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Use of ML in object 
reconstruction
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Example: CMS merged 
photon reconstruction

Signal: H -> AA ->𝛄𝛄𝛄𝛄 (merged) 
BG: H->𝛄𝛄 

Use: end to end ML approach, 
makes use of more granular 

information

https://cms-results.web.cern.ch/cms-results/public-results/publications/EGM-20-001/

https://cms-results.web.cern.ch/cms-results/public-results/publications/EGM-20-001/
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Example: CMS merged 
photon reconstruction

Number of ECAL crystals 
in either direction, each 

pixel in the image exactly 
corresponds to the energy 

deposited in a single 
ECAL crystal. 

 
To improve spatial resolution: split the ECAL images described above into a two-layer image 
that contains the transverse and longitudinal components of the crystal energy. And include 

the crystal seed coordinates. 
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Example: CMS merged 
photon reconstruction

Number of ECAL crystals 
in either direction, each 

pixel in the image exactly 
corresponds to the energy 

deposited in a single 
ECAL crystal. 

 
To improve spatial resolution: split the ECAL images described above into a two-layer image 
that contains the transverse and longitudinal components of the crystal energy. And include 

the crystal seed coordinates. 

No rotation is performed on the 
images since electromagnetic  

showers are not rotationally 
symmetric. In addition to the  

η-φ symmetry being broken by the 
CMS magnetic field, general rotations 

of square pixels are destructive 
operations that distort the particle 

shower pattern
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Example: CMS merged 
photon reconstruction

RESNET CNN, outputs regressed mass in a global 
maximum pooling layer. Concatenated with the crystal seed 

coordinates, gives regressed diphoton mass.

BUT…
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Example: CMS merged 
photon reconstruction

RESNET CNN, outputs regressed mass in a global 
maximum pooling layer. Concatenated with the crystal seed 

coordinates, gives regressed diphoton mass.

BUT…

When regressing below the mass resolution, the left tail of the mass 
distribution becomes underrepresented in the training set. Middle: 
As mA → 0, only half of the mass distribution is represented. The 

regressor subsequently defaults to the last full mass distribution at 
mA ≈ σ(mA). With domain continuation, the generated mass 

distribution of the original training samples (A → γγ, red region) is 
augmented with topologically similar samples that are randomly 

assigned nonphysical masse. This allows the regressor to see a full 
mass distribution over the entire region of interest
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Example: CMS merged 
photon reconstruction

Final result, also 
validated in data
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Used in Search:
https://arxiv.org/abs/2209.06197

https://arxiv.org/abs/2209.06197


Example: b/c-jet tagging
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ATLAS

CMS

DeepCSV tagger

Using deep sets, modelling 
jets as a set of tracks

https://cdsweb.cern.ch/record/2718948
https://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/
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ATLAS

CMS

DeepCSV tagger

Using deep sets, 
modelling jets as a set 

of tracks 



Quiz

Why so much effort on b-tagging?
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Example: b/c-jet tagging

14



Example: b/c-jet tagging
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ATLAS CMS



An aside: ROC Curves
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Jet Tagging
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Jet Substructure
W prime ttH(bb)
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Motivation

• Large number of jets in final state, a combinatorial 
nightmare 

• Large multijet background

Any way out?

26



Motivation
• For a two body decay, we can write: 

• For a (quasi)collinear splitting: 

• In terms of the angular separation:

27



Quiz

Jet constituents are almost massless, then 
how can jets have mass?

28



Jet mass

29



Motivation
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A large radius jet of R = 2m/pT^2 can contain all decay products
30



Boost!

High pT means 
transverse Lorentz boost! 

More probable with 
higher LHC energy

Hadronically decaying top quark, Higgs/W/Z bosons, new 
heavy particles …

31



Boost

32
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Signal vs Background

The boosted jet coming from top quark (hadronic) decay 
should be distinguishable from the boosted jet coming from 
events with no top quarks.

We want to exploit the 
“substructure” of the 
large-radius jet to 
identify original particles

Background: light quark/gluon/lepton jets34



Quiz

Can you think of any possible disadvantage 
of using large-radius jets?
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First Application
• The so-called BDRS paper (Butterworth-Davison-

Rubin-Salam, 2008) 

• Looked at VH (V=W/Z), with H decaying to bbbar. 

• Charged leptons in the final state help to reduce 
background. 

• Conventional methods result in Hbb swamped by 
multijet background.

36



BDRS
• Start with fat (C-A 1.2) boosted (pT > 200) b-tagged jet. 

• De-cluster the jet. At each stage, mass drop and 
symmetric splitting requirement. 

• Continue till an interesting splitting has been found.

37



BDRS
• Start with fat (C-A 1.2) boosted (pT > 200) b-tagged jet. 

• De-cluster the jet. At each stage, mass drop and 
symmetric splitting requirement. 

• Continue till an interesting splitting has been found.
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BDRS
• Start with fat (C-A 1.2) boosted (pT > 200) b-tagged jet. 

• De-cluster the jet. At each stage, mass drop and 
symmetric splitting requirement. 

• Continue till an interesting splitting has been found.
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BDRS
• Then use the three hardest 

b-tagged subjets to (re)form 
the large-radius jet. 

• The mass of the large-radius 
jet is Higgs boson mass. 

• For a 115 GeV Higgs, 4.5 σ 
for 30 fb-1.

40



Lessons

• We need to clean the jet. 

• We need observables (like jet mass) to discriminate 
signal against background. 

• BDRS technique did not work in ATLAS/CMS 
directly.

41



Jet Grooming
• Jets need to be “groomed”. 

• Need observables which would be sensitive 
to signal-like or background-like nature of 
these jets.

Why? 

The large-radius jets not only include particles 
coming from the interesting decays, but also from 

pileup, underlying event ....
42



Jet Grooming
• Jets need to be “groomed”. 

• Need observables which would be sensitive 
to signal-like or background-like nature of 
these jets.

43



Jet Grooming

• Mass drop filtering 

• Pruning 

• Trimming 

• Soft Drop

44



Soft Drop
Start with a jet j and it is split into last two subjets

If:

Then j is the final soft drop jet. 

Otherwise the higher pT subjet is taken as j,  
and iterated … 

Advantage: can be compared directly to analytic 
calculations45



Tagging boosted objects: 
observables and taggers

particles!

Target is to identify jets resulting from the decay of top quark 
or Higgs against jets coming from light quark/gluons.46



Mass

Mass peaks clearly visible over background!47



Subjet multiplicity

48



kt splitting scale
When combining 
two subjets with 
kt algorithm: 

Symmetric for heavy particle two body decay
49



N-Subjettiness
Quantify the degree to which jet radiation is aligned 
along specific subjet axes.

Smaller values: N or less 
energy deposits 

Larger values: more than N 
energy deposit

τN-1 > τN for N prong substructure

Calculated by kt clustering the constituents, and requiring 
exactly N subjets 50



N-Subjettiness
The ratio of  τN/τN -1 is used as discriminant

More like 2 subjets than 1 More like 3 subjets than 2 

W-like MJ-like Top-like MJ-like
51



N-Subjettiness
The ratio of  τN/τN -1 is used as discriminant

More like 2 subjets than 1 More like 3 subjets than 2 

W-like MJ-like Top-like MJ-like
52



Energy Correlation 
Functions
Discriminate between:

53



ECF
Over all constituents (beta: angular exponent):

ECF(N+1) << ECF(N)  

for N subjets 

Define (double) ratio = [ECF(N+1)/ECF(N)]/[ECF(N)/ECF(N-1)]

Analogous to N-subjettiness ratio
The energy correlation double ratio CN effectively measures higher-order radiation from 

leading order (LO) substructure. For a system with N subjets, the LO substructure consists 
of N hard prongs, so if CN is small, then the higher-order radiation must be soft or collinear 

with respect to the LO structure. If CN is large, then the higher-order radiation is not 
strongly-ordered with respect to the LO structure, so the system has more than N subjets. 

Thus, if CN is small and CN-1 is large, then we can say that a system has N subjets. 54



ECF
For this multiple soft radiation case, 
with only 1 real subjet 

C2 > τ21 

Nsubjettiness will identify this as 
more 2 subjet-like while ECF will 
identify more as 1 subjet-like

D-observables are further optimised by exploiting boost-
invariance of the difference of one and two prong

55



ECF results

56
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HEPTopTagger
Browsing through all the branches of jet recombination history:
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HEPTopTagger results

Before and after tagging by HepTopTagger

Pileup resilience
59



Quiz

What does HEP in HEPTopTagger stand for?
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Shower deconstruction

Top  quark jet 
shower history

Light  quark jet 
shower history

vs.

ISR Top

ISR Gluon

61



Shower deconstruction
• Decompose the large-

radius jet into small 
radius subjets. 

• Build all possible shower 
histories with the subjets. 

• Assign probability 
whether signal-like or 
background-like. 

• A single analytic 
function:

62



SD with data

LogChi 
modelled well 
by MC

LogChi robust 
against pileup

63



Signal over background 
discrimination

64



Tagger Comparison (W)

Better!

65



Tagger comparison (top)

Better top quark finding efficiency with SD at the same 
rejection of multijets when compared to other taggers
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ATLAS DRAFT

Table 2: A summary of the set of observables that were tested for W -boson and top-quark tagging for the various
DNN input observable groups as well as the final set of DNN and BDT input observables as chosen using Figures 3
and 4.

W Boson Tagging Top Quark Tagging
DNN Test Groups Chosen Inputs DNN Test Groups Chosen Inputs

Observable 1 2 3 4 5 6 7 8 9 BDT DNN 1 2 3 4 5 6 7 8 9 BDT DNN
mcomb � � � � � � � � � � � � � � � � � � �
pT � � � � � � � � � � � � � � �
e3 � � � � � � � � �
C2 � � � � � � � � � � � � � � �
D2 � � � � � � � � � � � � � � � �
⌧1 � � � � � � � � �
⌧2 � � � � � � � � �
⌧3 � � � �
⌧21 � � � � � � � � � � � � � � � � �
⌧32 � � � � � � � � �
RFW

2 � � � � � � � � �
P � � � � � � � � �
a3 � � � � � � � � �
A � � � � � � � � �
zcut � � � � � � �p
d12 � � � � � � � � � � � � � �p
d23 � � � � � � �

KtDR � � � � � � �
Qw � � � � � � �

21st August 2018 – 17:00 19
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Example: top tagging in ATLAS
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Example: top tagging in ATLAS
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Example: tagging in CMS

DeepAK8: a multiclass classifier for the identification of 
hadronically decaying particles with five main categories, W/Z/

H/t/other. A mass-decorrelated related version as well.
https://cms-results.web.cern.ch/cms-results/public-results/publications/JME-18-002/
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Example: top tagging in CMS

Ensemble of 
overlaid  

images after  
the image  

post processing

The ImageTop network architecture. The neural network 
inputs are the 37x37 pixelized PF candidate ${p_{\mathrm 
{T}}}$ map, which is split into colors based on the PF 
candidate flavor, and the DeepFlavor subjet b tags applied 
to both subjets. The pixelized images are sent through a 
two-dimensional CNN, and the subjet b tags are inputs to a 
dense layer. After flattening the CNN, the two networks are 
taken as input to three dense layers and finally to the two-
node output, which is used as the top tagging discriminator.
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Example: top tagging in CMS



Experimental Considerations 
in Jet Tagging
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Truth Labelling
• In order to calculate the efficiency of the taggers, 

the labelling of the initiating particle is necessary. 

• Three step process: match jets to truth jets, truth 
jets to truth top/W, then partonic decay products of 
top/W to match jets. Rather generator dependent. 

• Update: b-hadron ghost associated, and mass/kt 
splitting scale requirments.

73
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Truth Labelling



Containment
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Mass Sculpting

• Jet mass dependence 
of tagging efficiency 

• Difficulty for analyses 
using sideband for 
background 
estimation or bump-
hunting
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Modelling Dependance
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Modelling Dependance
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Uncertainties
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