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Particle Flow with Deep Learning

• Lecture 1: GNN+Attention


• Lecture 2: Transformers + Set Generation 
 (with the help of N. Kakati and N. Soybelman)


• Lecture 3: Hyper Graphs + TSPN  Particle Flow 
  (with the help of N. Kakati  )

✅
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Syllabus
• Graph Neural Nets


• Set to Graph


• Attention is all you need


• Transformers,   ✅ Slot Attention (SA)


• Set Prediction Networks with a Transformer and SA (TSPN-SA)


• Constrained Variational Auto Encoder (cVAE)


• Particle Flow  
(Reconstructing Particles in Jets using TSPN-SA,  
Hyper-Graph PFlow [HGPflow])


• Simulation of PF Objects (Using TSPN-SA, cVAE)

✅

✅
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https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762


Level 1    N. Kakati

 Attention is
All You Need



5 N. KakatiWeizmann Institute of Science

AND THEN EVERYTHING CHANGED!

One bright summer morning, a paper showed up 

Once upon a time, people in AI were working in peace..

The field was making good progress

AI will change the 
world in 50 years



6 N. KakatiWeizmann Institute of Science

Where is Transformer?
It’s everywhere…

Jet tagging  

Particle
Reconstruction

Fast 
Simulation  

Super Resolution

Google MUSE

Text to Image

Text to Image

Text to Image

Computer Vision (CV)

Image
Classification

Natural language processing (NLP)

Bidirectional Encoder 
Representations from Transformers

Generative Pre-trained Transformers

Q & A

Sentiment
Analysis



7 N. KakatiWeizmann Institute of Science

What is a Transformer?
✦ Looks very complicated

✦ It’ll make sense once we understand the 
components



8 N. KakatiWeizmann Institute of Science

A Quick Look

The big red dog

Word to  
Tokens 

—>Embedding

Which English word 
is related to which 

other English word in 
the input sentence?

Which French word is 
related to which other 
French words in the 
translated sentence?

Which French word  
is related to which 
English words? 
Cross Relation

✦ We are doing translation
➡ English to French

✦ English sentence
➡ The big red dog

✦ Someone told you that the first word in 
French is “Le”
➡ You need to predict the next words one by 

one and complete the sentence

Le

Word to  
Tokens 

—>Embedding

Predict next word

gros
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A Quick Look

The big red dog

Word to  
Tokens 

—>Embedding

Which English word 
is related to which 

other English word in 
the input sentence?

Which French word is 
related to which other 
French words in the 
translated sentence?

Which French word  
is related to which 
English words? 
Cross Relation

Le

Word to  
Tokens 

—>Embedding

Predict next word

gros



Level 2    N. Kakati

 Attention is
All You Need

✦ Pretty good explanation here
➡ https://www.youtube.com/watch?v=TQQlZhbC5ps
➡ YouTube channel link

✦ This part of the lecture is mainly based on that video

https://www.youtube.com/watch?v=TQQlZhbC5ps
https://www.youtube.com/@CodeEmporium
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Embedding
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Embedding
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Embedding
Embedding space
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Embedding
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Embedding



16 N. KakatiWeizmann Institute of Science

Positional encoding
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Positional encoding
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Positional Encoding

Positional encoder: Vector that gives context based on position of word in sentence
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Positional Encoding
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Positional encoding



21 N. KakatiWeizmann Institute of Science

Attention
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Attention

How relevant one word is to the others?

Attention matrix



23 N. KakatiWeizmann Institute of Science

FeedForward
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Attention + 
FeedForward



25 N. KakatiWeizmann Institute of Science

Decoder
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Decoder
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Masked attention
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Self attention
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Cross attention
Encapsulates

English-French 
interactions
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Cross attention

Cross attention
(English-French)

   # outputs
= # French words
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That’s pretty much it. Now let’s look at some details we 
dropped



32 N. KakatiWeizmann Institute of Science

“Multihead” attention
✦ There can be multiple relationships to learn

➡ Positional 
➡ “Is there” - question. “There is” - affirmative

➡ Subject verb relationship

✦ Let’s have multiple attentions
➡ Multihead attention

✦ We’ll combine all of them once they are computed



33 N. KakatiWeizmann Institute of Science

“Masked” attention
✦ The initial problem we talked about

➡ English: The big red dog.
➡ French:  Le gros chien rouge

✦ But, when we start we only know the 
first French word
➡ While computing attention, during 

training, we only need to look at the 
first word

➡ Mask the rest  Masked attention→
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Add & Norm (RESIDUAL NETWORK)

Output
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Add & Norm

Add = skip connections

Input Linear Output’ Input+ Output

✦ Helps remembering where it started from
✦ Useful in deeper networks (in general)

Norm = normalize (layer-wise or batch-wise)
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Now we understand the principle



Level 3    E. Gross

 Attention is
All You Need
Jay Alammar: The Illustrated Transformer
Mehreen Saeed: Positional Encoding

https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/
https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
https://arxiv.org/abs/1706.03762


Recurrent Neural Net in a NutShell

38

https://www.youtube.com/watch?v=LHXXI4-IEns

https://www.youtube.com/watch?v=LHXXI4-IEns


• How do we do it?


• We use hidden states as memory 
 (they represent information from all previous states)

Recurrent Neural Net in a NutShell
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https://www.youtube.com/watch?v=LHXXI4-IEns

Hidden 
 State

https://www.youtube.com/watch?v=LHXXI4-IEns


• How do we do it?


• We use hidden states as memory 
(they represent information from all previous states)

Recurrent Neural Net in a NutShell
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https://www.youtube.com/watch?v=LHXXI4-IEns

Hidden 
 State

https://www.youtube.com/watch?v=LHXXI4-IEns


• How do we do it?


• We use hidden states as memory

Recurrent Neural Net in a NutShell
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https://www.youtube.com/watch?v=LHXXI4-IEns

Hidden 
 State

https://www.youtube.com/watch?v=LHXXI4-IEns


• How do we do it?


• We use hidden states as memory 
(they represent information from all previous states)

Recurrent Neural Net in a NutShell
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https://www.youtube.com/watch?v=LHXXI4-IEns

Hidden 
 State

https://www.youtube.com/watch?v=LHXXI4-IEns


• Issue of RNN with Short Time Memory
Recurrent Neural Net in a NutShell
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https://www.youtube.com/watch?v=LHXXI4-IEns

https://www.youtube.com/watch?v=LHXXI4-IEns


• Issue of RNN with Short Time Memory


• Back propagation with time —> Vanishing Gradient 
We do not learn very early layers…. 

Recurrent Neural Net in a NutShell
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https://www.youtube.com/watch?v=LHXXI4-IEns

https://www.youtube.com/watch?v=LHXXI4-IEns


• RNN: Seq to Seq 
Suffers from long term memory 
Transformer not sequential like RNN 
All input fed once through the model and calculation is performed 
once


• Introduce the concept of Self Attention


• Multi Head Attention 
 
God commanded Abraham to sacrifice his son in order to 
test his faith 
 

Transformer Keypoints

45
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One Attention two Heads

http://jalammar.github.io/illustrated-transformer/
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Q, K ∈ RN×dk

V ∈ RN×dv

dK = dV =
dmodel

h

WK, WQ ∈ Rdmodel×dk

WV ∈ Rdmodelxdv

X ∈ RN×dmodel

dK = dV =
dmodel

h

paper :
dmodel = 512 dK = dV =

512
8

= 64

X ∈ RN×dmodel
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Z ∈ RN×dV

Q, K ∈ RN×dk

V ∈ RN×dv

X ∈ RN×dmodel

Q × KT ∈ RN×N

Zi = Σℓsoftmax
1

dk

Qi ⋅ KT
ℓ Vℓ
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z1 = 0.88v1 + 0.12v2

Zi = Σℓsoftmax
1

dk

Qi ⋅ KT
ℓ Vℓ
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∈ RN×(hdV) = RN×dmodel

X ∈ RN×dmodel

Z ∈ RN×dV

dK = dV =
dmodel

h

headi = Attention(Qi, Ki, Vi)
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WO ∈ RhdV×dmodel

Z ∈ RN×dmodel

∈ RN×hdV
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next page
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next page
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Position ENCODING
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Sequence Length = L Varies

2i=0,…..,L

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/



Position ENCODING
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Sequence Length = L Varies

2i=0,…..,d_model

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/



Position ENCODING
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Sequence Length = L Varies

2i=0,…..,d_model

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

The positional encoding matrix for n=10,000, d=512, sequence length=100



Position ENCODING
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Position ENCODING
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Residual Net

60



Stack 6 Encoders & Decoders

61



Cross Attention



Decoder

63



Softmax
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End of Lecture 2
✅ Seriously? Where is the Physics?
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Fast Simulation for Particle 
Reconstruction 

with GNN and Slot Attention



Motivation
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Collision 
Simulation

Final state

particles

Detector 
Simulation

•Tracking 


•Material interactions


•Energy deposits in calorimeters

Detector 
ReadoutReconstructionReconstructed


objects

25

50

75

100

Analysis

Data taking — 1000 events / sec 

Simulation — 10 min / event 

N. Soybelman

Hard scattering

Showering

Hadronization + Decay



Motivation

68

Collision 
Simulation

Analysis

25

50

75

100

Detector 
Simulation

Detector 
Readout

Final state

particles

Reconstructed

objects Reconstruction

FastSim

N. Soybelman



Set to Set 

Problem to solve

69

Final state

particles

Reconstructed

objects

?

Aim:  
2 stage Network: 

R ∼ qθ(R |T)

R ∼ qθ2
(R |NR, T) qθ1

(NR |T)



Goals

70 N. Soybelman

Marginal 
distributions

Feature

Targ.
Pred.

Reconstruct 
constituents

Fe
at

ur
e 

2

Feature 1

(d0, z0, q/pT, θ, ϕ)

Resolution

Fe
at

ur
e 

2

Feature 1

P( fR | fT)



Goals: RESOLUTION
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How to obtain the correct resolution?

Resolution depends on features 

 difficult to learn smearing from one reconstructed sample per 

truth event


 need in principle very large dataset

⟶

⟶
Solution 

Introduce replicas:


Generate many reconstructions per truth event,

i.e. replicas for the SAME truth event

Fe
at

ur
e 

2

Feature 1

N. Soybelman



Dataset
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• SET of CHARGED particles within a single jet


• Detector Simulation GEANT based COCOA (tomorrow)


• 1-12 charged particles/jet


• Toy example: Smeared tracks as targets


• Reconstruction efficiency, no fakes 


• 100 replicas per event (train on 25 for speed)

⟶ nreco ≤ ntruth



Variational Auto Encoder



cVAE



Variational Auto Encoder as Baseline

75



VAE

We update our model by continuously update the decoder and encoder parameters, 
Φ and ϑ

X

µz|X (φ) Σ z|X (φ)

φ

µX |z (θ ) Σ X |z (θ )
θ z

Q(z | x)

P(X | z)

logPθ (X ) ≤ Ez~Qφ ( z|X )[log(Pθ (X | z)]− DKL Qφ (z | X ) || Pθ (z)⎡⎣ ⎤⎦

P(z) = N 0,1( )

Make posterior 
distribution of z 
close to prior

Maximize Likelihood 
of original input X

X̂



VAE

We update our model by continuously update the decoder and encoder parameters, 
Φ and ϑ

X

µz|X (φ) Σ z|X (φ)

φ

µX |z (θ ) Σ X |z (θ )
θ

z = µz|X (φ)+ Σ z|X (φ) ⋅N (0,1)

Q(z | x) = N µz|X (φ),Σ z|X (φ)( )

P(X | z) = N µX |z (θ ),Σ X |z (θ )( )

logPθ (X ) ≤ Ez~Qφ ( z|X )[log(Pθ (X | z)]− DKL Qφ (z | X ) || Pθ (z)⎡⎣ ⎤⎦

P(z) = N 0,1( )

Make posterior 
distribution of z 
close to prior

Maximize Likelihood 
of original input X

X̂



VAE

µX |z (θ ) Σ X |z (θ )
θ

z = N (0,1)

X = µ(θ )+ Σ(θ ) ⋅N (0,1)



VAE

X

µz|X (φ) Σ z|X (φ)

φ

µX |z (θ ) Σ X |z (θ )
θ z

Q(z | x)

P(X | z)

X̂

Deep Sets

FastSim

Encoder

Posterior 
,μ(z |x)

Σ(z |x)

Decoder

Target

Target rep.

Sampling

Prior 
P(z)

DKL

μ(x |z) Σ(x |z)



cVAE Architecture

Deep Sets

Training

80FastSim

Encoder

Posterior 
μ1, σ1

Decoder

Target

Target rep.

Truth

Truth rep.

Sampling

Inference

Truth

Truth rep.

Prior 
μ2, σ2

FastSim

Decoder

Sampling

Prior 
μ2, σ2

DKL

N. Soybelman



cVAE Architecture



GNN Architecture
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Input Set Encoding

Cardinality  
Prediction

Conditional  
Set Generation

{fi}



GNN Architecture
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Input Set Encoding

{fi} = {pT,i, ηi, ϕi}



GNN Architecture
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Cardinality  
Prediction

Input Set Encoding



GNN Architecture

85

Input Set Encoding

Cardinality  
Prediction

Conditional  
Set Generation

{fi}



GNN Architecture:Attention on the Attention
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Conditional  
Set Generation {fi}

86

t′ i

TG = agg{t′ i}

MLP (GRU)



Set to Set problem 

Loss ?

Target FastSim

87

Permutation  
invariant

N. Soybelman



Hungarian matching
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Target FastSim

0.5 0.8 0.1

0.3 0.7 0.6

0.3 0.4 1.5
Invariant under exchange 


of columns/rows

Target

Fa
st

Si
m

N. Soybelman



“Double Hungarian”
Replicas—> Set of Sets

Reconstructed 
Replicas

Predicted 
Replicas

p(R |T, N) qϕ(R |T, N)

Construct a a samplebased

similarity measure between the two distributions

MMD vanishes when p=q 
but is time consuming

xi = (pT,i, ηi, ϕi) yi = (p′ T,i, η′ i, ϕ′ i)

k(x, y) = | |x − y | |2Hungarian

p(R |T, N) qϕ(R |T, N)

MMD2(p, q) = 𝔼x,x′ ∼pk(x, x′ ) + 𝔼y,y′ ∼qk(y, y′ ) − 2𝔼x∼p,y∼qk(x, y)

Lproxy = minxi,yj
k(xi, yj)



“Double Hungarian”
Replicas—> Set of Sets

Reconstructed 
Replicas

Predicted 
Replicas
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“Double Hungarian”
Replicas Predictions

91



Goals
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Marginal 
distributions

Feature

Targ.
Pred.

Reconstruct 
constituents

Fe
at

ur
e 

2

Feature 1

Resolution

Fe
at

ur
e 

2

Feature 1

N. Soybelman



Marginal distributions

• 1D marginal distributions similarly good for both cVAE and GNN



Goals
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Marginal 
distributions

Feature

Targ.
Pred.

Reconstruct 
constituents

Fe
at

ur
e 

2

Feature 1

Resolution

Fe
at

ur
e 

2

Feature 1

N. Soybelman



Reconstruct Constituents



Goals
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Marginal 
distributions

Feature

Targ.
Pred.

Reconstruct 
constituents

Fe
at

ur
e 

2

Feature 1

Resolution

Fe
at

ur
e 

2

Feature 1

N. Soybelman



Resolution



Conclusion
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• Investigated feasibility of set generation via attention-based GNN architecture, using 

replicas important to learn the resolution


• Marginal distribution well-modeled by baseline (cVAE) and GNN with Slot att, however, 1D 

distributions can be deceptive


• The GNN+SA model outperforms the baseline model and better captures key properties of 

the target distribution.  It performs better in predicting mean and variance of constituents
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Syllabus
• Graph Neural Nets


• Set to Graph


• Attention is all you need


• Transformers,   ✅ Slot Attention (SA)


• Set Prediction Networks with a Transformer and SA (TSPN-SA)


• Constrained Variational Auto Encoder (cVAE)


• Particle Flow  
(Reconstructing Particles in Jets using TSPN-SA,  
Hyper-Graph PFlow [HGPflow])


• Simulation of PF Objects (Using TSPN-SA, cVAE)

✅

✅

✅

✅

✅

✅

✅


