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Semi-visible jets

So far, almost all dark matter searches in colliders are for WIMPs

ATLAS .. .
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So called mono-X
signatures, X being
any SM particle
or object.

Large MET on
one sidel




Semi-visible jets

So far, almost all dark matter searches in colliders are for WIMPs

We are looking for
SIMPs, where the dark
sector Is considered
A replica of QCD




Semi-visible jets Search

Results in jets
interpersed with dark
hadrons, with missing
fransverse momentum
direction aligned with

one of the SVJs in
leading order. Not so

Ratio of the rate of for events with extra
stable dark hadrons Jets and large boost.

over the total number
of hadrons in the event Events with two central jets, MET trigger, leading

jet pt > 250 GeV, Hr > 600 GeV, MET 600 > GeV,
jet closest to MET with AD<2

Strongly interacting
dark sector:
bifundamental
mediator acts as a
portal!

IS termed Rinv

Simulated N Pythia  pefine: SR (muon veto), and three CRs, 1L, 1L1B,
Hidden Valley Module 2L (with muons and b-tagged jets)



Semi-visible jets Search
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Background Estimate

Two sensitive observables:
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Partially data-driven method,
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using a
dedicated VR
given by MET
within 250 to
300 GeV, then
fitted
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ATLAS Vs=13TeV, 139 fb™
Cross-section for \=1 (fb):
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Session 1:
Setting the Scene/Objects



Poll

When was “Machine Learning” first used in
(experimental) Particle Physics?

* A. Duh, during the Higgs boson discovery.

 B. Must be at Tevatron, say mid-2000’s, its always
the Americans.

* C. Before | was born. Like way before that.

11
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Machine Learning: Prologue

Moore's law: the number of
transistors that can be T— z=— —— 4
packed into a given unit of . — (52
space will roughly double | el
N PR
every two years. s SR
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Search for the neutral Higgs bosons of the MSSM
in eTe™ collisions at /s from 130 to 172 GeV

But ...

L d light quark jets are combined using neural
wo variables are lifetime-based; the third is based

The ALEPH Collaboration®)

20 June 1997

on the transverse momentum of identified leptons and the last three are based on jet-shape
properties. The quantities used are as follows:

1. Pjer: probability of the jet being a light quark (uds) jet based upon impact parameters
of tracks in the jet, similar to that described in Ref. [9] with modifications for the new

Abstract VDET;

AxZ,,: the \?* difference between fitting tracks in the jet both to secondary and primary
vertices compared to assuming all tracks come from the interaction point. This is based

o

The process ete™ — hA is used to @QC[I for the Higes bosons of the Minimal Super- upon a secondal:;\’ vertex pattern recognition algoritl}m which searches for flisplice(l

symmetric Standard N
is performed in the da
energies between 130 a
events are found in eitl
of 0.91 events from all ¢
this results in a 95% C
tan 3 > 1.

~s

er feed-forward, consisting of four layers and is based

“JETNET 3.4 pa(l\ago 2],
tks are av allable elsewheLe [1}] The g
propagation e 1 e

descriptions of theoretical aspects of neural

iral network was trained, with the backward
sz jets in radiative returns to the 7Z from a sample of
400,000 Monte (allo qq events generated at a centre-of-mass energy of 161 GeV. Radiative
returns to the Z were used because the jets in such events are produced in a kinematic
configuration similar to that of the signal; this was preferred to training the network using
simulated signal events in order to reduce the associated systematic error in the signal efficiency.
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Igging Deeper

CERN LIBRARIES: GENEVE

i i

LU TP 93-29
CERN-TH.7135/94
' December 1993

JETNET 3.0 — A Versatile Artificial 1993 CERN SCHOOL OF COMPUTING
Neural Network Package

Scuola Superiore G. Reiss Romoli, L'Aquila, Italy
Carsten Peterson and Thorsteinn Rognvaldsson 12-25 September 1993

Department of Theoretical Physics, University of Lund,

Sol tan 14 A, S-223 62 Lund, Swed
sl ’ sl b Neural Networks

; . S.R.Amendolia
Leif Lonnblad University of Sassari and INFN of Pisa, Italy

Abstract

An introductory treatment of the subject of Neural Networks will be given. Topics covered

)
CE RN S Kn OW-H OW will mostly be relevant for the use of Neutal Netwqus in_ H?gh Energy Physics,

especially for triggering, and examples will be given of this application.

g2 mong the first to use machine learning (ML ;. Basics of Neural Networks

1.1 Introduction

There exist many papers and books on the subject of Neural Networks in the literature,

Py et o o & s 4 i f s 96 and this cannot be an attempt at making a bett omprehensive treatment. We
* Alrea U y In b and LHCb experl ments SucceSSfu lly IntrOdl cend tn the relevant rprr::I:mAc fl.2l.gl.g4.a5] e’l‘::- ?;23?2:1 r:\pthic wnrl ~ramnarad tn

system
e Higgs boson discovery earlier than expected (2012), also with help of ML



vou do/want to do?
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What we do/want to do

WE FOUND IT/
WE FOUND THE
HIGGS BOSON/ =
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Steps from a model/calculation to
experimental (hon) observation
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Searches: two broad
(overlapping) categories ...



Theoretical model driven

SUSY
UED incl QBH

Compositeness

LRSM

The known world of
Standard Model particles

U

quarks
® leptons

® force carriers

We can only
exclude based on

what our detectors
see!

20

The hypothetical world of
SUSY particles

i

Higgsino

NACADN A

S5 W

squarks
® sleptons

® SUSY force carriers



Phenomenological model/signature
driven

DM/WIMP: mono-everything + SIMP!

Dark Photon

Extended Higgs sector: 2HDM

disappearing or
displaced multitrack kinked tracks
vertices " i -
non-pointing
.... (converted) photons

4th generator quarks/top partners

.=
-

:.‘\ .~’.‘~ ‘t:-’\:‘
0% My
Y emerging jets

|

+ trackless,
i low-EMF jets

Le ptoq U arks displaced leptons, /

lepton-jets, or
lepton pairs

Heavy W' or Z'

Diboson resonances

meta-stable charged

. o particles
multitrack vertices in the

LFV muon spectrometer

LLP

21



Let’s start with an
example:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-58/

22


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-58/

Pair

Search for: el

VLQs
v/
T/B
¢/b
¢/b
T/B

V (or H)

23



Question: what would we
see In the detector?



What you see Is not what
you have!

e \We don't get what is coming out of the
collisions.

e [inite lifetime of particles, decays before
reaching the detector.

e Detectors have finite resolution, less than
perfect response and efficiency.

25
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Decays: Detector Objects

|+
——————— v |
% ng '''' q O
L.
T/B ﬁ___,_:_::'_'.'. ------- q O
t/b T e O
6/b e >t
/8 TV e >
V (or H) O
PO
O
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Decays: Detector Objects

_|_
o’ |
..... g
% N
___ v q
D, T/B __‘-_,__:-::::‘_ ------ » q
ﬂ t/b T » b
/b e »|t
T/B — e >\ /-
c LEE R R <
> V (or H) O

V
S e D
‘Q‘ b
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Detalls

Preselection > 2 central jets
at least two SF leptons with pt > 28 GeV
at least one pair of OS-SF leptons |m (£€) — mz| < 10 GeV
Channel 2t 3L
definitions =2C > 3¢
PT (ff) > 300 GeV PT (ff) > 200 GeV
Hr(jet) + E%ﬁss > 920 GeV Hr(jet +lep) > 300 GeV

Region 16 SR 2b SR 16 CR 2b CR SR VV CR
definitions Hr(jet) + EX™° > 1380GeV  Hr(jet) + EZ™ < 1380 GeV = =

=1 b-jet > 2 b-jet =1 b-jet > 2 b-jet > 1 b-jet =0 b-jet
MCBOT categories 7 7 — - 5 —
Fitted variable m(Zby) m(Zby) Hr(jet) + EX™ Hr(jet + lep)

29



Events / 200 GeV

Data / Bkg.

From this:

10% e——

10°
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[t 72 Uncertainty

3l SR H tag
Post-Fit
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¢ Data ---Singlet TT
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—A O
. |
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1(8)00 1200 1400 1600 1800 2000 2200 2400

H-(jet+lep) [GeV]

30

Construct observables,
Signal and Control regions,
estimate background...



o(pp — TT) [pb]

10

107"

1072

10°°

From this:

ATLAS

[

—h

w

_I

Q)

<

— —
W

@ —
—

O— —

TT Doublet (X,T)
2| + 3l Combination

I I I I I

— Theory (NNLO+NNLL)

= 95% CL Obs. Limit
== 95% CL Exp. Limit
mm 95% CL Exp. = 1o

195% CL Exp. + 20

— 2/ (Exp.) ==+3/ (Exp.)

| I | | | |
800 1000

| | |
1200

| | | | | |
1400 1600

m. [GeV]

Discover or set
limits: When
signature of a new
model Is not found,
the model is
excluded up to a
certain parameter
value

Presented in terms of 95% confidence level, which the associated probability of that ocbservation
being correct 95% of the time. In other words, if the measurement is made repeatedly on independent
datasets, the measured value will be obtained at least 95% of the time.
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Components of a limit plot

* Expected line: from MC simulation (SM), usually
using same luminosity as data. The 1and 2 o
bands are from MC uncertainty. (Brazil plot!)

 Observed line: from data, actual number of events
seen, with statistical uncertainties. It is expected to
stay within the expected bands if the simulation is
accurate.

* Theory line: calculated from new model, often with
assoclated systematic uncertainties.
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Interpreting a limit plot

* As long as the expected and observed lines are below the
theory prediction, the conclusion is no evidence of the new
particle is seen. By this argument, the expected and
observed limits are respectively 5.1 and 5.2 TeV, from
where the theory prediction line intersects the expected
and observed lines. It at any point, the observed line goes
beyond the expected brazil-bands, that may indicate data
contains more events than SM predicts. However, the
threshold for an observation is 30 and a discovery is 50.
Only in the region where observed is higher than the
theory line, and beyond the statistically allowed deviations
from expected, this particular new model can be
confirmed.

33



An Aside: Why Limits?

We all want to find new physics.



An Aside: Why Limits?

We all want to find new physics.

But out of 100 new physics models, at least 99 are wrong,
possibly all 100 are!

So null results also tell us a lot.

And technigues/methods developed can help in a future
discovery!

35



Recap:

Reconstruct objects from detector information

Decide on sensitive observables for the specific
final state we are interested Iin

Estimate (SM) background

Look for new physics/measure at particle level

36



One collision == EVENT

Qutcome of the collisions is probablistic, no exhaustive
ist of possibilities!

Cross section: how often a particular process occurs,
measured as an eftective area the target particle
presents to projectile particles.

Actual number for a process:

Luminosity measured in units of 1/area




Objects from Collisions

Charged particles Electrons Photons

Muons I Hadrons Neutrinos




Missing (Transverse)
Energy

e Do not interact with the detector

e Imbalance of pr

e Can be signs of new physics as well!

Only invisible SM particles are the neutrinos.

DM, SUSY particles have not been seen yet!
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strength
A

> distance

radius of a proton

Strong interaction works
like a, rubber band!

No free quarks/gluons!

Collected in jets!

W
>

&)

4
74
74







Run: 267073
Event: 279124678
2015-06-05 02:24:03 CEST




Jet Making

* Defined by input objects, combination algorithm,
and the radius.

sual algorithm in LHC experiments: anti-k;
gorithm, which combines inputs In momentum-
pace, starting with hardest inputs.

N O C

* Algorithms need to be theoretically robust!
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alorimeter Objects

Energy in
calorimeter ] Calorimeter
. /
Bend tr.aclf in y, jet
magnetic field ; .
< // ///
/ //
/ e
/ //
/ //
/ /4
// 7

\ / /

\ / //

\\ ﬁ // /f
\ /////
\ A
\ ///

\\ \\ /f//
o DL
neutral particles \\| //

charged particles ™.
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ParticleFlow Objects

Energy in

calorimeter ! )
/| ParticleFlow

Jet

Bend track in
magnetic field

neutral particles
charged particles ™.
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IRC Safety



Jet making

Sequential recombination
algorithms (momentum space):
iteratively pairwise combination of
the inputs till a minimum inter-jet
distance is reached.

one algorithms (coordinate
space): Collect all inputs within a
cone such that the cone axis is
the vector sum of momenta in it.

47



Jet making

Distance between two input objects Distance between each input object and beam
A A
1 k¢
2 ;2
. 12D L2p Ay + Ao _ _2p. - :
dij = min(ky", k") o7 . dipg=k;; p=<0  Cambridge/Aachen
—1 anti-k;
\ A
Intrinsic transverse momentum Fixed “radius” parameter

® Find the smallest of all {dij, dis}
e If this is one of the dj; values, inputs i and j are merged.
e If it is one of the dig values, ith input is considered a jet.

e Continue fill all inputs are merged into jets.
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Jet making

Distance between two input objects Distance between each input object and beam

A A
1 k¢

2 ;2
. 2p 1.2p Ay + Ao , _ L2p. _ :
dij = min(ky", k") o7 . dipg=k;; p=<0  Cambridge/Aachen
—1 anti-k;
\ A
Intrinsic transverse momentum Fixed “radius” parameter

e Find the smallest of all {d;;, dig}
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Jet making

Distance between two input objects Distance between each input object and beam

A A
1 k¢

2 ;2
. 2p 1.2p Ay + Ao , _ L2p. _ :
dij = min(ky", k") o7 . dipg=k;; p=<0  Cambridge/Aachen
—1 anti-k;
\ A
Intrinsic transverse momentum Fixed “radius” parameter

e Find the smallest of all {d;;, dig}
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Jet making

Distance between two input objects Distance between each input object and beam
A A
1 k¢
2 ;2
. 12D 12D Ay + Ao _ _2p. - :
dij = min(ky", k") o7 . dipg=k;; p=<0  Cambridge/Aachen
—1 anti-k;
\ A
Intrinsic transverse momentum Fixed “radius” parameter

e Find the smallest of all {d, dis}

e If this is one of the dj; values, inputs i and j are merged.
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Jet making

Distance between two input objects Distance between each input object and beam
A A
1 k¢
2 ;2
. 12D 12D Ay + Ao _ _2p. - :
dij = min(ky", k") o7 . dipg=k;; p=<0  Cambridge/Aachen
—1 anti-k;
\ A
Intrinsic transverse momentum Fixed “radius” parameter

® Find the smallest of all {dij, dis}
e If this is one of the dj; values, inputs i and j are merged.
e If it is one of the dig values, ith input is considered a jet.

e Continue fill all inputs are merged into jets.
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Jet making

Distance between two input objects Distance between each input object and beam
A A
1 k¢
2 ;2
. 12D 12D Ay + Ao _ _2p. - :
dij = min(ky", k") o7 . dipg=k;; p=<0  Cambridge/Aachen
—1 anti-k;
\ A
Intrinsic transverse momentum Fixed “radius” parameter

® Find the smallest of all {dij, dis}
e If this is one of the dj; values, inputs i and j are merged.
e If it is one of the dig values, ith input is considered a jet.

e Continue fill all inputs are merged into jets.
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Jet making

Distance between two input objects Distance between each input object and beam
A A
1 k¢
2 ;2
. 12D L2p Ay + Ao _ _2p. - :
dij = min(ky", k") o7 . dipg=k;; p=<0  Cambridge/Aachen
—1 anti-k;
\ A
Intrinsic transverse momentum Fixed “radius” parameter

® Find the smallest of all {dij, dis}
e If this is one of the dj; values, inputs i and j are merged.
e If it is one of the dig values, ith input is considered a jet.

e Continue fill all inputs are merged into jets.
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3

Jet algorithm, R =0.6, p=-1

P, [GeV]

3
I|l||

(S
I|III

20—
10
1 1 1 I 1 1 1 1

0_1 PR T R T 1‘

0 1 2 3 -

5
r

Step 1

dij 1 2 3 4
1 - 0.00049 0.00071 0.03361
2 0.00049 - 000018 0.02778
3 0.00071 000018 - 0.01440
4 0.03361 002778 001440 -

dip 0.01000 0.00444 0.00160  0.0025

(a) We have 4 input objects as shown. The smaller value 1s indicated, which dictates 2 and 3 should be
merged. The merged pt will be 40 GeV, and the position 1s determined by the pt-weighted average:

(2% 15+2.2%25) /40 = 2.13.
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Step 2

Eh ; Jet algorithm, R=0.6, p = -1
d;; 1 23 4
| ; 0.00019 0.03361
23 0.00019 i 0.00607
4 0.03361 0.00607 _

dip  0.00444 0.00063 0.00250

(b) At this step, we indicate the merged input from previous step by 23. The distances indicate that
inputs 1 and 23 should be merged. The merged pt will be 50 GeV, and the position will be determined
by the pr-weighted average: (1.8 x10+2.13x40)/50 = 2.06.
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Step 3

3

Jet algorithm, R=0.6, p=-1

p, [GeV]

3
IIIII

d; 123 4
123 - 0.00418
4 0.00418 -

dip 0.00040 0.00250

(c) At this step, we indicate the merged input from previous step by 123. The distances indicate the
input 123 should be classified as a jet itself. Since that leaves input 4, that will be classified as a jet as
well.
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Finished product!

P [5eV] T

0
y y

Shape follow angular
distribution of components

Almost circularly
shaped jets




Searches

Cross-section
(arbitrary units)

Resonance searches:
bumphunting

Cut and count

Excess of MET: DM

Signal strength

59

SM background

Mass

(arbitrary units)



Types of backgrounds

* |rreducible: same final state. SM Z/Z for Hto ZZ.

* Reducible: not the same final state, resulting from
misreconstructed processes or misidentified
objects. W(Inu)+jets for Z(ll)+]ets.

 Combinatorial: random combination of objects
looking like the signal. All hadronic ttbar.
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Signal and control regions

We apply selection cuts on the objects and event topology
to maximise signal and minimise background.

However, when searching for a new physics signal, we do
not want to bias ourselves.

So divide the events into signal region, where data is
blinded when we fix analysis strategies, and control region
by inverting one (or more signal cuts), where we can
check data-MC agreement and estimate background
contribution.

Unblinded after cuts are optimised and fixed.
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Data-MC agreement in CR

e« \What it simulation does not
describe the data in CR?

 Modelling” : C  paa
R - MC
« Calibration/efficiency -
estimates wrong”? - N
. AN
Reweight :-( 7 L
A PR

Arbitrary variable
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Estimate the backgrounds

Anti-selection/inversion of cuts

ABCD method

64

Data and/or
simulation driven

Side-bands/shape extraction by fit



dn

2

100

-

Sidebands
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Estimate background
under a resonance peak

With or without fitting



Sidebands
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Signal

cut Y

A

Signal

C

Sig

X, X,
Signal
cut

6/

-

ABCD method

A Two uncorrelated variables.

Estimate by:

N XN
NA= B C
Np
D.gIn

nal region




Use of ML in object
reconstruction



Variable 2

0.8

0.6

0.4

0.2

Precursor: Multivariate

analysis

m  Signal
a Background
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N A
A
| A, A ig AA N -
A AR 4
| - A 4 A * A
N - ] ] ~
0 m 4Am .
- 0
N N
] B
\ \ \ \
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Variable 1
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Precursor: Multivariate
analysis

1 \ |
m Signal
a Background
0.8 | Rectangular cuts
N A
N A
IS 0o ® AA‘A-AAA
2 [ ew e
c% ol T * A, A
> 0.4 [ - | ] . : -
u - H 4m .
O - -
0.2| . "
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0 0.2 0.4 0.6 0.8 1
Variable 1
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Variable 2

analysis

Precursor: Multivariate

L inear decision

boundary

1 |
m  Signal
a Background
0.8
A
0.6~ " ala, 4 :
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A \i~\ AN ,
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| H Anm Ao
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Variable 1
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Precursor: Multivariate
analysis

1 | |
= Signal Non-linear decision
sl 4 Background boundary
R A
&\ A
o 06 ® _ alt s, i
'_c% A -N T~. AR o,
C% B o A ) \A . A
> 04 ® o g B = :
| [ | A .\\A
0 - .\\\
0.2 . " ' N
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Variable 1
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Challenge:

-INnd the optimal decision bounadary
iIN N-dimension!



MVA

N variables used in classification: feature variables
Correlation reduces dimensionality

N dimensional constant surface —> mapping to a
single discriminating variable

Actual cut on the variable, as before!
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Preprocessing

 Combine or transform the variables to bring out
physical features —> called feature extraction

« Example: W-boson transverse mass, scaling by
sqri(s),

75



Machine Learning

* Algorithmically find this decision boundary based
on data (without explicitly programmed)

* Learning: represent the data by an approximate
functional form (whether or not such a form exists is
immaterial) between input variables x and output
variables y

* Use that predict behaviour of future similar datasets
from x' to y'.
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Math break!
L3 Dl
What number will be next?

¥ Cow = a s
,\4/ Heightt i metar
710 Lengthi 5.2 meter’

4% 217341, because if

f(x) = 18111/2:x*4-90555+x"3+6
33885/2:x"2-452773x+217331,
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Variable 2
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Overfitting
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Back to the Objects



Why the (hadronic) decay of tau contain only
odd number of charged particles tracks?
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Example: ATLAS hadronic
tau reconstruction

* [he challenge: discriminating non-tau jets

e Use a RNN

* Trained sep for 1/3 prongs using simulated samples

i

Dense

Tracks | Srared |} Shared LSTM (= LSTM
dense dense

Clusters | ~rared | ] Shared LSTM (= LSTM
dense dense
High-level Dense Dense —* Dense

variables

/J/
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Dense
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Dense




Observable
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Example: ATLAS hadronic
tau reconstruction
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