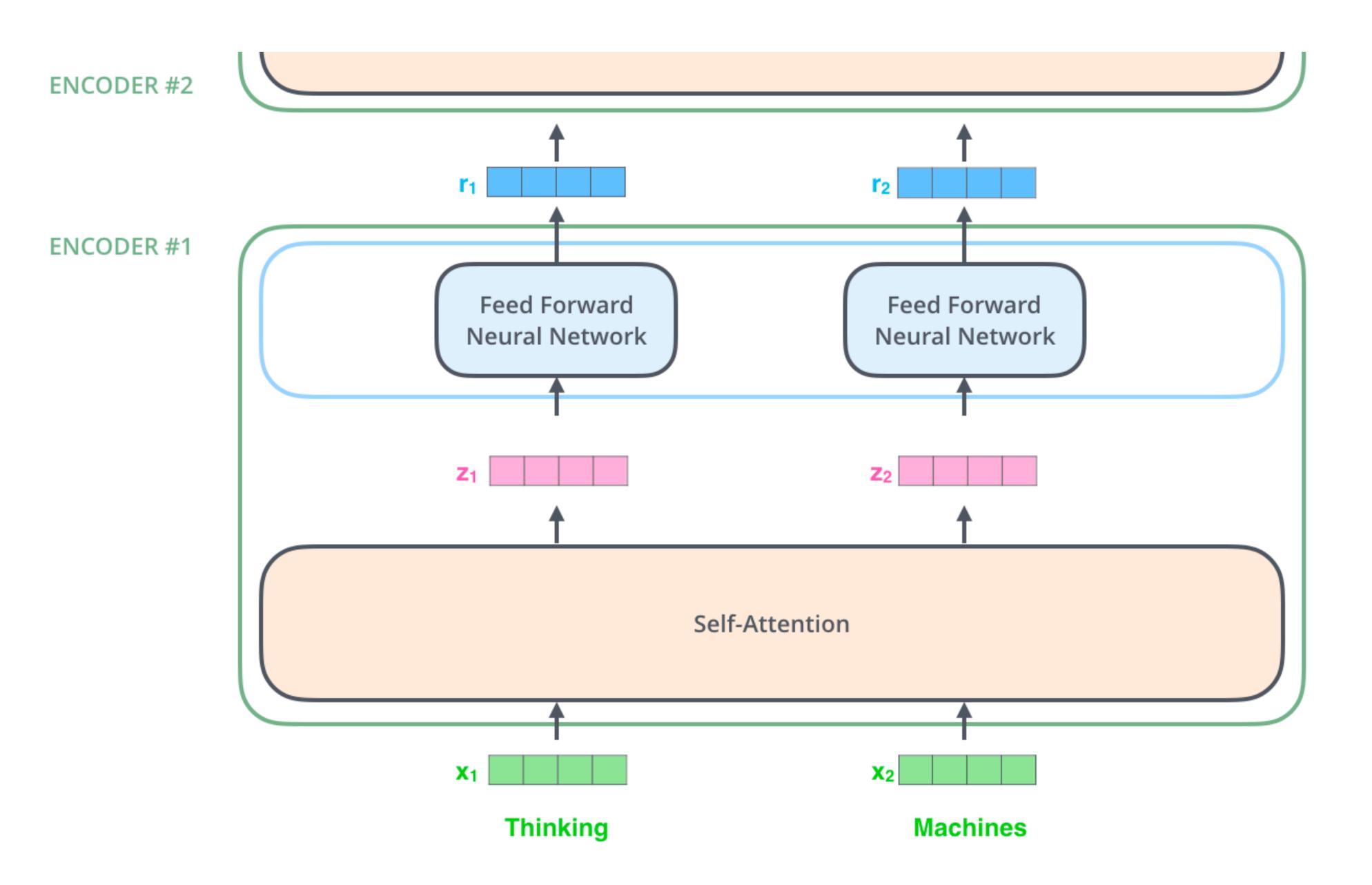


next page

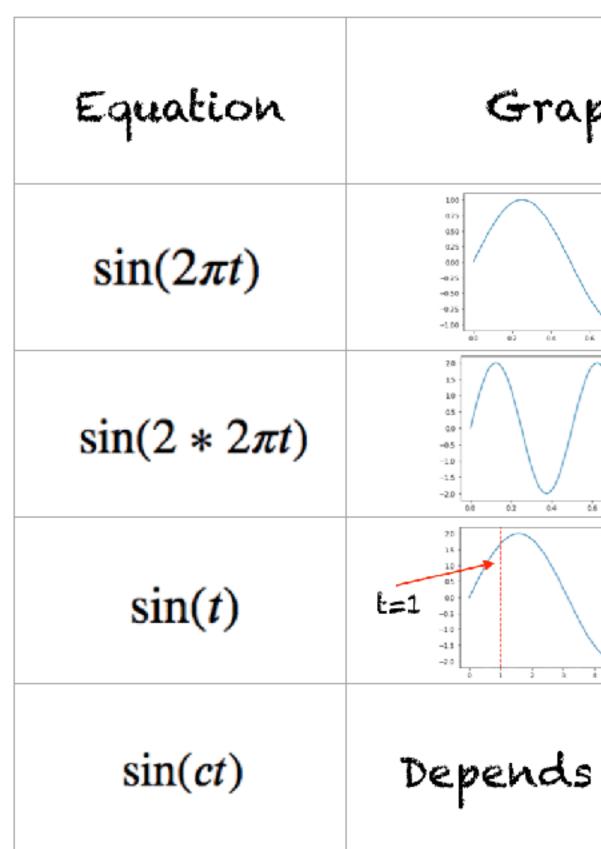
4) Calculate attention using the resulting Q/K/V matrices 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^O to produce the output of the layer







Sequence Length = L Varies 2i=0,....,L

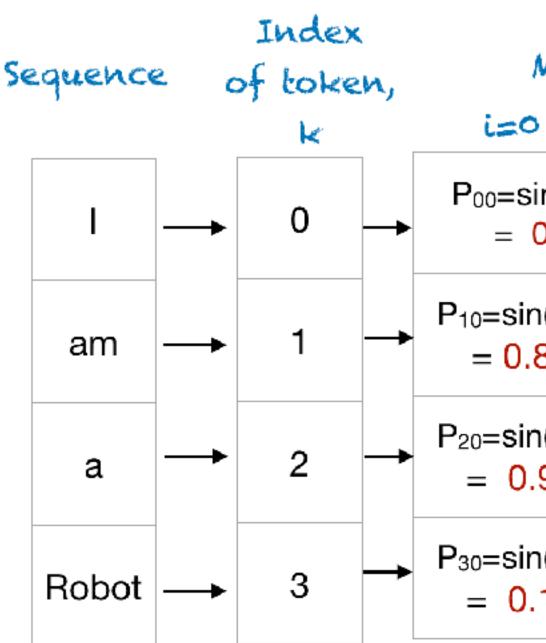


 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

ph	Frequency	Wavelength
	1	1
06 08 10	2	1/2
	1/2π	2π
s on c	c/2 <i>π</i>	2 <i>π</i> /c

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

Sequence Length = L Varies 2i=0,....,d_model



https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

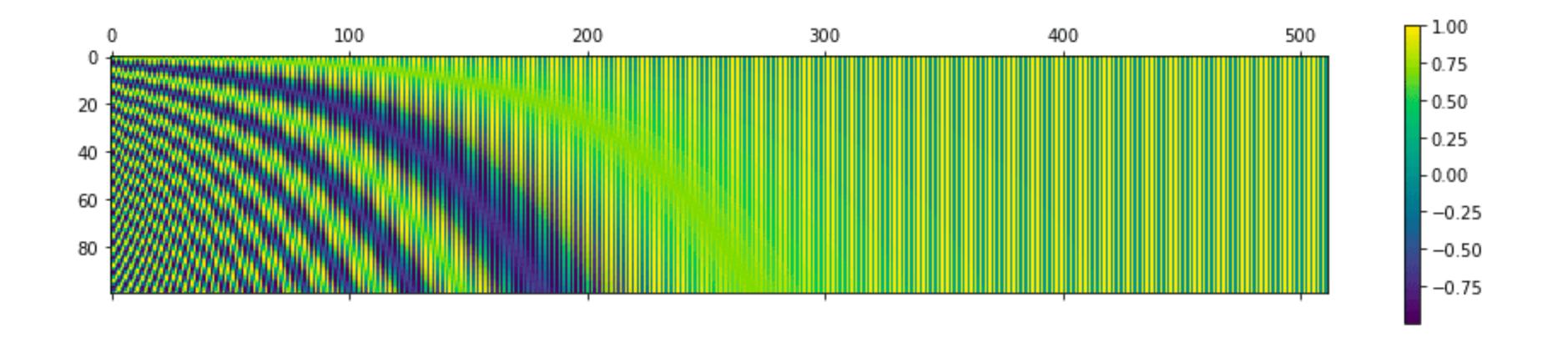
 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

Positional Encoding Matrix with d=4, n=100

>	i=0	i=1	i=1
in(0)	P ₀₁ =cos(0)	P ₀₂ =sin(0)	P ₀₃ =cos(0)
<mark>0</mark>	= 1	= 0	= 1
n(1/ 1)	$P_{11}=\cos(1/1)$	$P_{12}=sin(1/10)$	$P_{13}=\cos(1/10)$
<mark>84</mark>	= 0.54	= 0.10	= 1.0
n(2/1)	P ₂₁ =cos(2/1)	P ₂₂ =sin(2/10)	$P_{23}=\cos(2/10)$
. <mark>91</mark>	= -0.42	= 0.20	= 0.98
n(3/ 1)	P ₃₁ =cos(3/1)	$P_{32} = sin(3/10)$	P ₃₃ =cos(3/10)
.14	= -0.99	= 0.30	= 0.96

Positional Encoding Matrix for the sequence 'I am a robot'

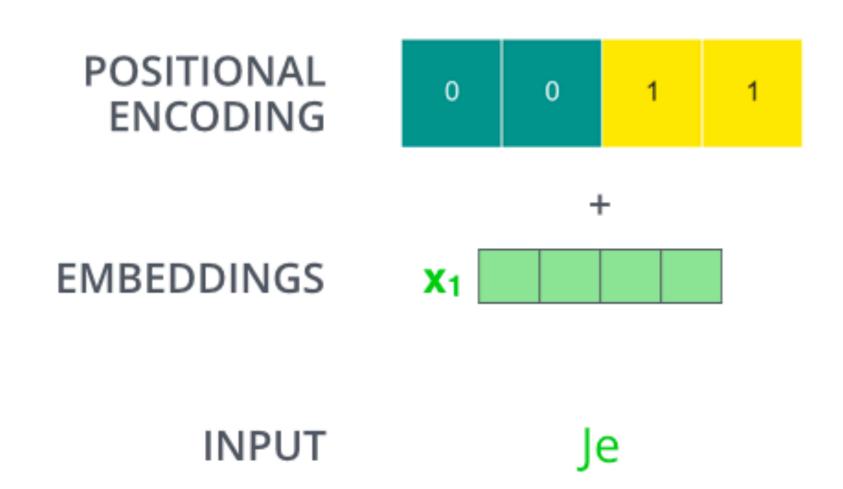
Sequence Length = L Varies $2i=0,...,d_model$

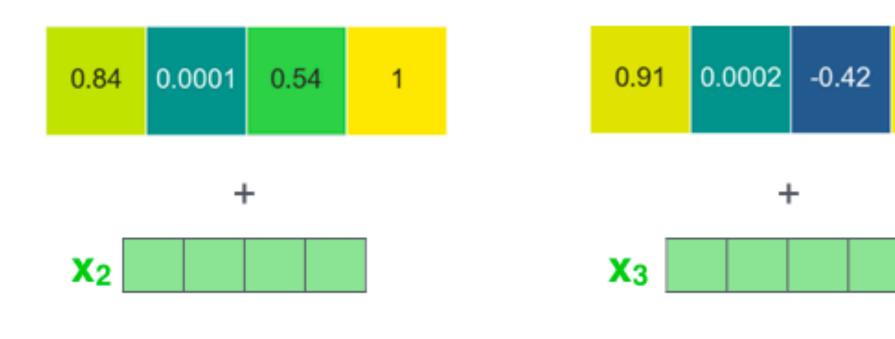


The positional encoding matrix for n=10,000, d=512, sequence length=100

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

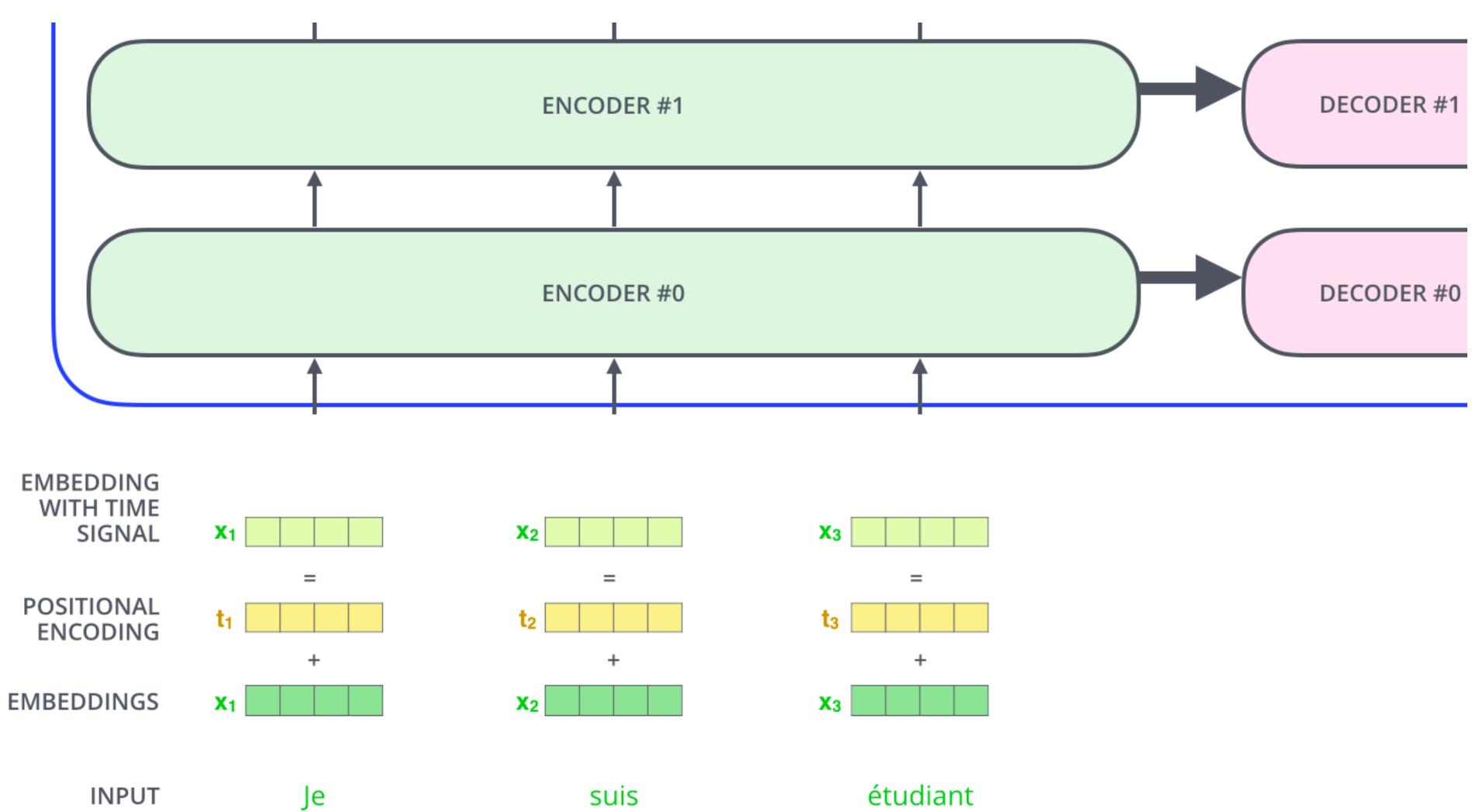




suis

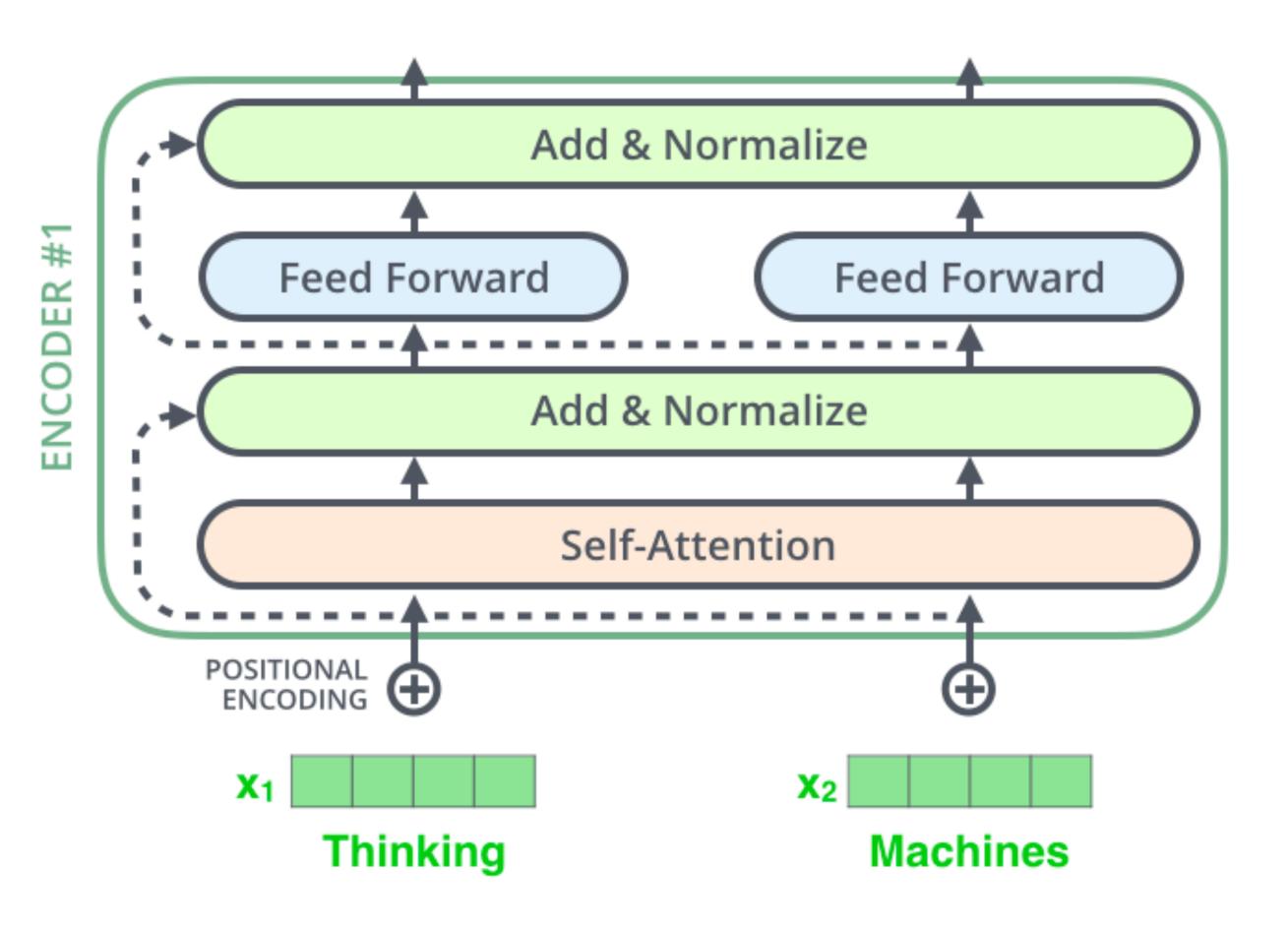
étudiant

1

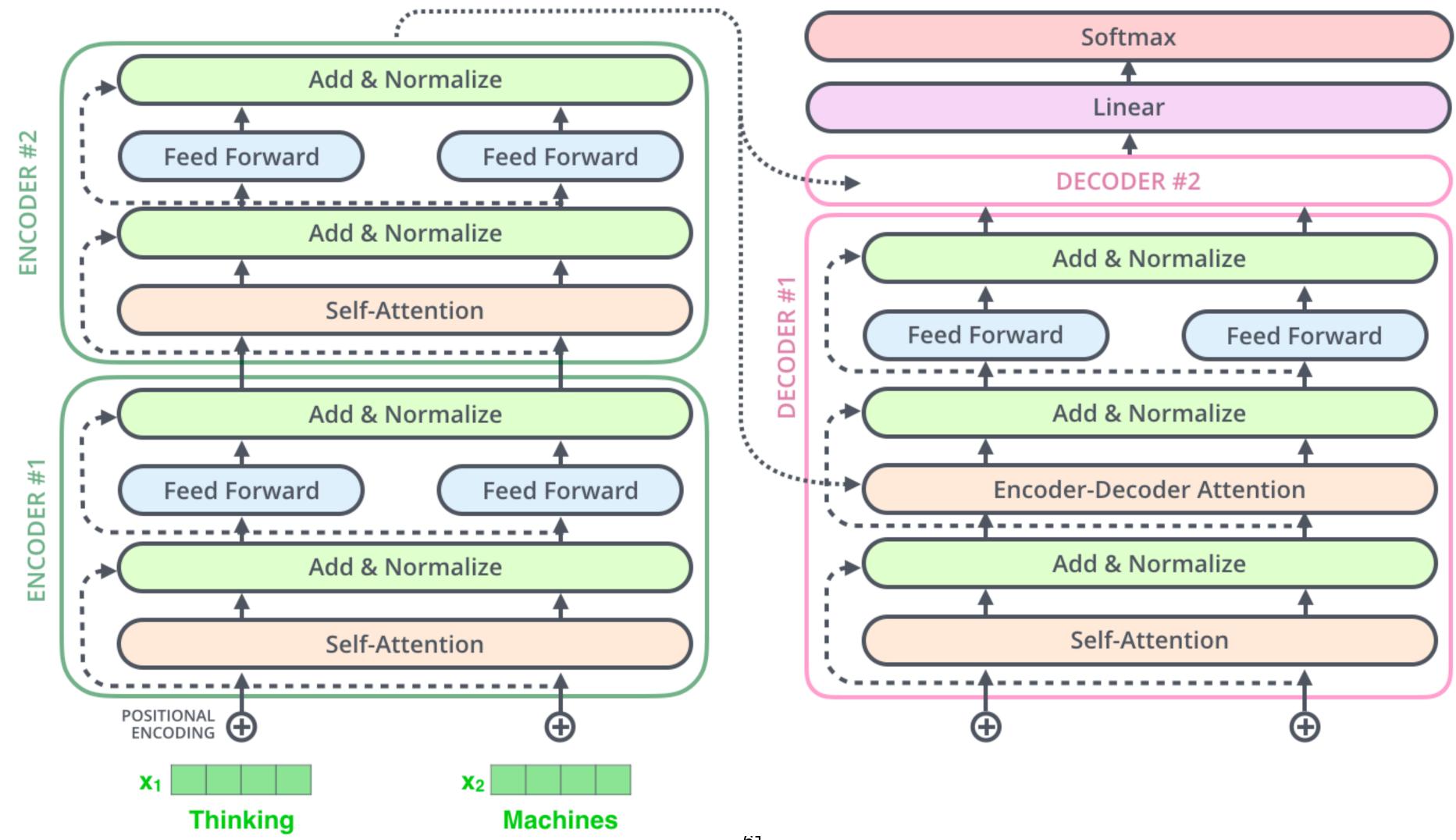


étudiant

Residual Net

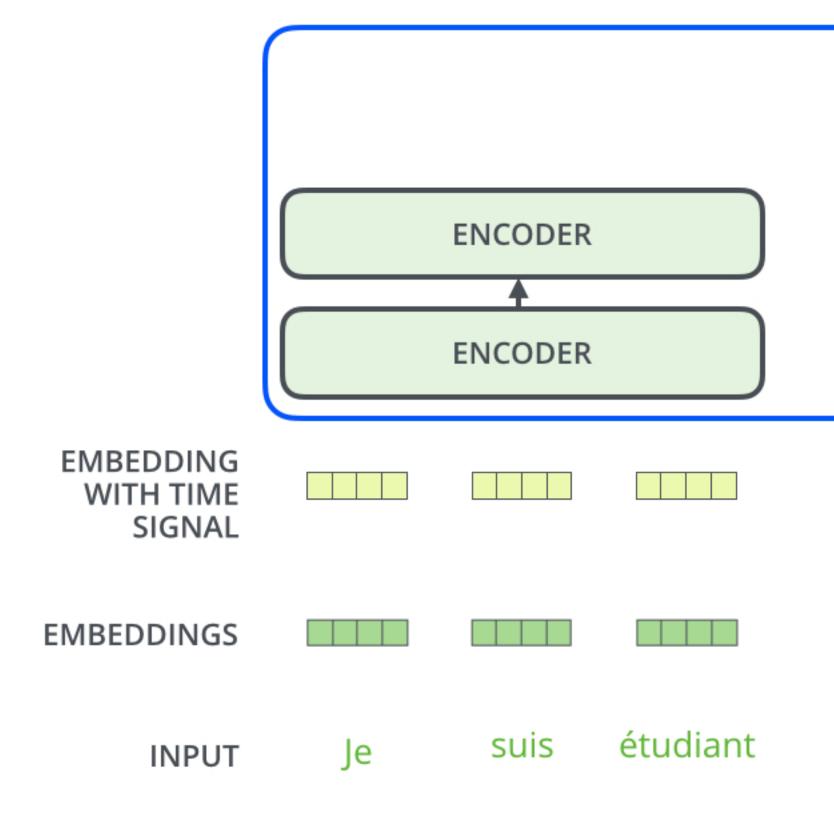


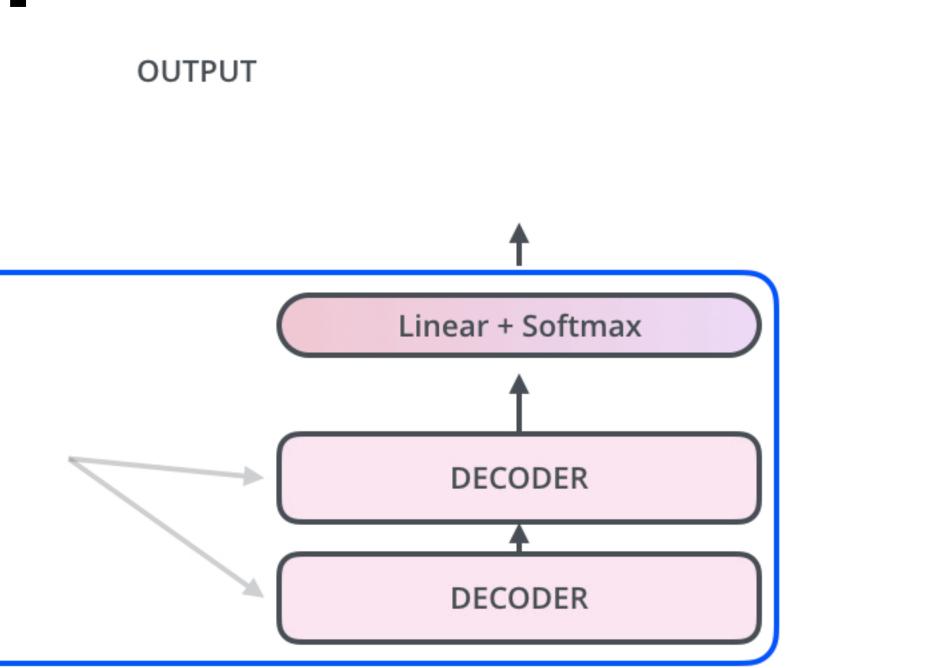
Stack 6 Encoders & Decoders



Cross Attention

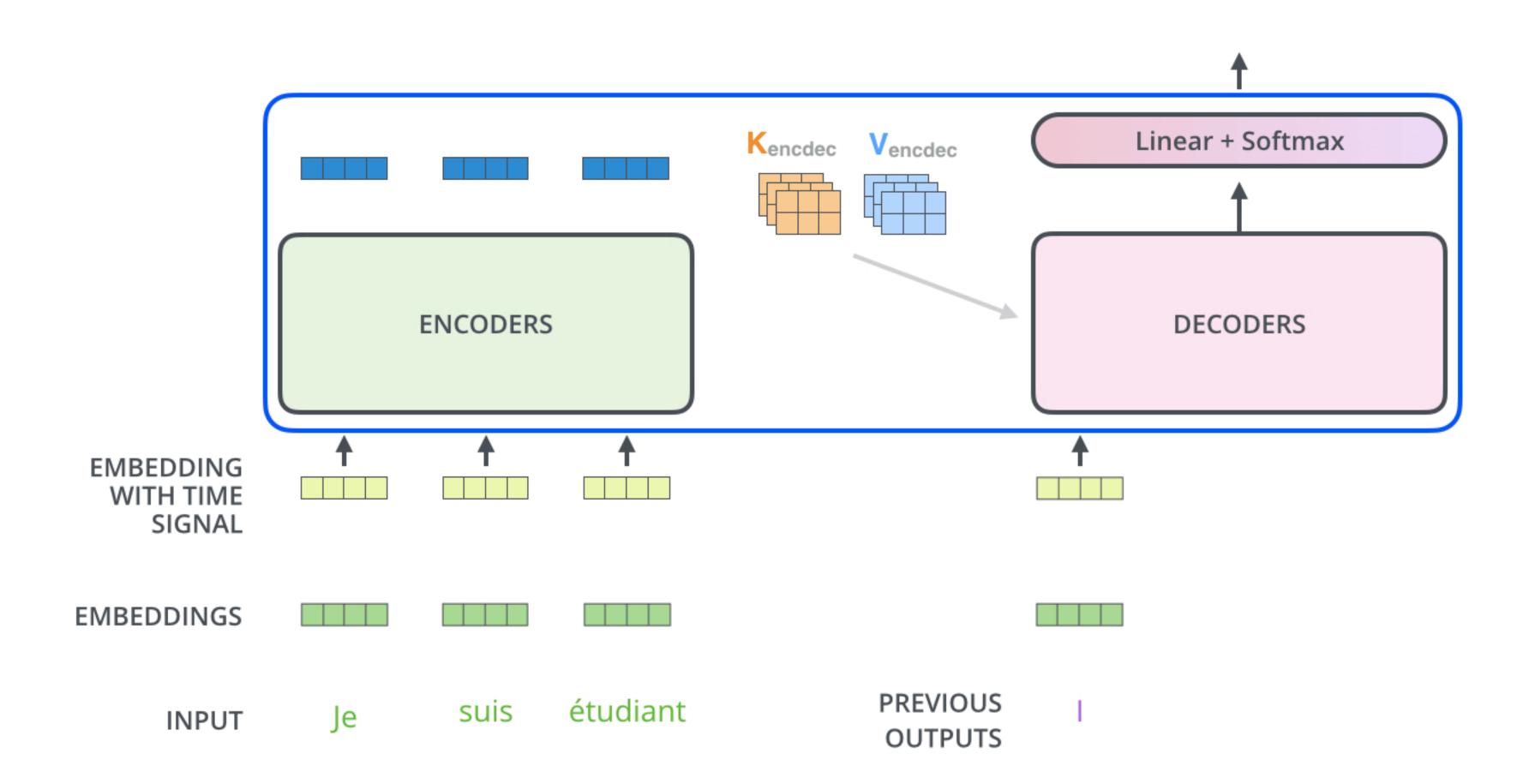
Decoding time step: 1 2 3 4 5 6





Decoder

Decoding time step: 1 2 3 4 5 6



OUTPUT

Softmax

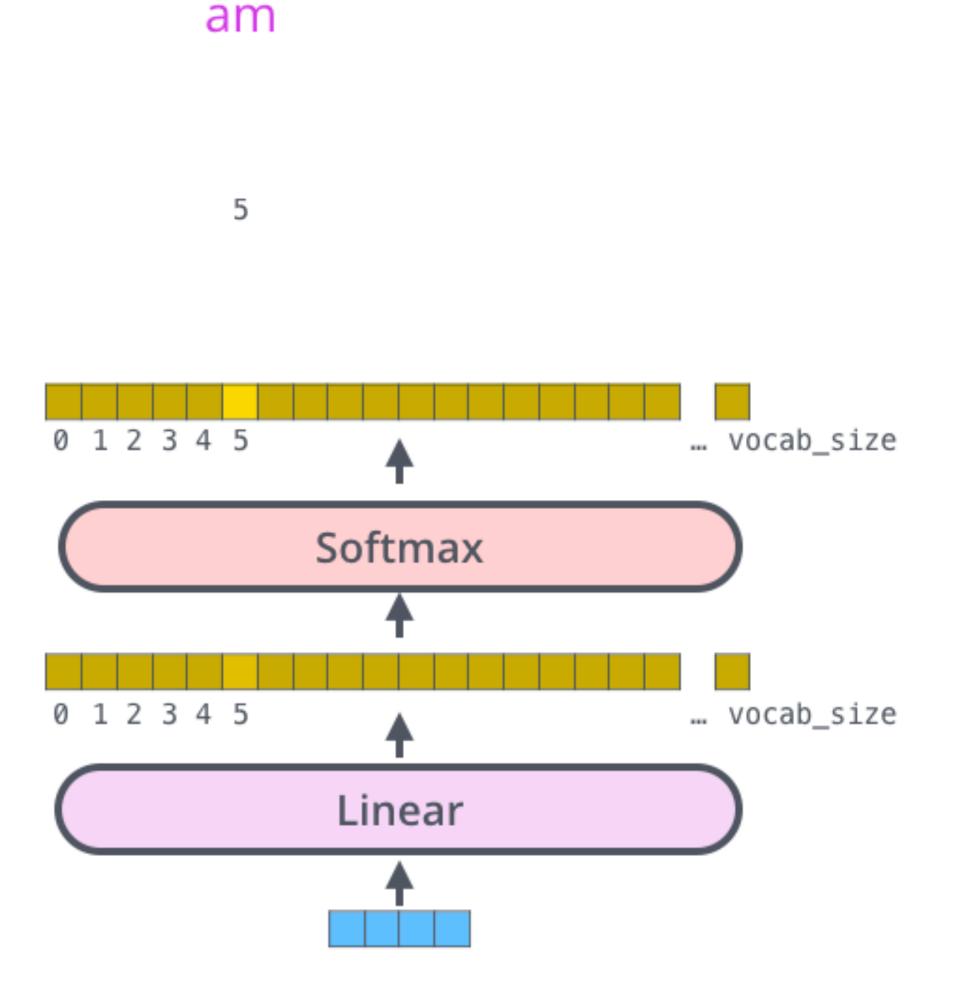
Which word in our vocabulary is associated with this index?

Get the index of the cell with the highest value (argmax)

log_probs

logits

Decoder stack output



End of Lecture 2

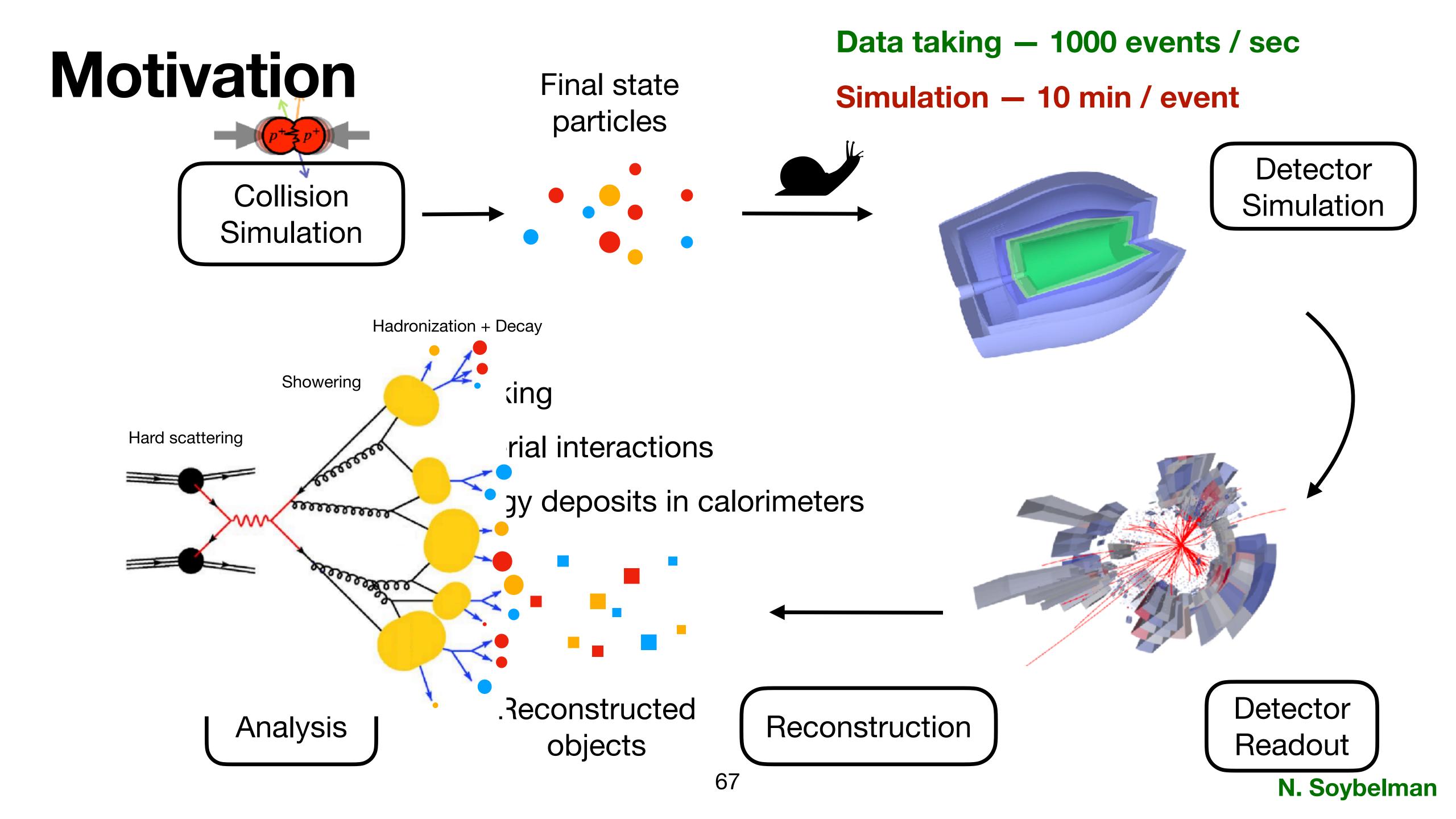
Fast Simulation for Particle Reconstruction with GNN and Slot Attention

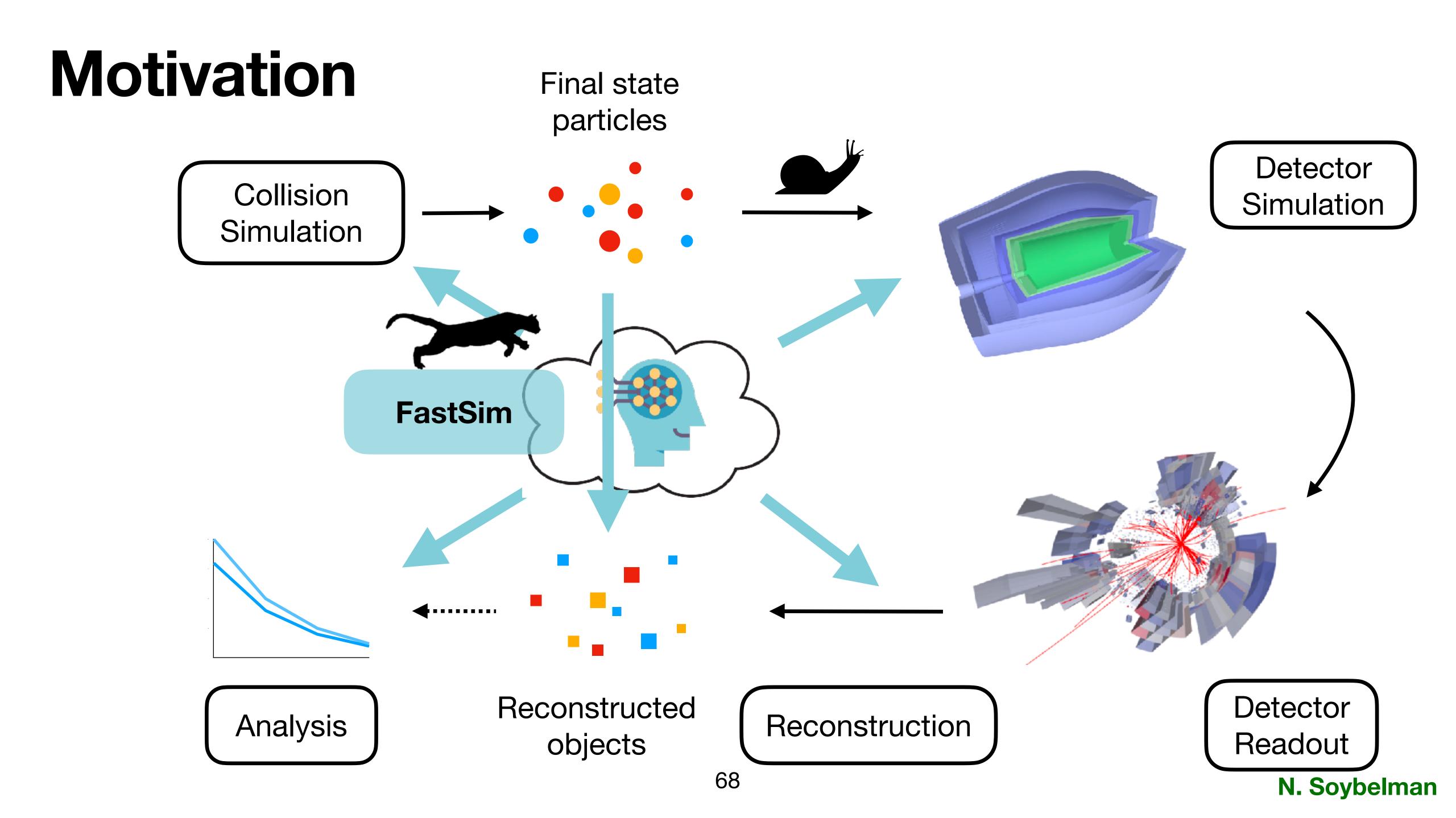
Conditional Generative Modelling of Reconstructed Particles at Collider Experiments

Jonathan Shlomi², <u>Nathalie Soybelman²</u>

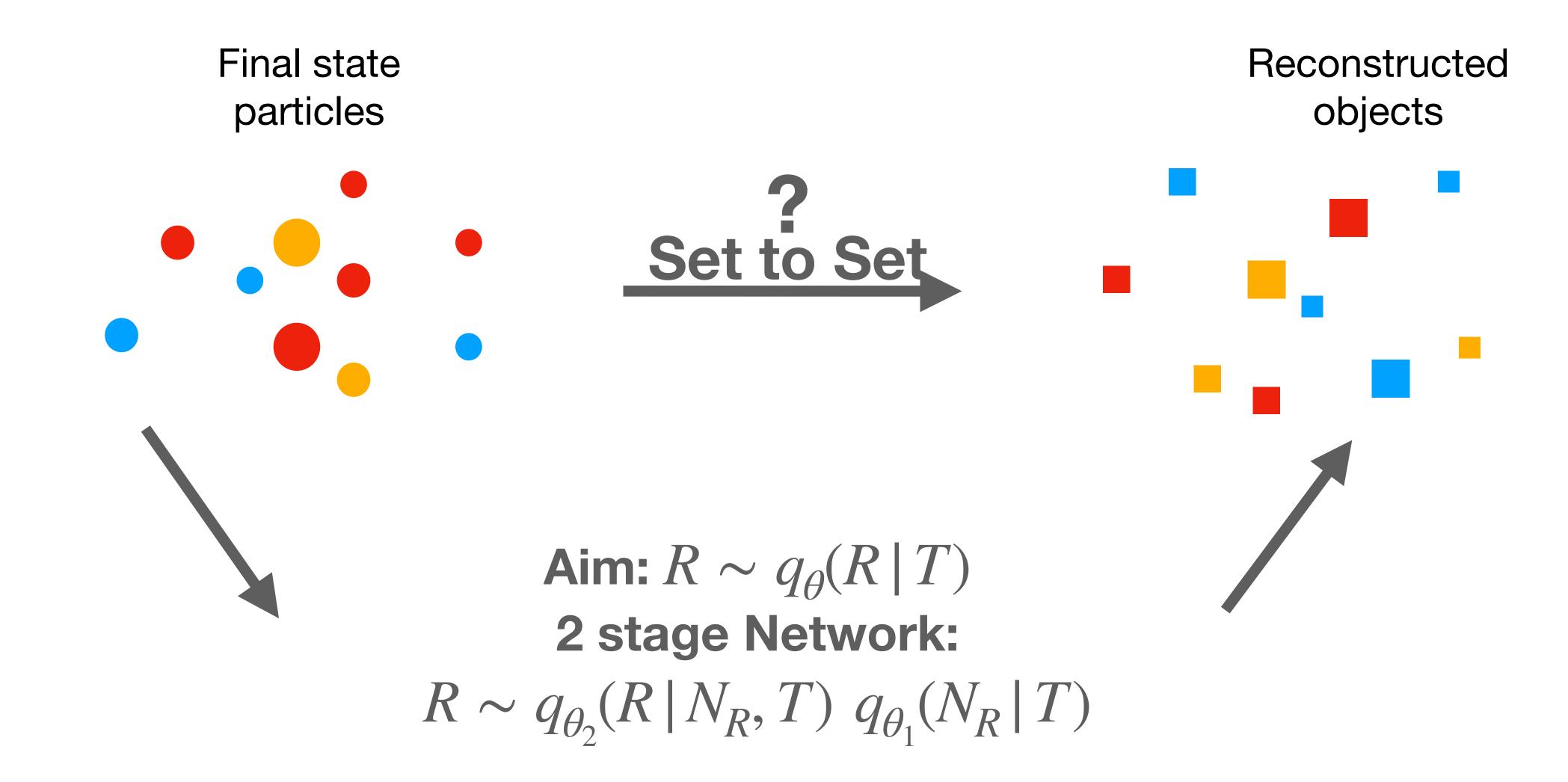
- University of Genova
- ² Weizmann Institue of Science
- ³ ICEPP, University of Tokyo
- ⁴ Technical University of Munich
- ⁵ Sapienza University of Rome

Francesco Armando Di Bello¹, Etienne Dreyer², Sanmay Ganguly³, Eilam Gross², Lukas Heinrich⁴, Marumi Kado^{4,5}, Nilotpal Kakati²,



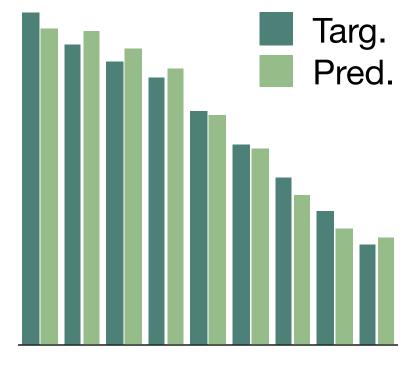


Problem to solve



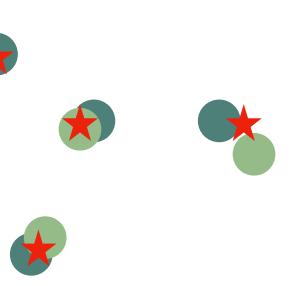
 $p(R) = \int dT \ p(R|T)p(T))$

Marginal distributions



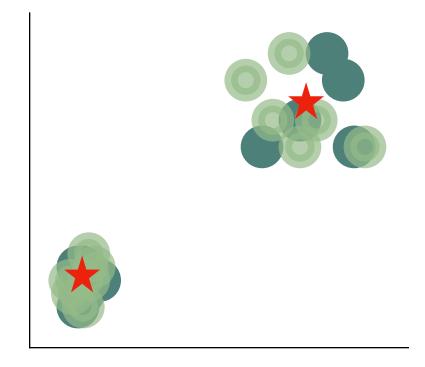
Feature

$(d_0, z_0, q/p_T, \theta, \phi)$ $P(f_R | f_T)$ Reconstruct **Resolution** constituents



Feature 1

Feature 2



Feature 1

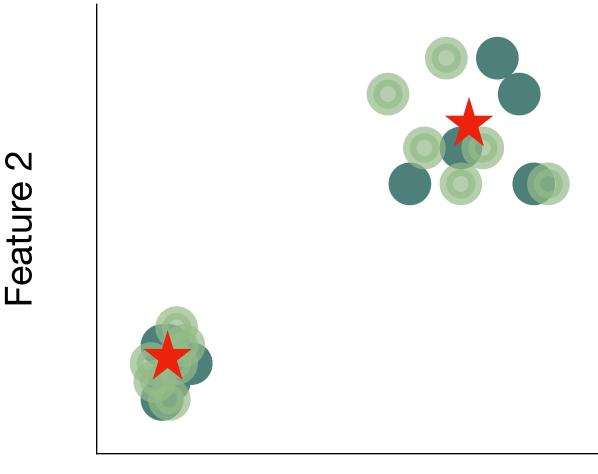
70

N. Soybelman

Goals: RESOLUTION How to obtain the correct resolution?

- **Resolution depends on features**
- \rightarrow difficult to learn smearing from one reconstructed sample per
- truth event
- \longrightarrow need in principle very large dataset
 - Solution
 - Introduce *replicas:*

 - i.e. replicas for the SAME truth event



Feature 1

7 1

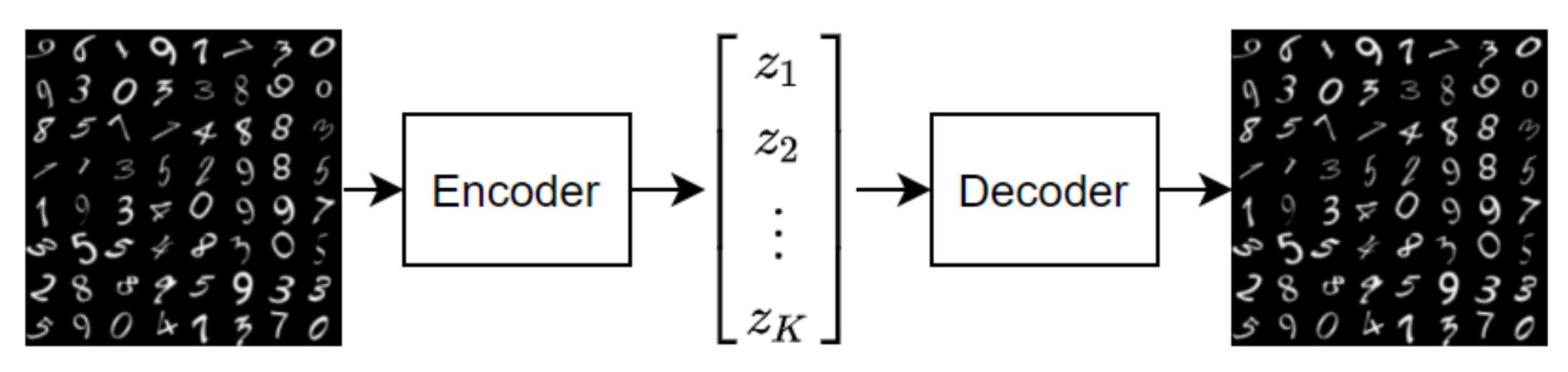
Generate many reconstructions per truth event,

N. Soybelman

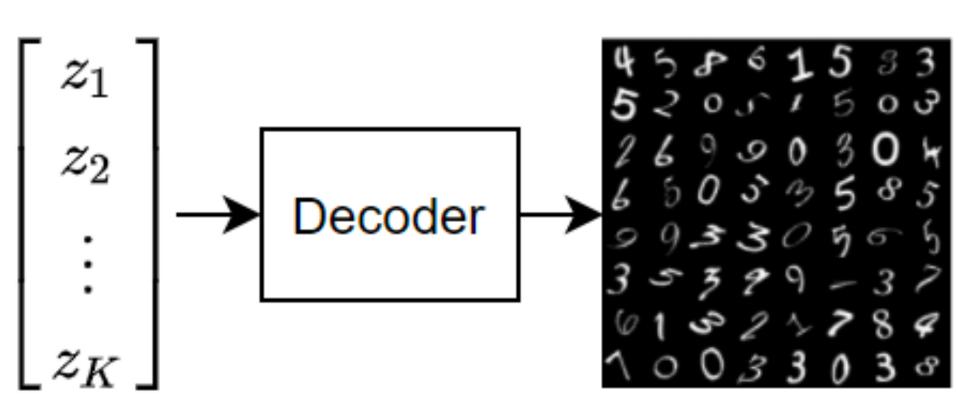
Dataset

- SET of CHARGED particles within a single jet
- Detector Simulation GEANT based COCOA (tomorrow)
- 1-12 charged particles/jet
- Toy example: Smeared tracks as targets
- Reconstruction efficiency, no fakes $\longrightarrow n_{reco} \leq n_{truth}$
- 100 replicas per event (train on 25 for speed)

Variational Auto Encoder



Input Images



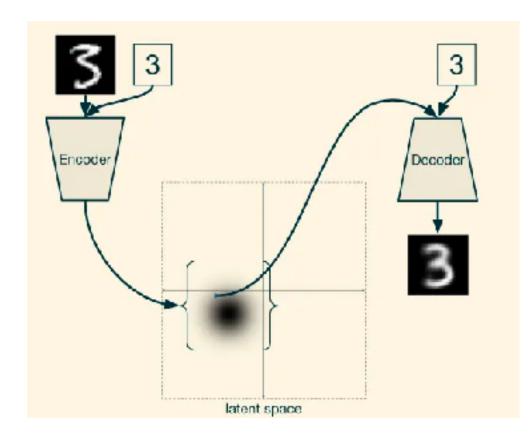
Random Vectors

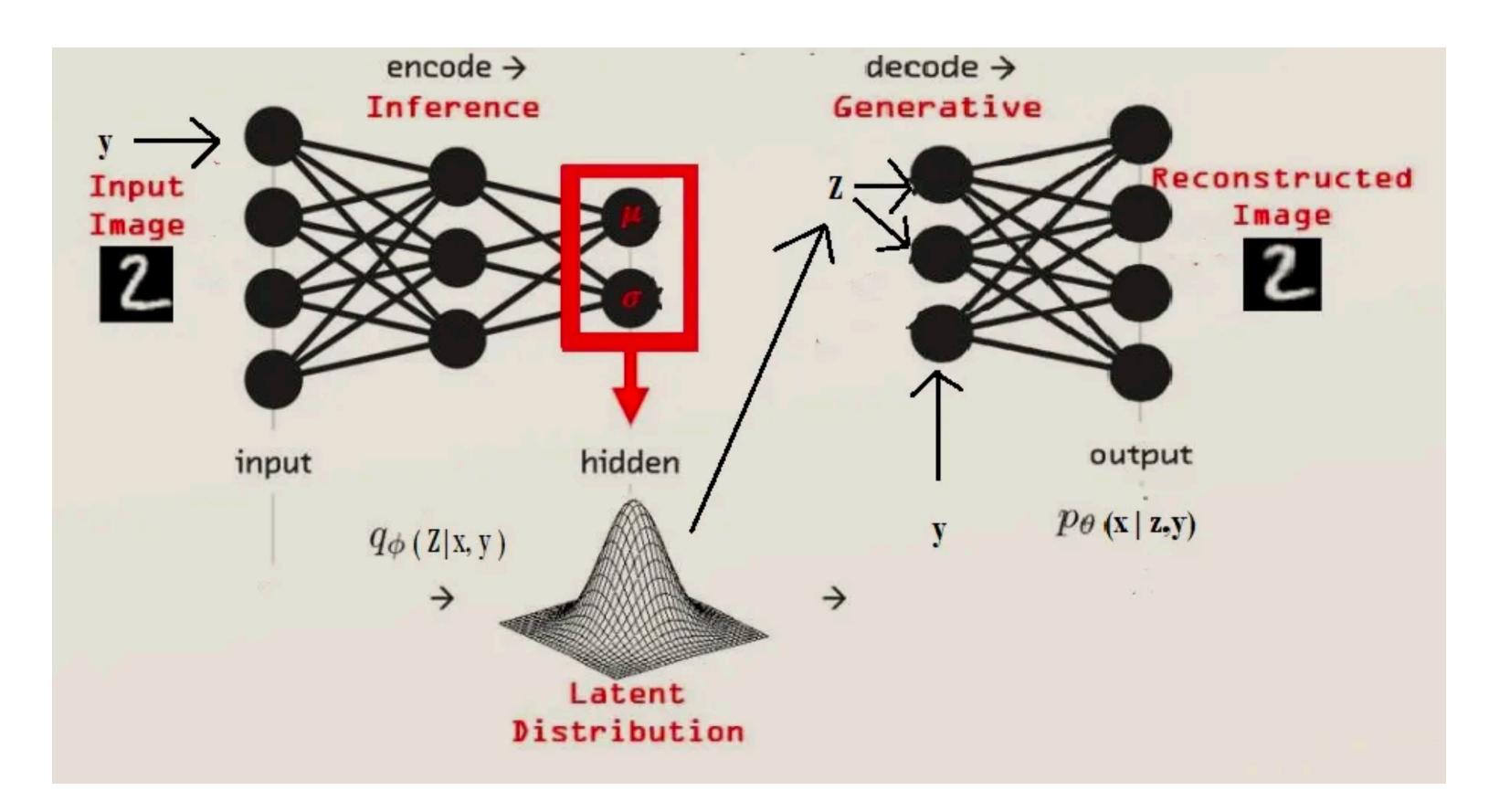
Image Encodings

Reconstructed Images

Generated Images

cVAE





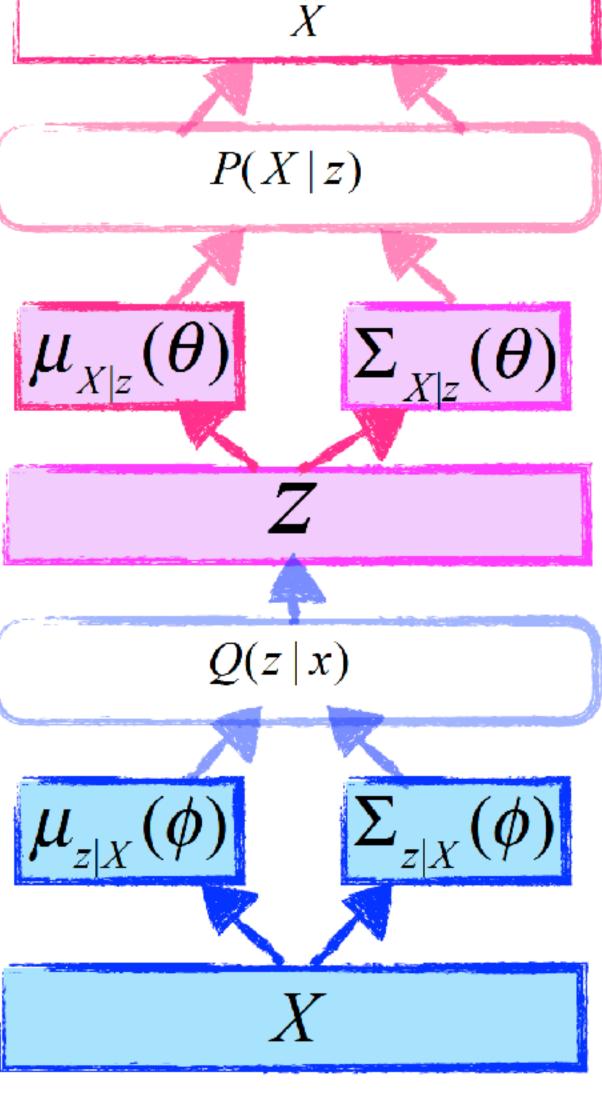
Variational Auto Encoder as Baseline VAE in a NUTSHELL Start by picking a prior to Z, p(Z)~N(0,1) Â The details are in the conditional P(X|Z)P(X|z) The decoder learns the distribution of x z, it learns two functions $\mu_{X|z}(\theta)$ Sample x|z from $x|z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z})$

$$\mu_{X|z}(\theta) \quad \Sigma_{X|z}(\theta)$$

• To ensure that the latent space contains z that lead to a DATA-like X the encoder learns an **approximate** distribution of **P(Z|X); Q(Z|X)** by learning two functions

$$\mu_{z|X}(\phi) \quad \Sigma_{z|X}(\phi)$$

from which Z x is sampled



VAE

of original input X

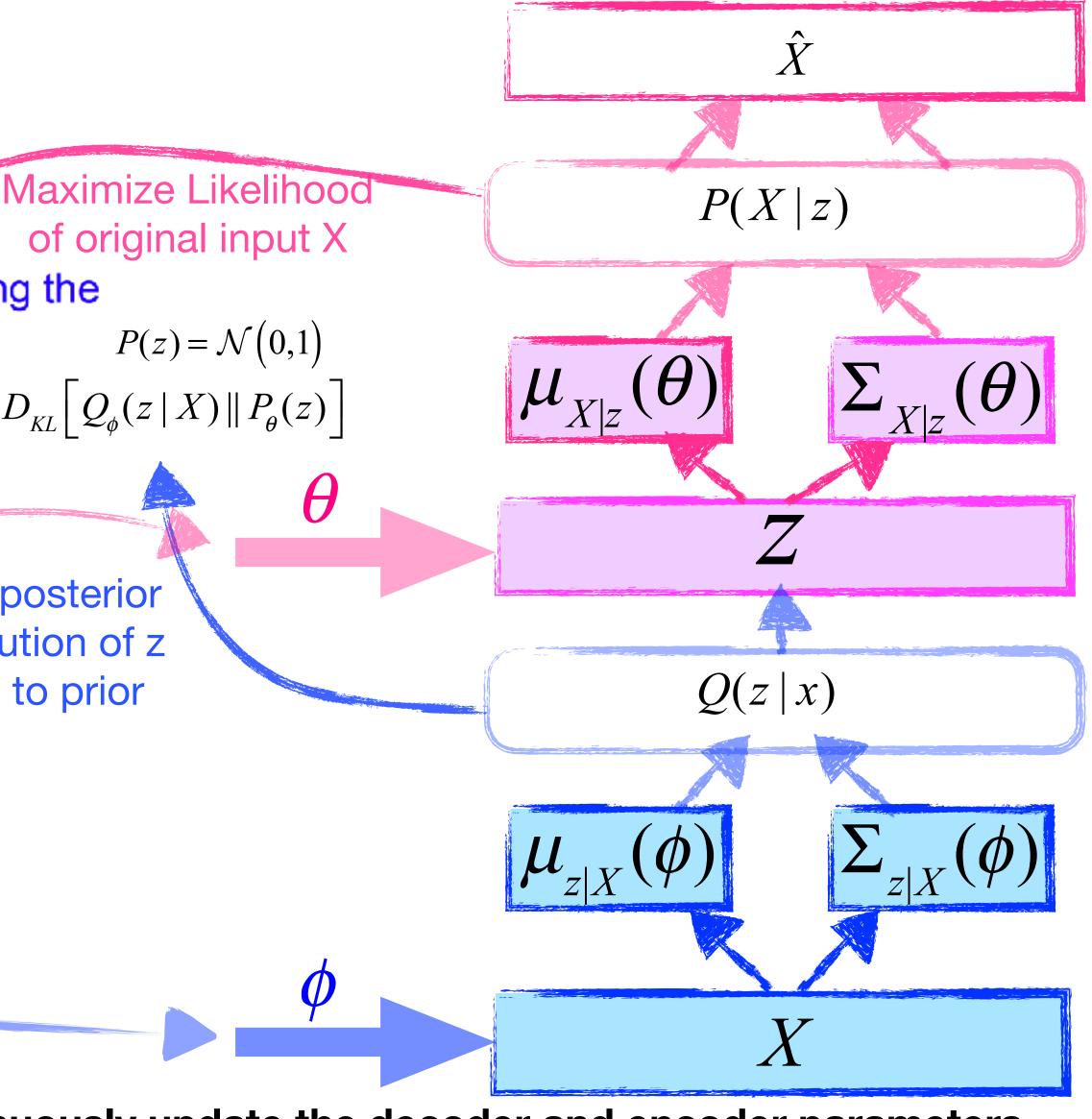
Putting it all together: maximizing the likelihood lower bound

 $\log P_{\theta}(X) \leq E_{z \sim Q_{\phi}(z|X)} [\log(P_{\theta}(X|z)] - D_{KL} \left[Q_{\phi}(z|X) \| P_{\theta}(z) \right]$

Make posterior distribution of z close to prior

For every minibatch of input data: compute this forward pass, and then backprop!

We update our model by continuously update the decoder and encoder parameters, Φ and θ



VAE

of original input X

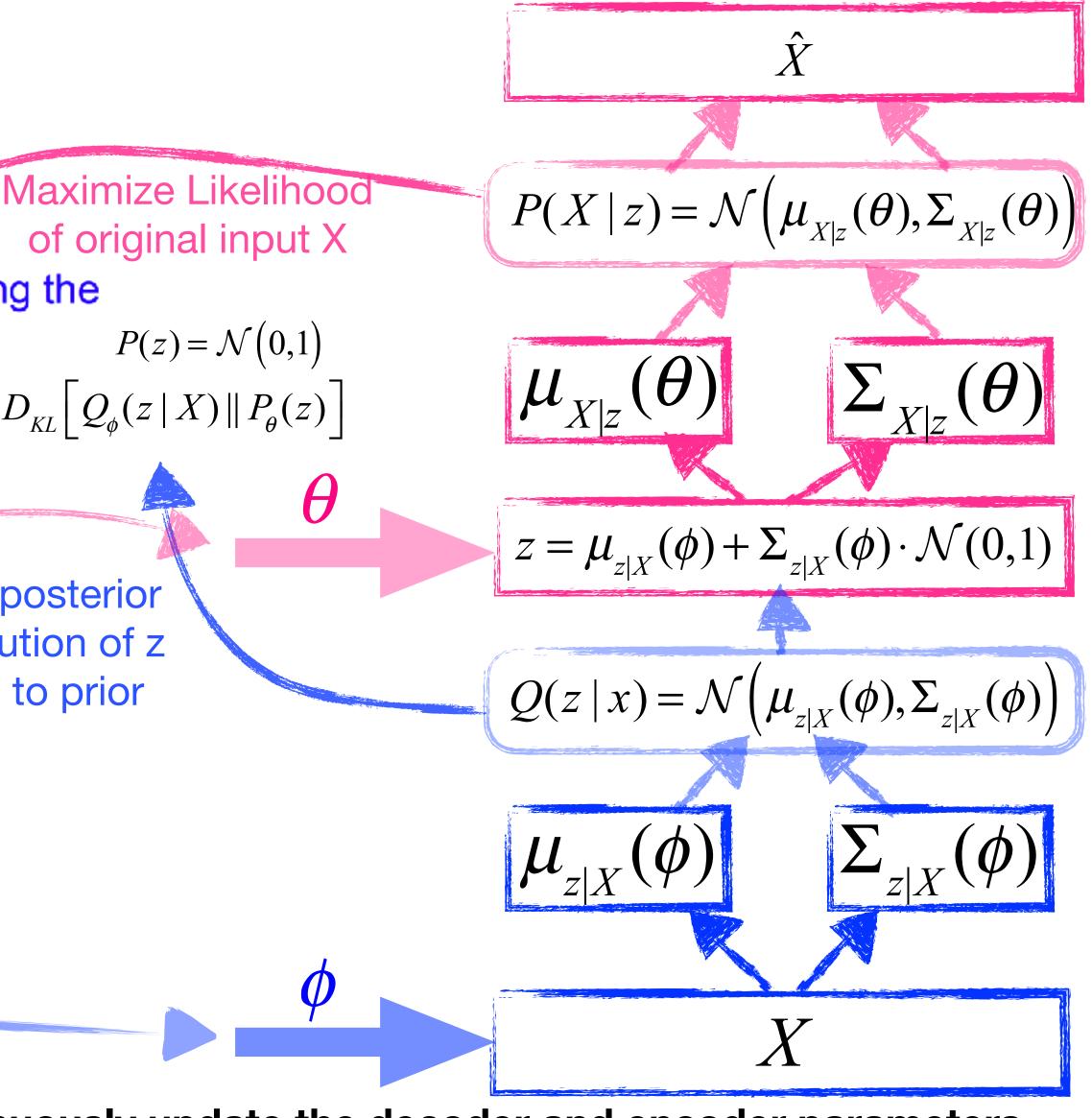
Putting it all together: maximizing the likelihood lower bound

 $\log P_{\theta}(X) \leq E_{z \sim Q_{\phi}(z|X)}[\log(P_{\theta}(X|z)] - D_{KL} \left[Q_{\phi}(z|X) \| P_{\theta}(z) \right]$

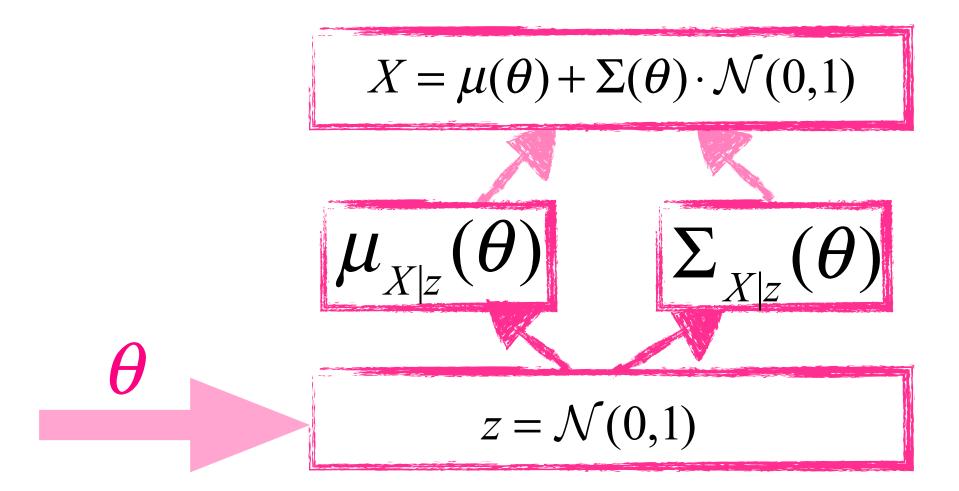
Make posterior distribution of z close to prior

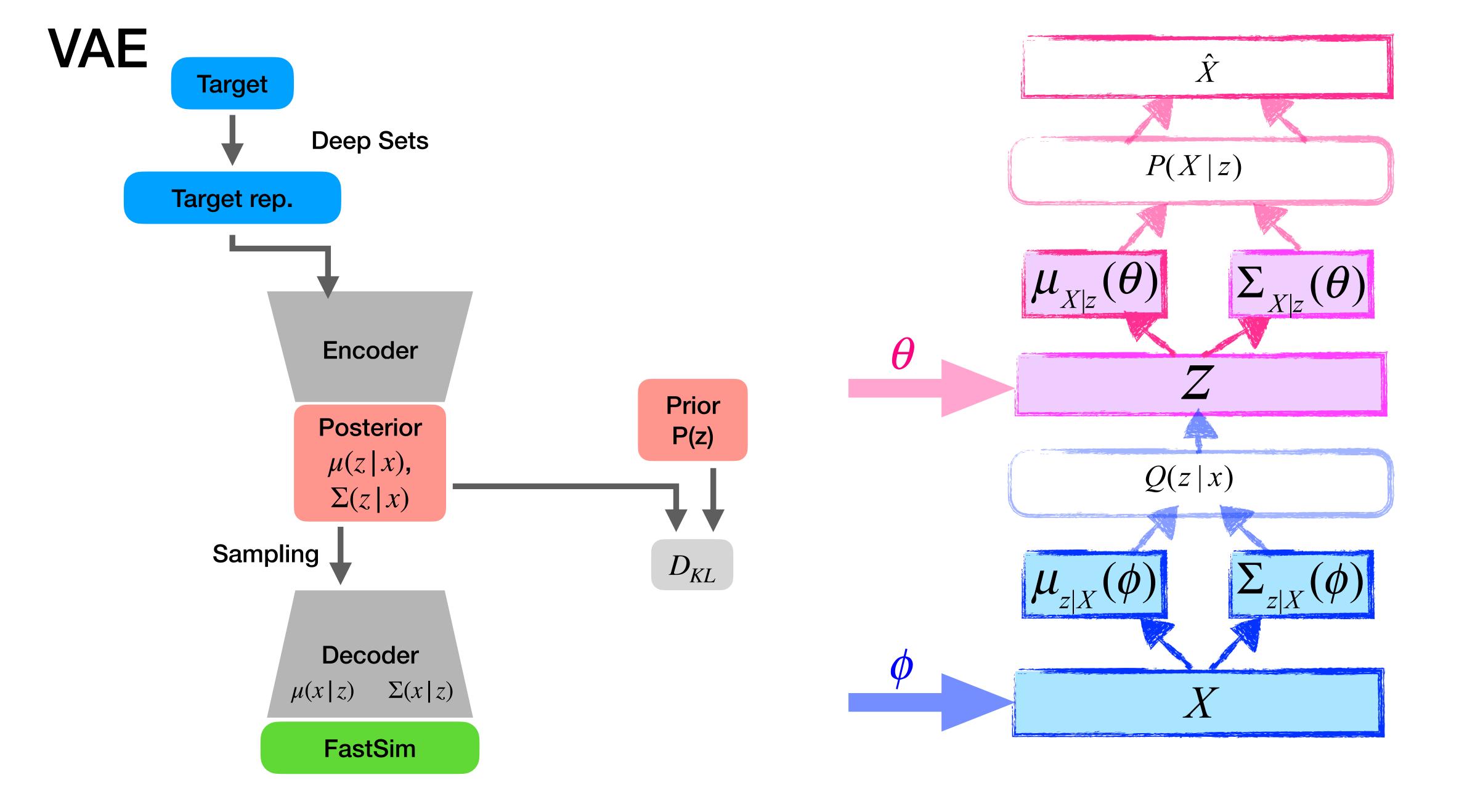
For every minibatch of input data: compute this forward pass, and then backprop!

Φ and θ

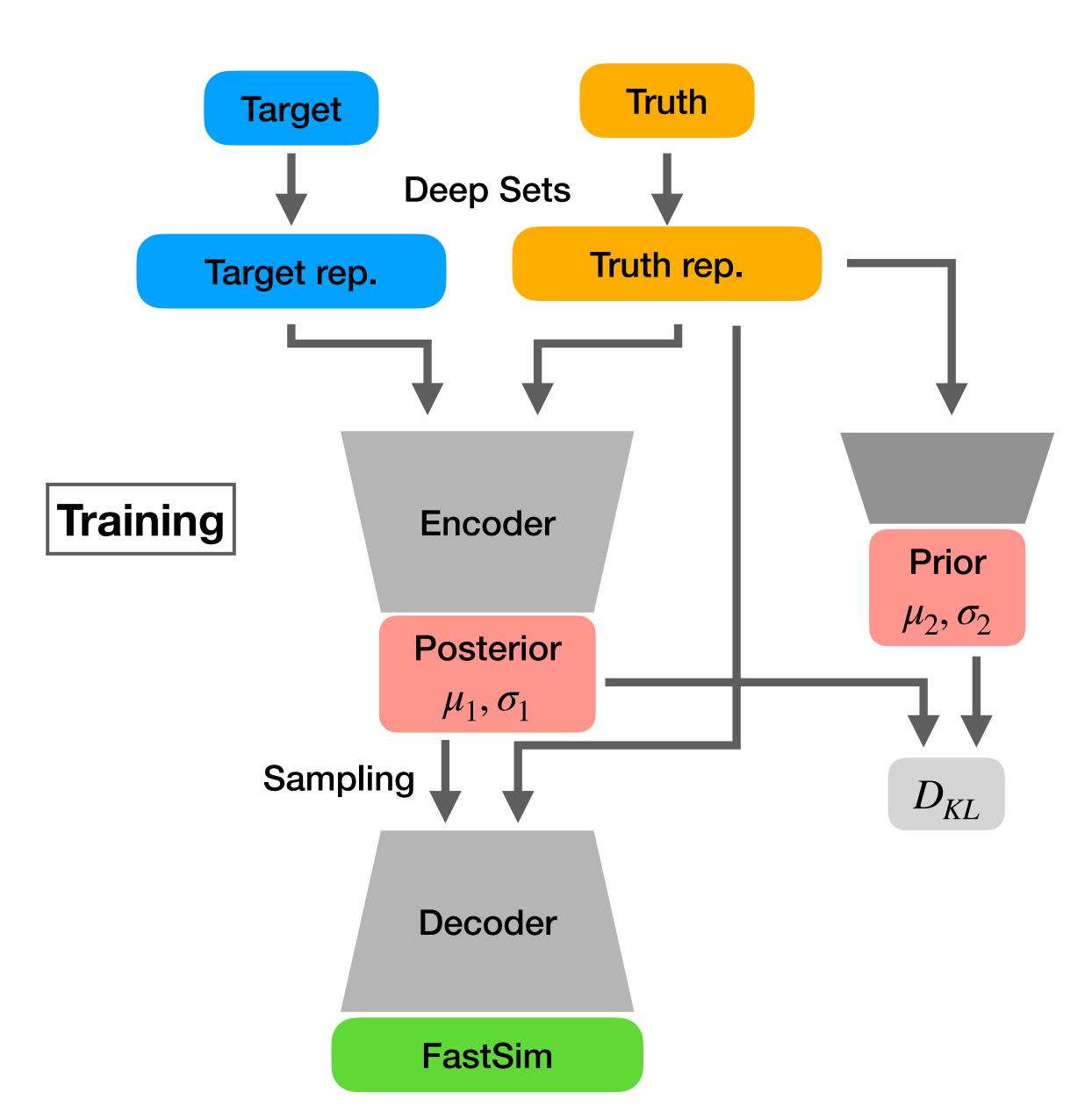


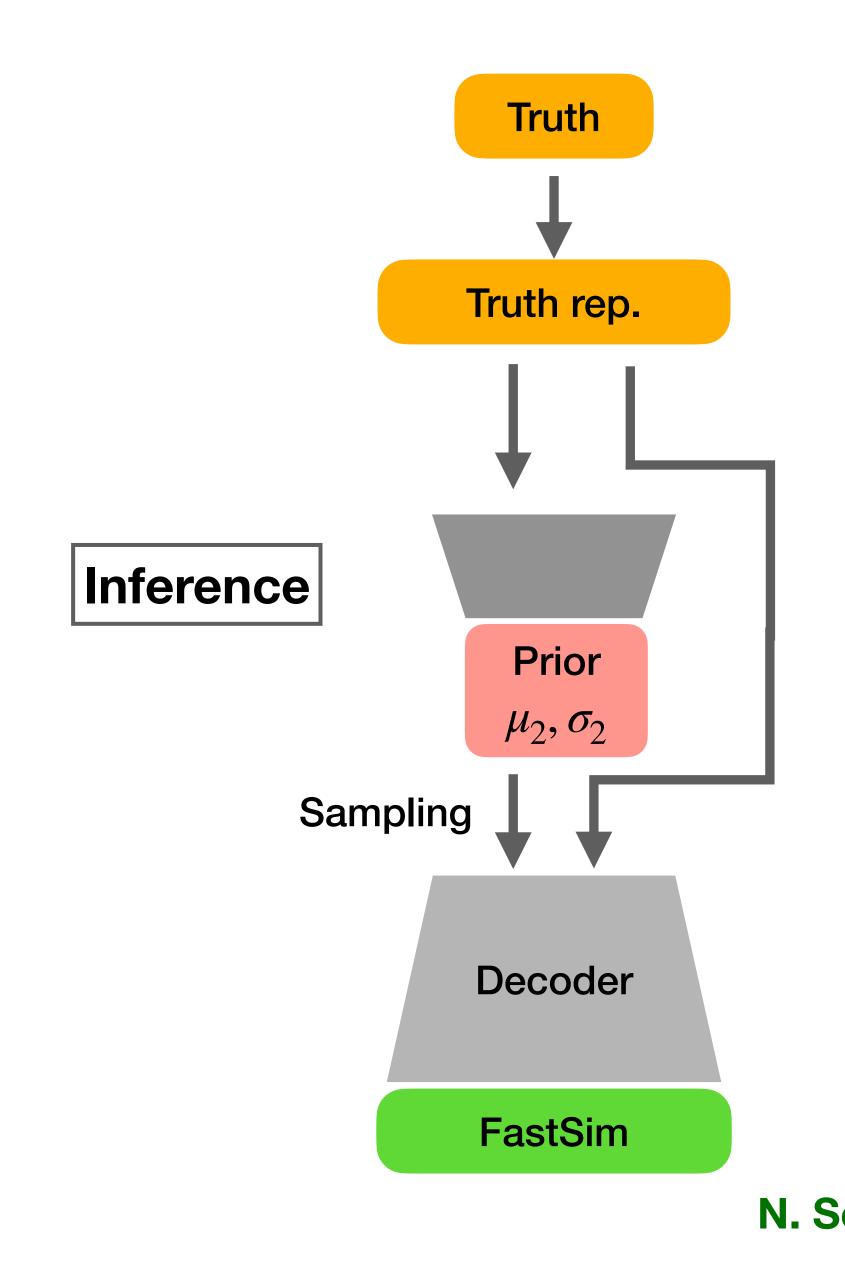
We update our model by continuously update the decoder and encoder parameters,



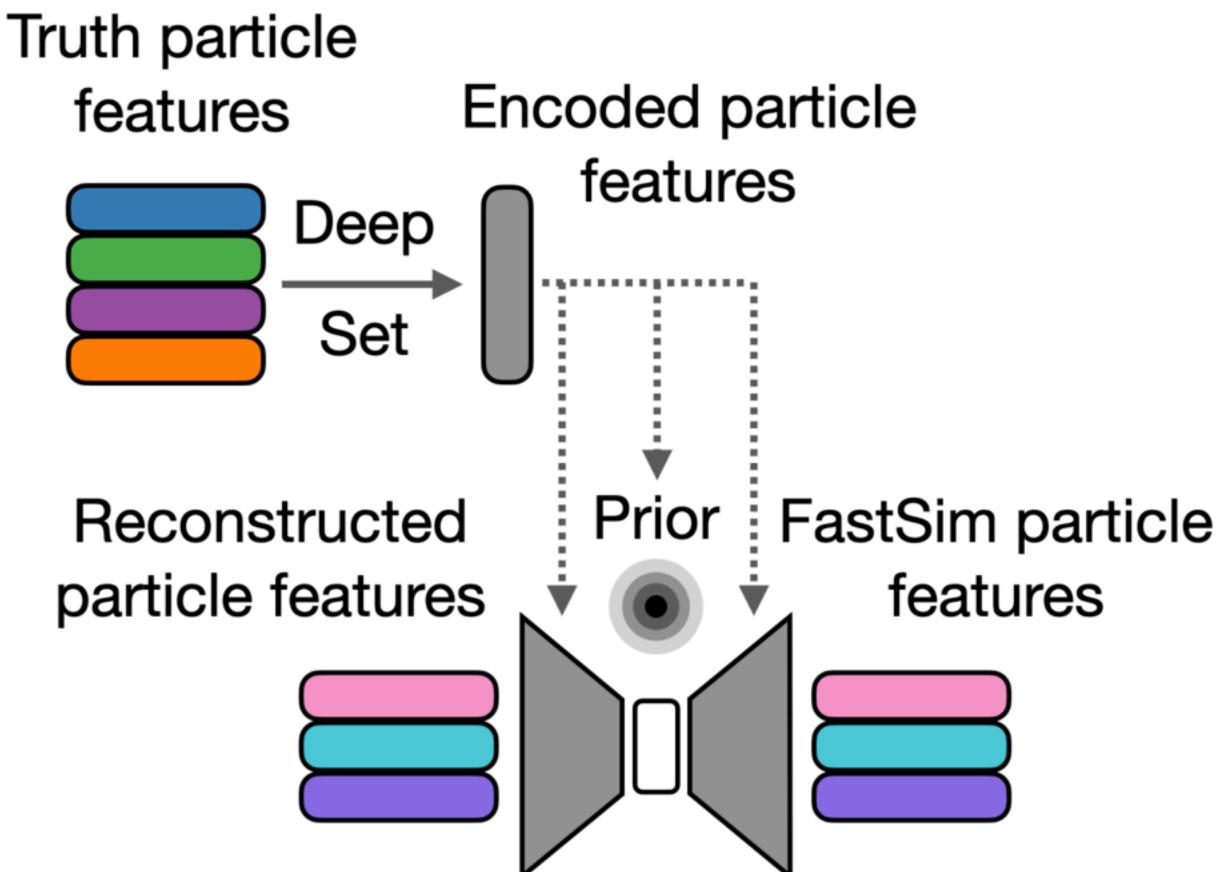


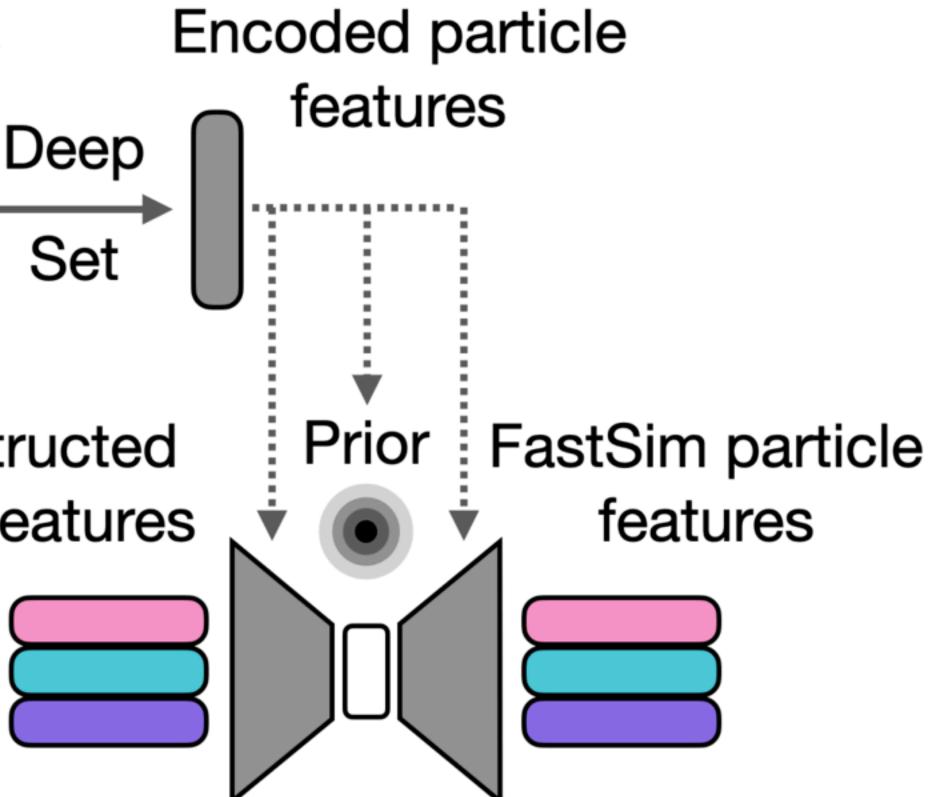
cVAE Architecture

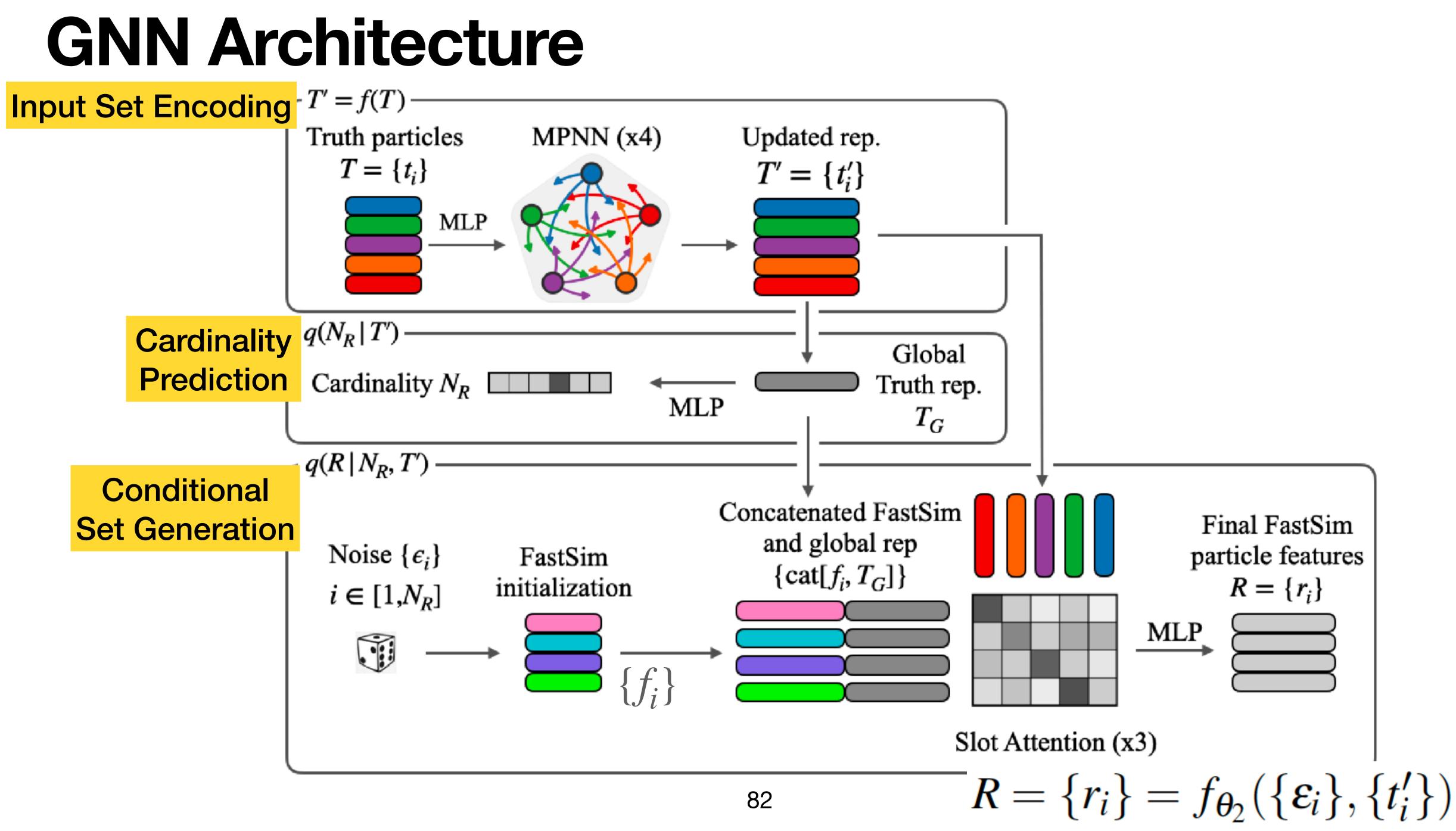


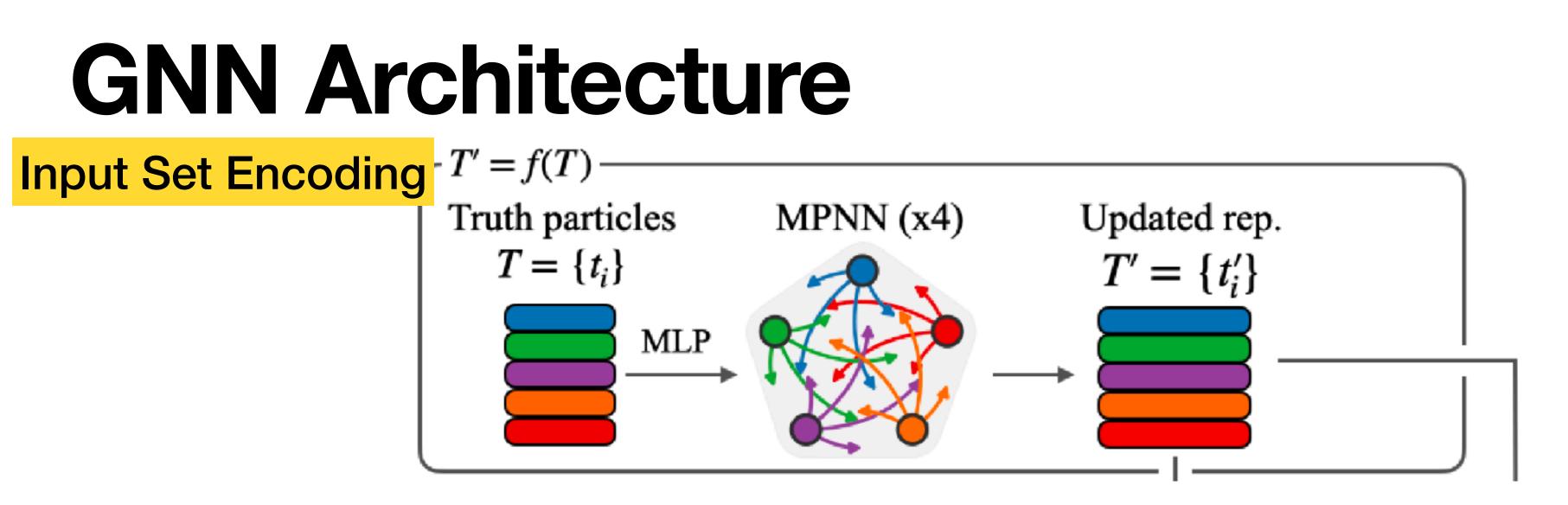


cVAE Architecture

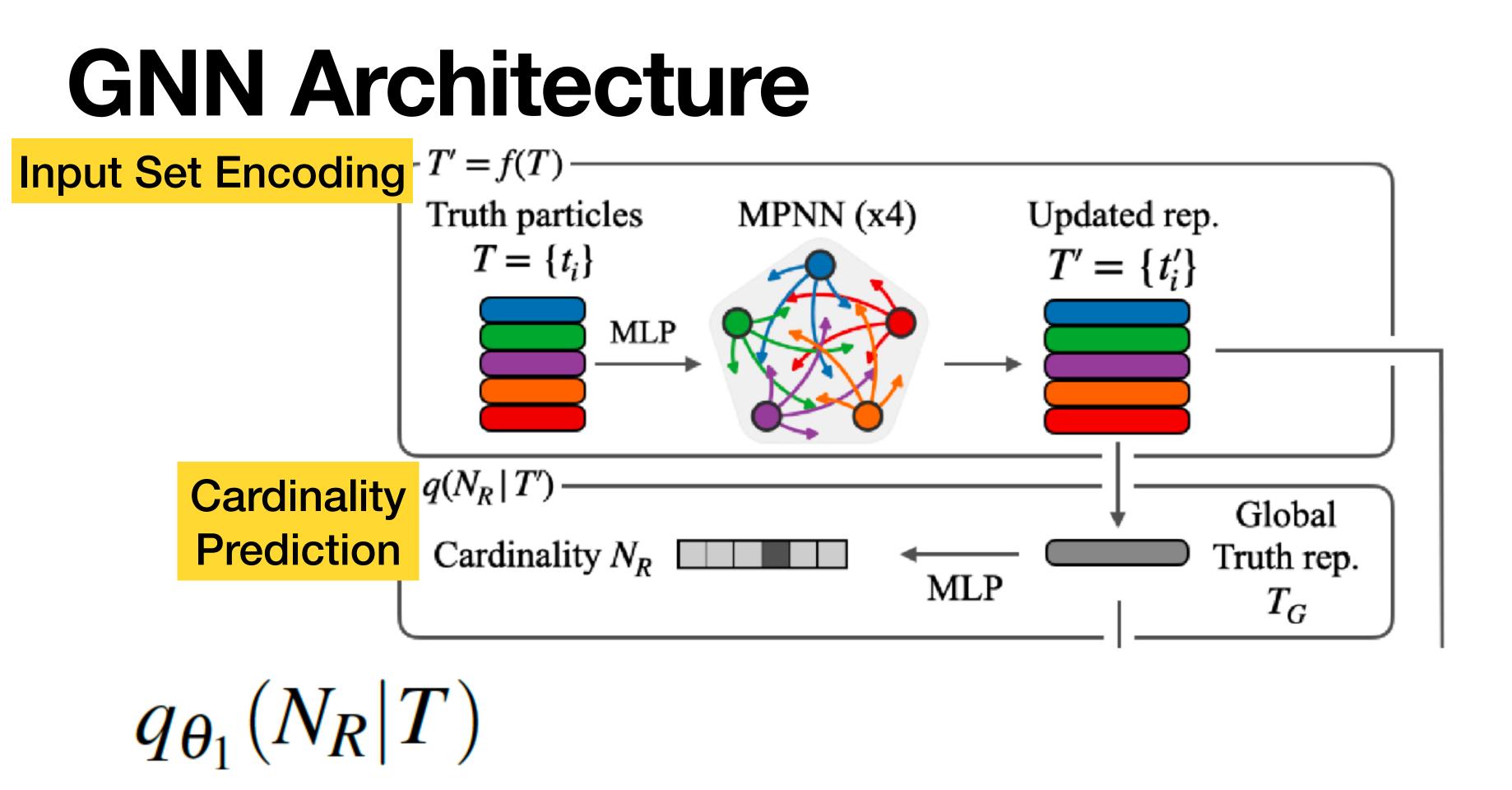


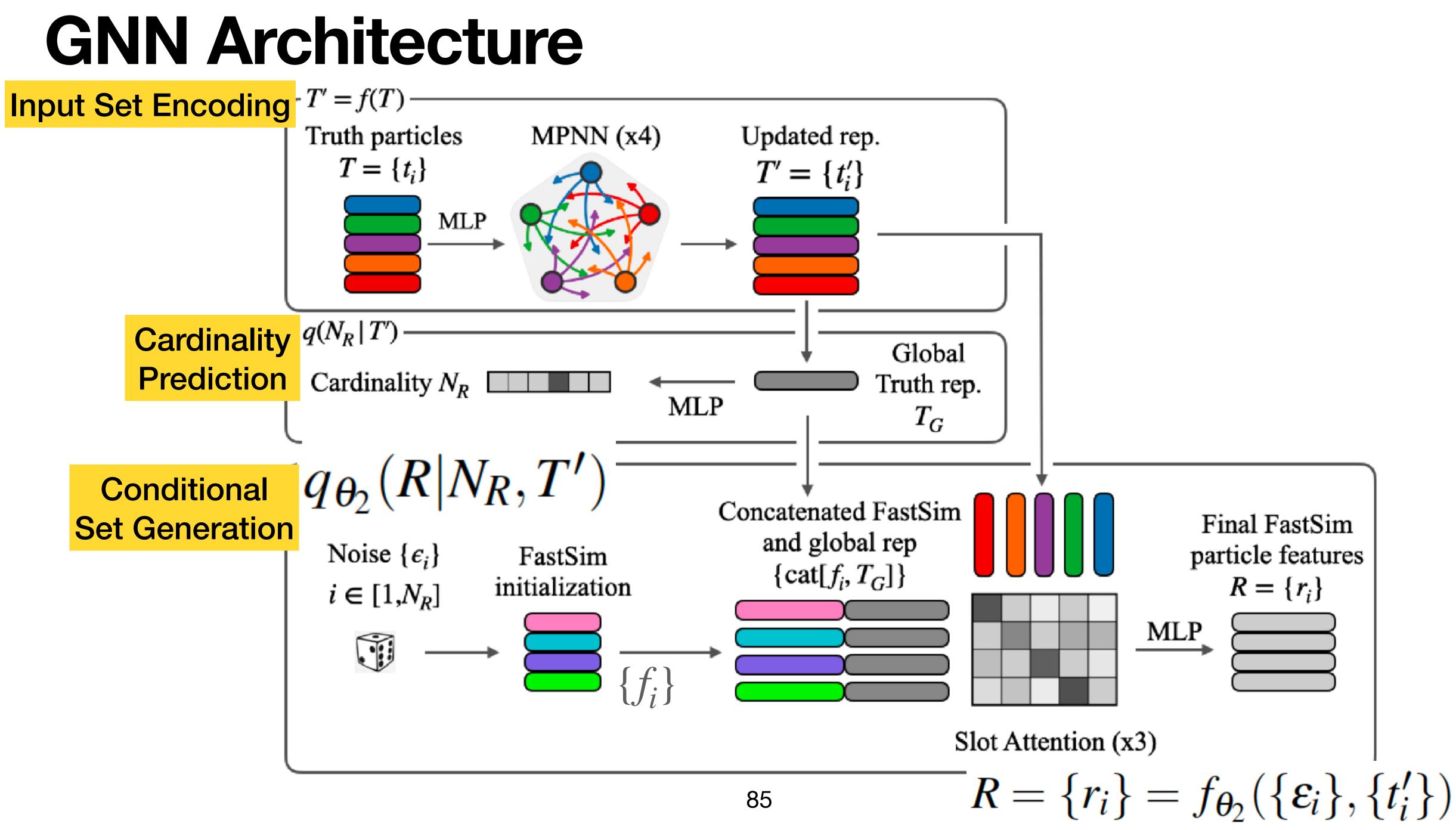






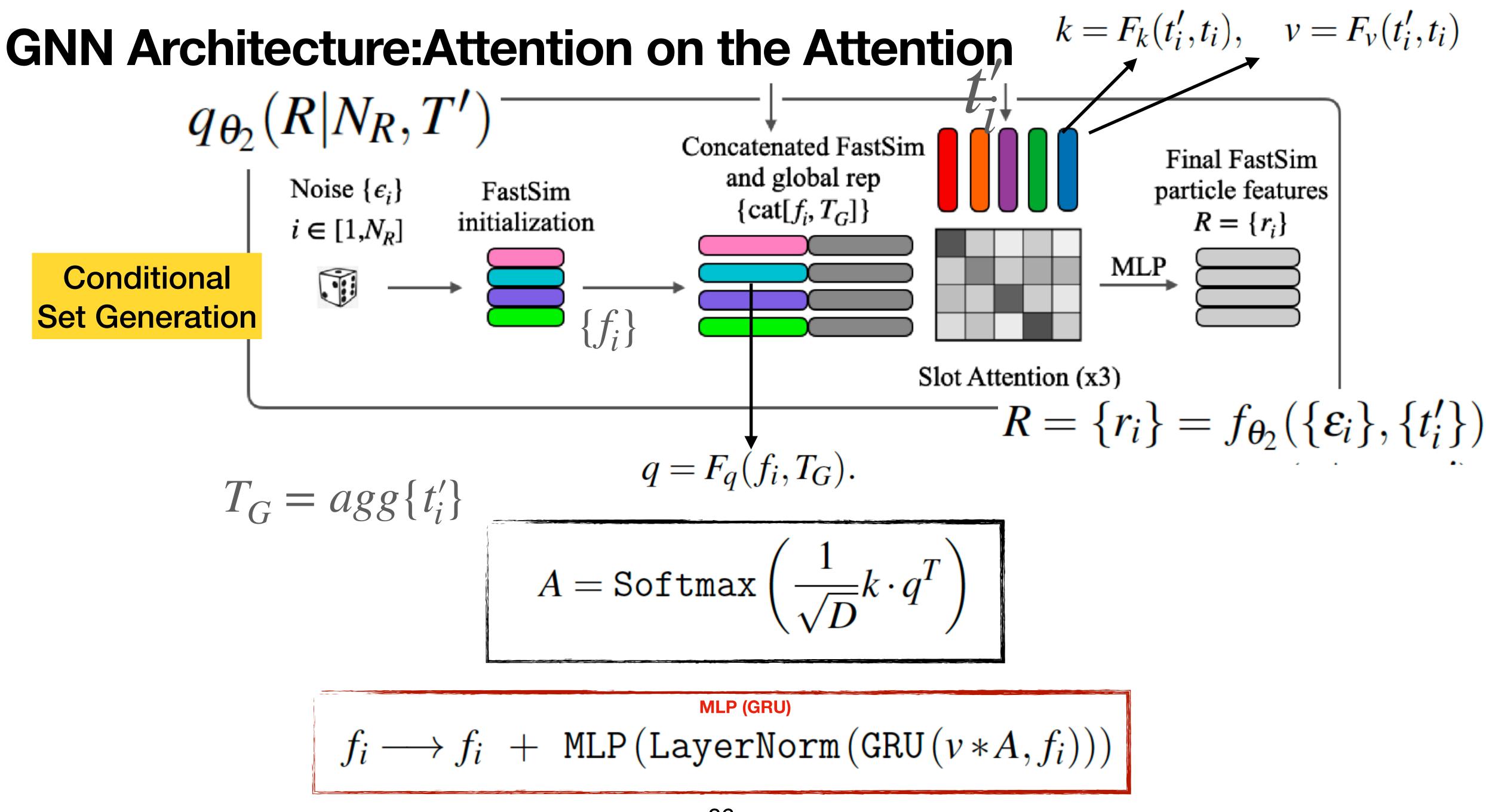
$\{f_i\} = \{p_{T,i}, \eta_i, \phi_i\}$





$q_{\theta_2}(R|N_R,T')$

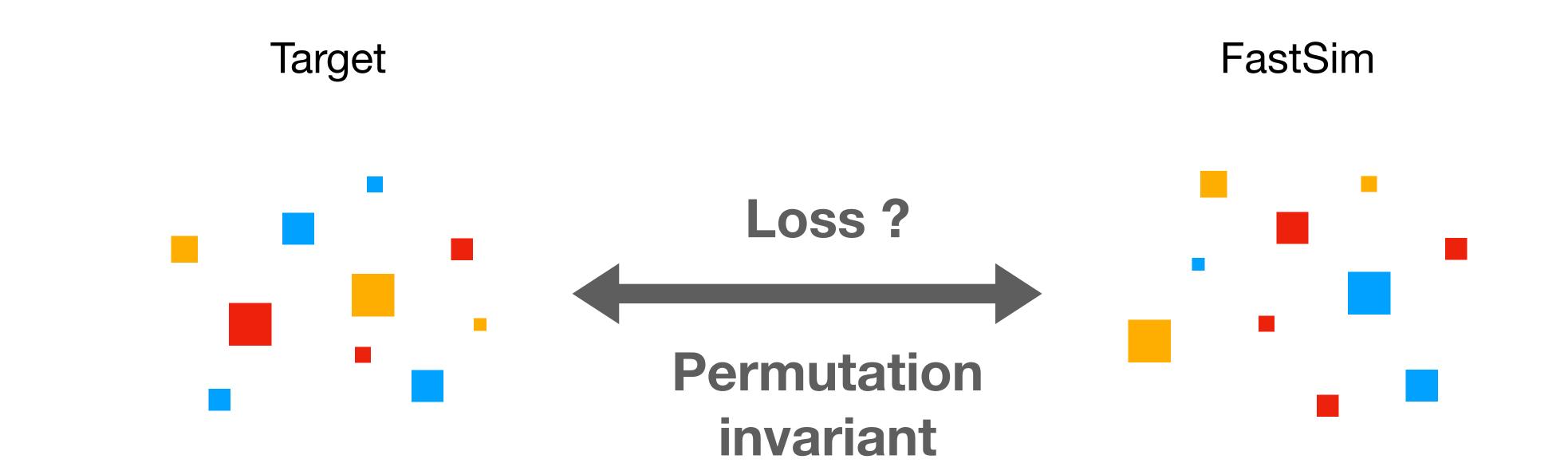
Conditional **Set Generation**



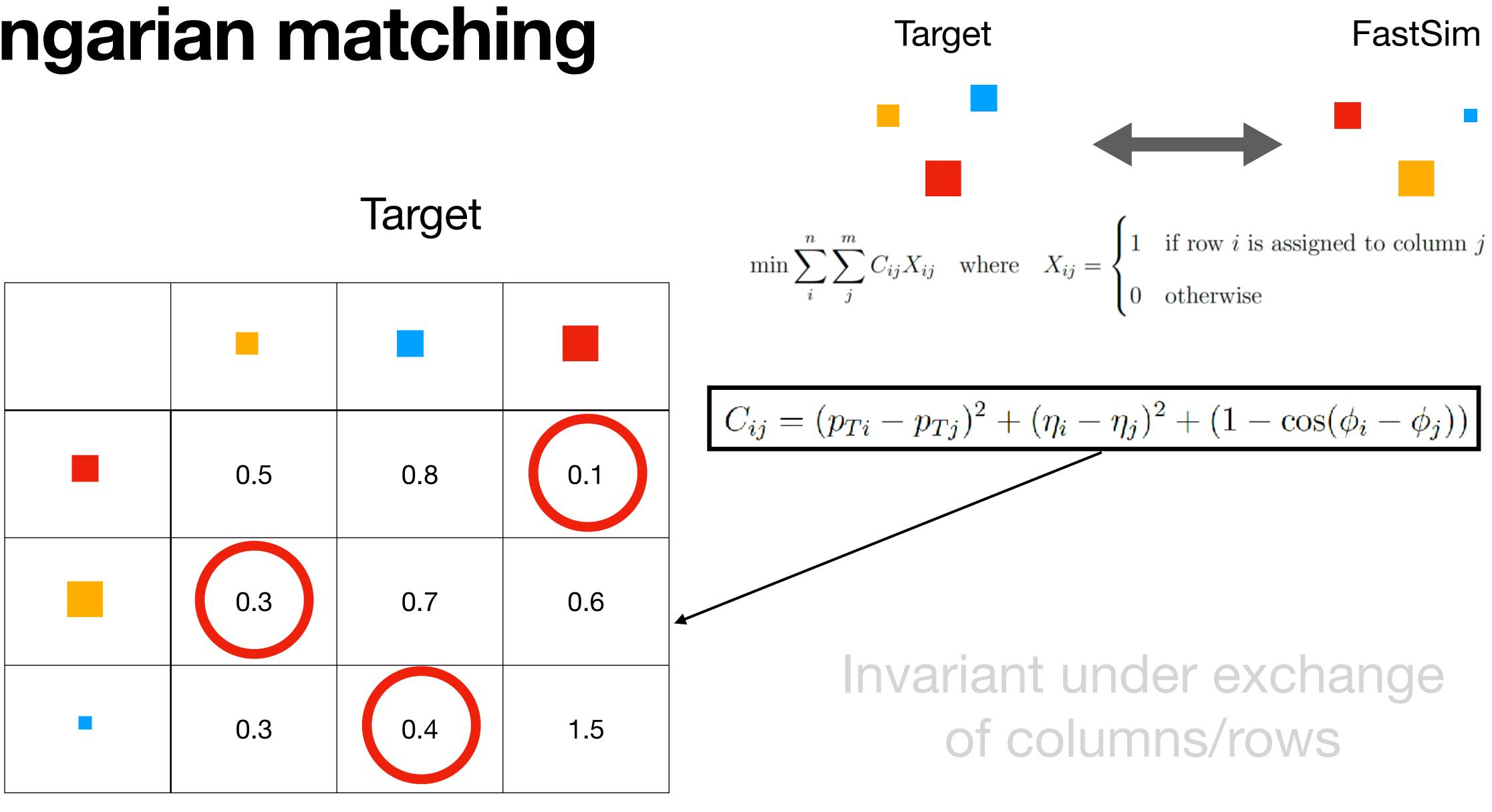
$$A = \texttt{Sof}$$

$$f_i \longrightarrow f_i + MLP(L$$

Set to Set problem



Hungarian matching



FastSim

N. Soybelman





"Double Hungarian"

Replicas —> Set of Sets

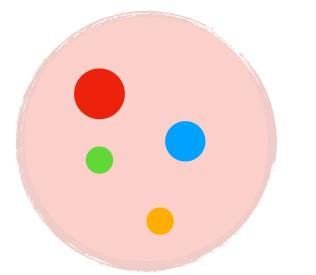
Construct a a samplebased similarity measure between the two distributions $q_{\phi}(R \mid T, N)$ $p(R \mid T, N)$ $MMD^{2}(p,q) = \mathbb{E}_{x,x'\sim p}k(x,x') + \mathbb{E}_{y,y'\sim q}k(y,y') - 2\mathbb{E}_{x\sim p,y\sim q}k(x,y)$ $x_i = (p_{T,i}, \eta_i, \phi_i)$ $y_i = (p'_{T,i}, \eta'_i, \phi'_i)$ $k(x, y) = ||x - y||^2$ Hungarian MMD vanishes when p=q but is time consuming $L_{proxy} = min_{x_i, y_j} k(x_i, y_j)$

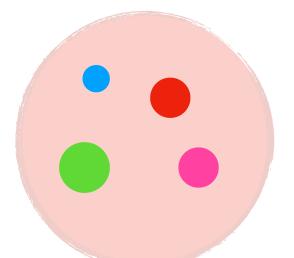
 $p(R \mid T, N)$

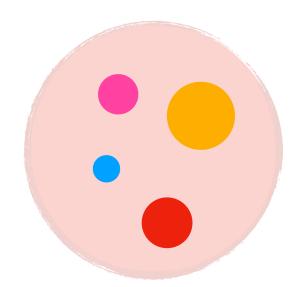
Reconstructed Replicas

 $q_{\phi}(R \mid T, N)$

Predicted Replicas



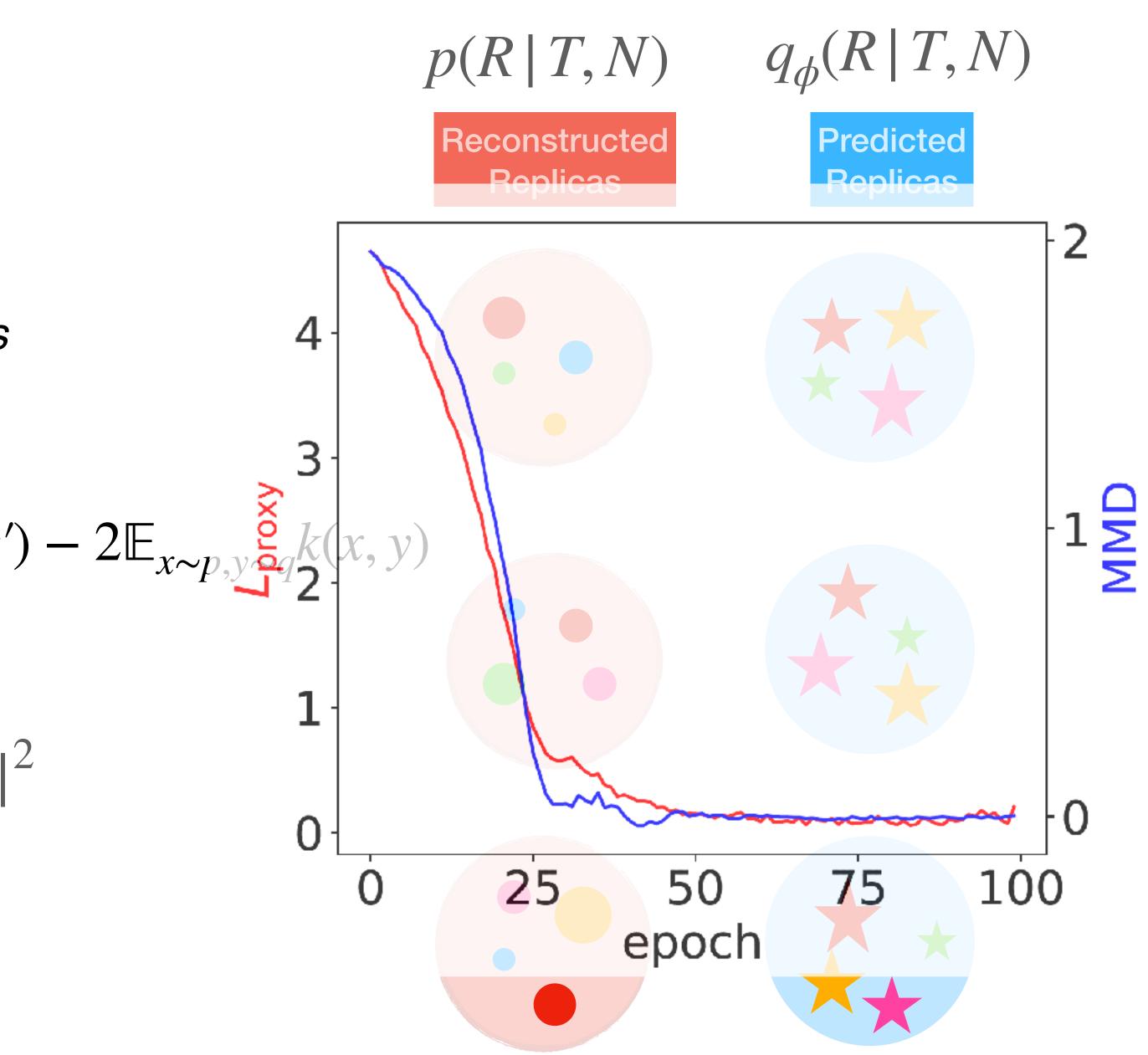




"Double Hungarian"

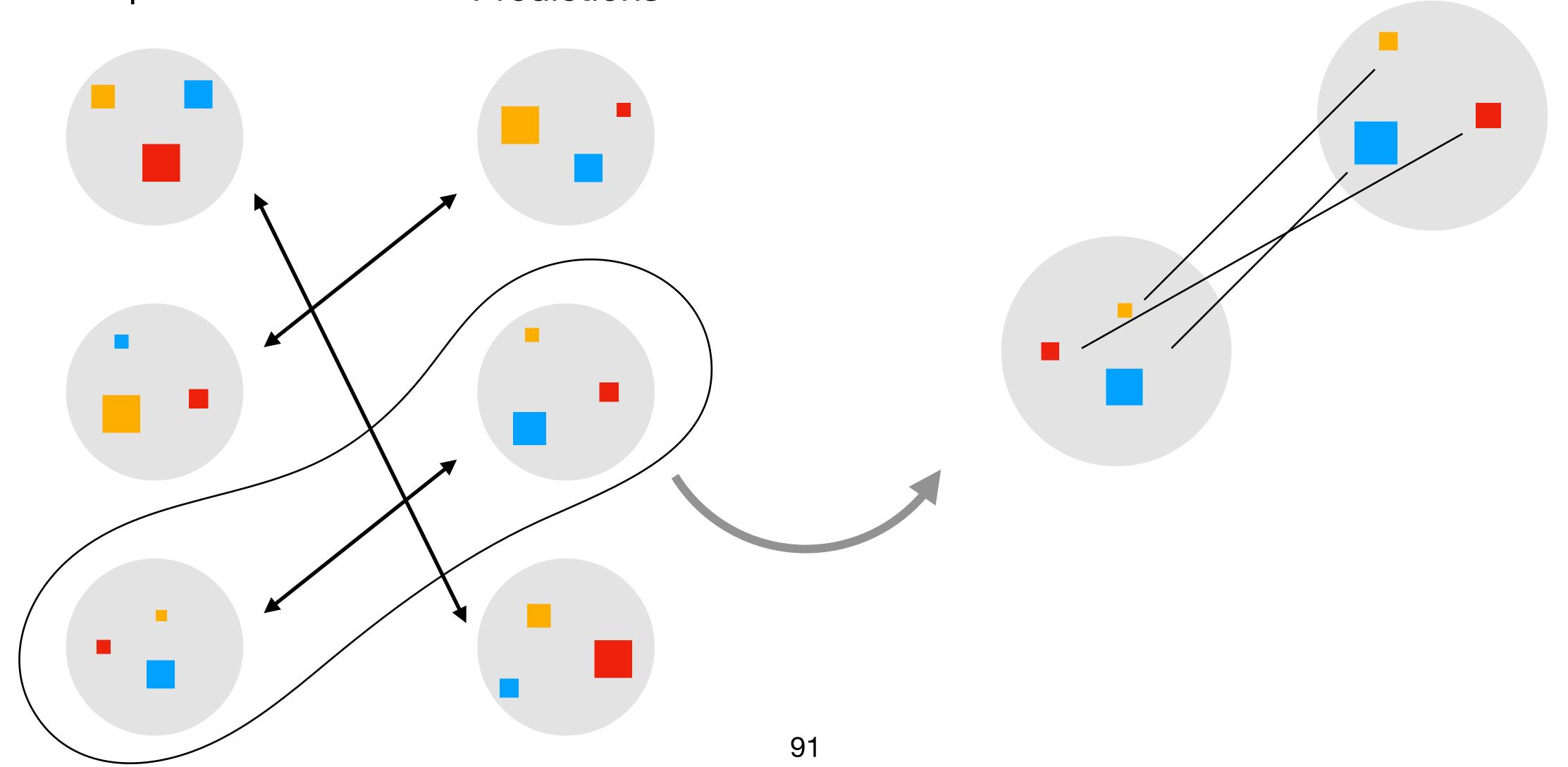
Replicas —> Set of Sets

Construct a a samplebased similarity measure between the two distributions $q_{\phi}(R \mid T, N)$ $p(R \mid T, N)$ $MMD^{2}(p,q) = \mathbb{E}_{x,x'\sim p}k(x,x') + \mathbb{E}_{y,y'\sim q}k(y,y') - 2\mathbb{E}_{x\sim p,y} \sum_{q=1}^{\infty} k(x,x') + \mathbb{E}_{y,y'\sim q}k(y,y') - 2\mathbb{E}_{x\sim p,y} \sum_{q=1}^{\infty} k(x,x') + \mathbb{E}_{y,y'\sim q}k(y,y') - 2\mathbb{E}_{x\sim p,y} \sum_{q=1}^{\infty} k(x,x') + \mathbb{E}_{y,y'\sim q}k(y,y') - 2\mathbb{E}_{x\sim p,y} \sum_{q=1}^{\infty} k(x,y') + \mathbb{E}_{y,y'\sim q}k(y,y') - 2\mathbb{E}_{x\sim p,y} \sum_{q=1}^{\infty} k(y,y') + \mathbb{E}_{y,y'\sim q}k(y,y') - 2\mathbb{E}_{y,y'\sim q}k(y,y') + \mathbb{E}_{y,y'\sim q}k(y,y$ $x_i = (p_{T,i}, \eta_i, \phi_i)$ $y_i = (p'_{T,i}, \eta'_i, \phi'_i)$ $k(x, y) = ||x - y||^2$ Hungarian MMD vanishes when p=q but is time consuming $L_{proxy} = min_{x_i, y_j} k(x_i, y_j)$

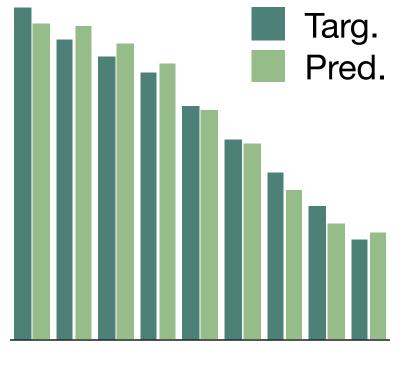


"Double Hungarian"

Replicas Predictions



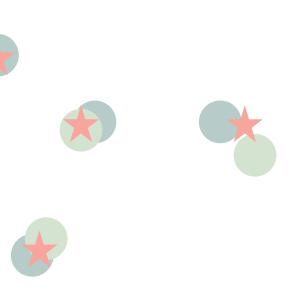
Marginal distributions



 \sim Feature ?

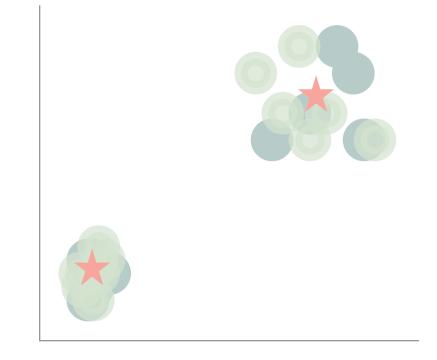
Feature

Resolution



Feature 1

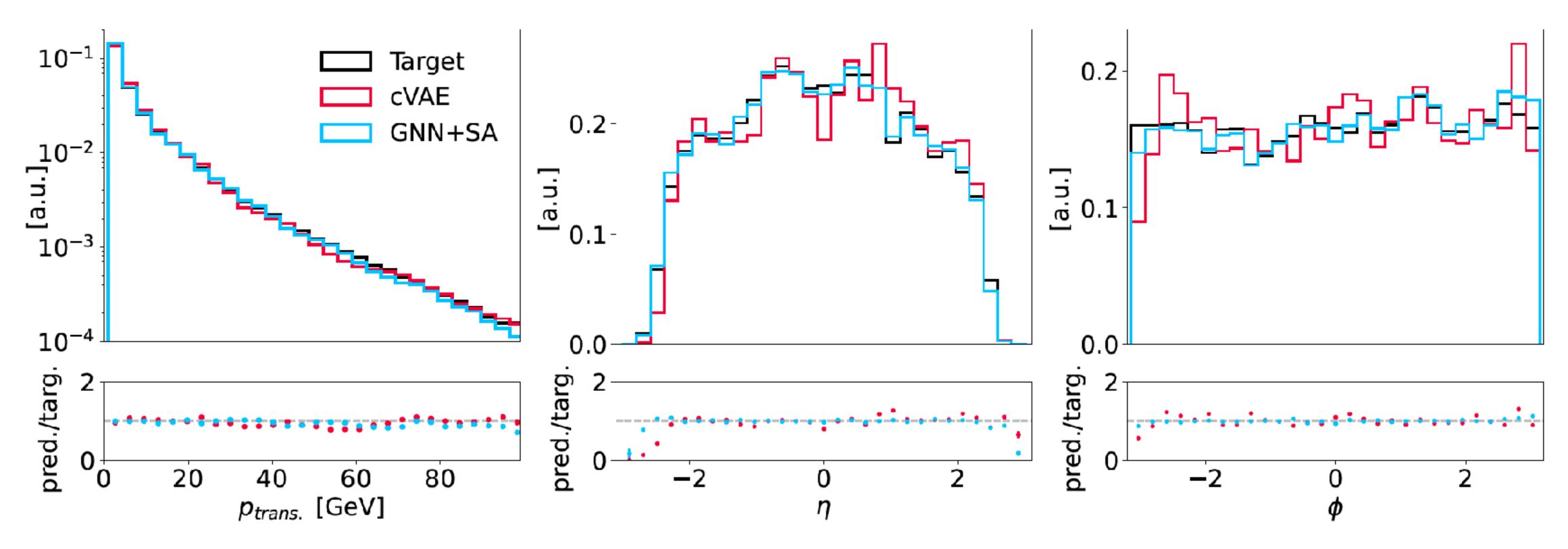
Feature 2



Feature 1

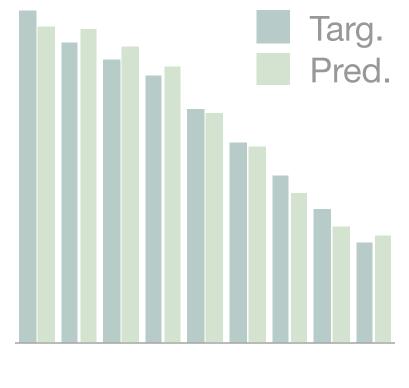
N. Soybelman

Marginal distributions



1D marginal distributions similarly good for both cVAE and GNN

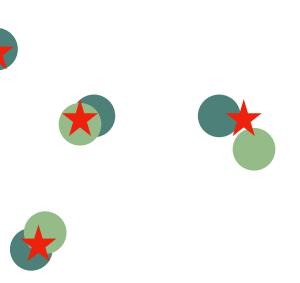
Marginal distributions



Feature 2

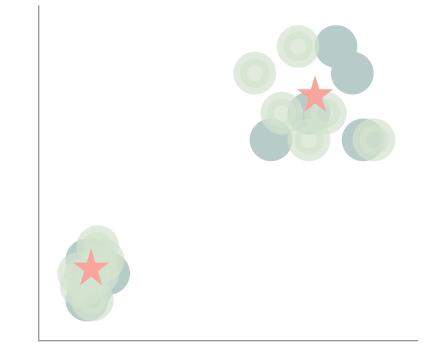
Feature

Resolution



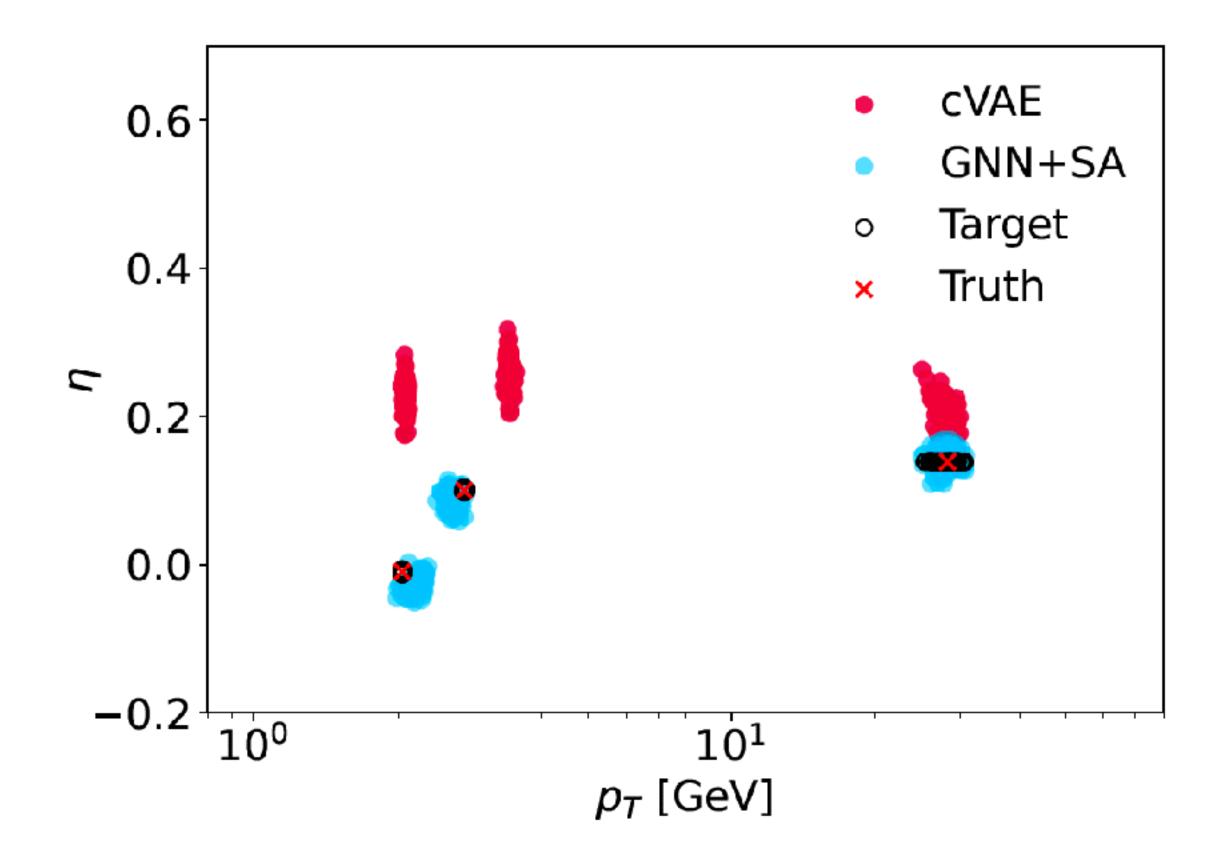
Feature 1

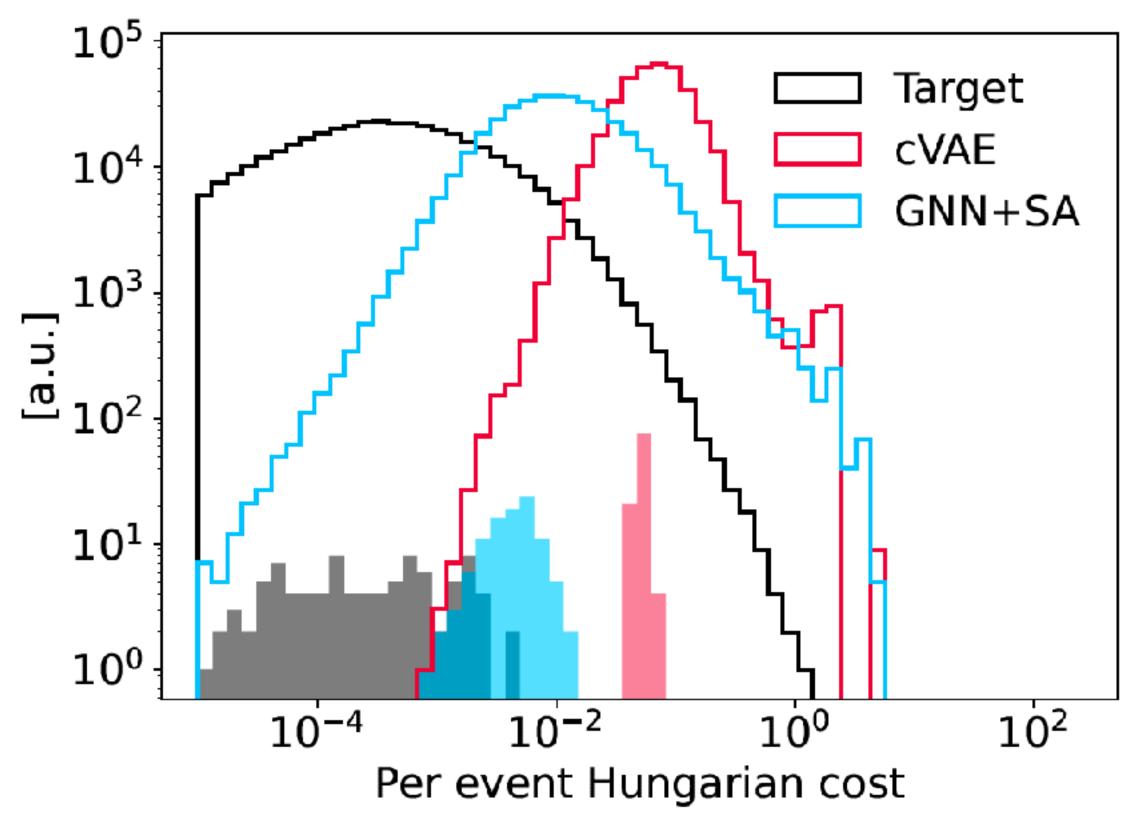
Feature 2



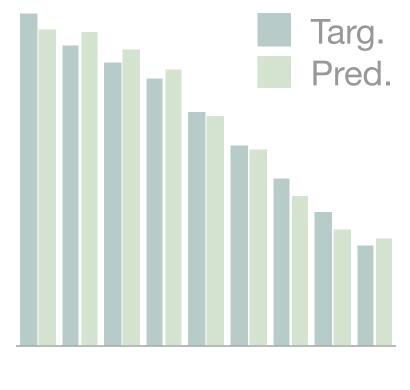
Feature 1

Reconstruct Constituents





Marginal distributions

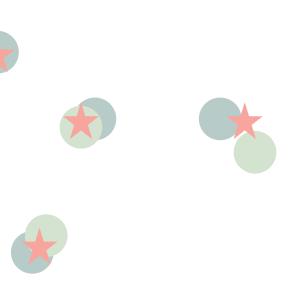


 \sim Feature ?

Feature

Reconstruct constituents

Resolution



Feature 1

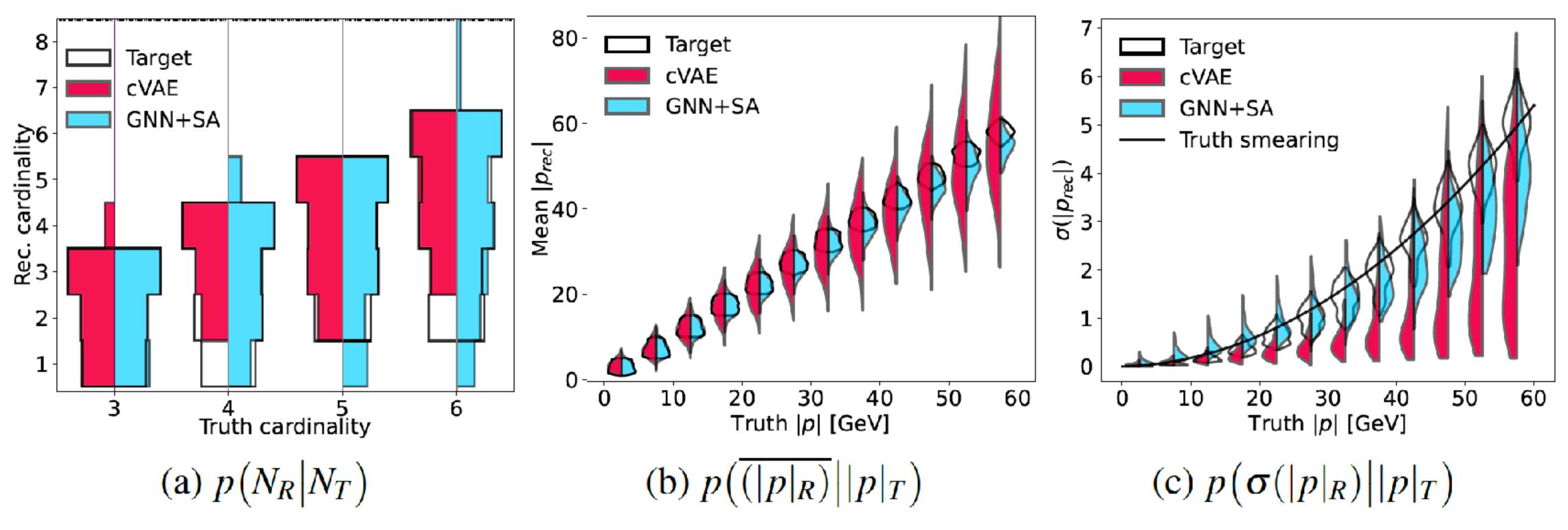
Feature 2



Feature 1

96

Resolution



Conclusion

Investigated feasibility of set generation via attention-based GNN architecture, using

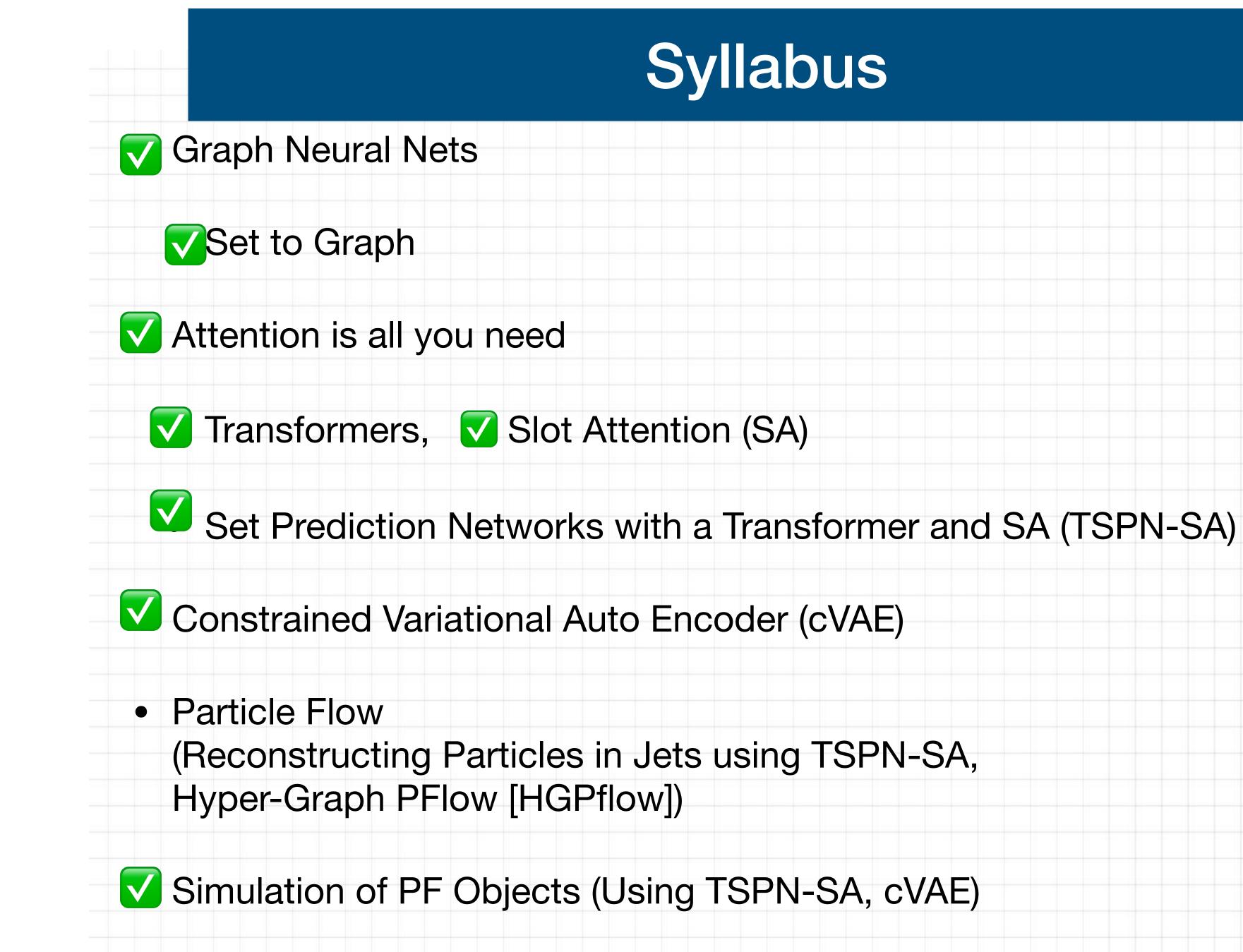
replicas important to learn the resolution

- distributions can be deceptive

the target distribution. It performs better in predicting mean and variance of constituents

Marginal distribution well-modeled by baseline (cVAE) and GNN with Slot att, however, 1D

The GNN+SA model outperforms the baseline model and better captures key properties of



Syllabus

99