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Semi-visible jets Search
    

    W
hy this is novel? 

So far, almost all dark matter searches in colliders are for WIMPs

So called mono-X

signatures, X being


any SM particle 

or object.


Large MET on 

one side!
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Semi-visible jets Search
    

    W
hy this is novel? 

So far, almost all dark matter searches in colliders are for WIMPs

We are looking for

SIMPs, where the dark

sector is considered


A replica of QCD 
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Semi-visible jets Search
Strongly interacting 

dark sector: 
bifundamental 

mediator acts as a 
portal!


Ratio of the rate of 
stable dark hadrons 

over the total number 
of hadrons in the event 

is termed 𝑅inv


Simulated in Pythia 
Hidden Valley Module

Results in jets 
interpersed with dark 
hadrons, with missing 
transverse momentum 
direction aligned  with 

one of the SVJs in 
leading order. Not so 
for events with extra 
jets and large boost.


Events with two central jets, MET trigger, leading 
jet pT > 250 GeV, HT > 600 GeV, MET 600 > GeV, 

jet closest to MET with 𝞓Φ<2


Define: SR (muon veto), and three CRs, 1L, 1L1B, 
2L (with muons and b-tagged jets)5
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Ratio of the rate of 
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over the total number 
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Simulated in Pythia 
Hidden Valley Module

Results in jets 
interpersed with dark 
hadrons, with missing 
transverse momentum 
direction aligned  with 
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leading order. Not so 
for events with extra 
jets and large boost.


Events with two central jets, MET trigger, leading 
jet pT > 250 GeV, HT > 600 GeV, MET 600 > GeV, 

jet closest to MET with 𝞓Φ<2


Define: SR (muon veto), and three CRs, 1L, 1L1B, 
2L (with muons and b-tagged jets)

      
    U

nique collider to
pology - m

ostly overlooked in searches!
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Defined by jets 
closest and 


farthest to MET 
direction

Used to

Form a 


9-bin grid, with 
yields in each 
bin treated as 
observables:

Two sensitive observables:

Partially data-driven method, 
simultaneously fit SR and three CRs to 

obtain scale factors for each bg process:

Multijet 
reweighed in 

using a 
dedicated VR 
given by MET 
within 250 to 

300 GeV, then 
fitted

Absence of signal, good 
post-fit agreement :(
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Results
Excellent agreement 
between data and 
background prediction


Limits on mediator mass 
separately for each 𝑅inv


For mediator mass of 2.5 
TeV or higher can also 
express the limits in terms 
of the q-qd-ɸ vertex 
coupling strength λ, with 
the XS scaling as λ4 

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
bal
T

p

0.6
0.8

1
1.2
1.4

D
at

a 
/ B

kg
.

10

210

310

410

510

610

710

810

Ev
en

ts
 / 

0.
05 ATLAS

-1 = 13 TeV, 139 fbs
SR

 600 GeV≥ miss
T 600 GeV, E≥ TH

Post-Fit

inv
 [TeV], R

Φ
Signal mData

W+jets 1, 0.6
Z+jets 1, 0.8
tt 2, 0.4

Single top 2, 0.6
Diboson 3, 0.2
Multijet 3, 0.4
Bkg. Unc

0 0.5 1 1.5 2 2.5 3
|

min
φ - maxφ|

0.6
0.8

1
1.2
1.4

D
at

a 
/ B

kg
.

10

210

310

410

510

610

710

810

Ev
en

ts
 / 

0.
14 ATLAS

-1 = 13 TeV, 139 fbs
SR

 600 GeV≥ miss
T 600 GeV, E≥ TH

Post-Fit

inv
 [TeV], R

Φ
Signal mData

W+jets 1, 0.6
Z+jets 1, 0.8
tt 2, 0.4
Single top 2, 0.6
Diboson 3, 0.2
Multijet 3, 0.4
Bkg. Unc

1 1.5 2 2.5 3 3.5 4 4.5 5
 [TeV]Φm

10

210

310

410

510

610

 [f
b]

σ Observed 95% CL
Expected 95% CL

σ 1±Expected 
σ 2±Expected 
=1)λTheory (LO, 

ATLAS

=0.4invR

-1 = 13 TeV, 139 fbs

1 1.5 2 2.5 3 3.5 4 4.5 5
 [TeV]Φm

10

210

310

410

510

610

 [f
b]

σ Observed 95% CL
Expected 95% CL

σ 1±Expected 
σ 2±Expected 
=1)λTheory (LO, 

ATLAS

=0.8invR

-1 = 13 TeV, 139 fbs



Results
Excellent agreement 
between data and 
background prediction


Limits on mediator mass 
separately for each 𝑅inv
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Session 1: 
Setting the Scene/Objects
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Poll

• A. Duh, during the Higgs boson discovery.


• B. Must be at Tevatron, say mid-2000’s, its always 
the Americans.


• C. Before I was born. Like way before that.

11

When was “Machine Learning” first used in 
(experimental) Particle Physics?
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When was “Machine Learning” first used in 
(experimental) Particle Physics?



Machine Learning: Prologue

Moore’s law: the number of 
transistors that can be 

packed into a given unit of 
space will roughly double 

every two years.

=


computing power tends to 
approximately double every 

two years
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But … 
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Digging Deeper …
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What you do/want to do?
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What we do/want to do
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Steps from a model/calculation to 
experimental (non) observation
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Searches: two broad 
(overlapping) categories …

19



Theoretical model driven 

• SUSY


• UED incl QBH


• Compositeness


• LRSM We can only 
exclude based on 
what our detectors 

see!

20



displaced	leptons,	
lepton-jets,	or	
lepton	pairs	

displaced	multitrack	
vertices	

multitrack	vertices	in	the	
muon	spectrometer	

meta-stable	charged	
particles	

trackless,		
low-EMF	jets	

emerging	jets	

non-pointing	
(converted)	photons	

disappearing	or		
kinked	tracks	

Phenomenological model/signature 
driven

• DM/WIMP: mono-everything


• Dark Photon


• Extended Higgs sector: 2HDM


• 4th generator quarks/top partners


• Leptoquarks


• Heavy W’ or Z’


• Diboson resonances


• LFV


• LLP

+ SIMP!
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Let’s start with an 
example:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-58/
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-58/


Search for:
Pair 

production of 
VLQs
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Question: what would we 
see in the detector?
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What you see is not what 
you have!

• We don't get what is coming out of the 
collisions.


• Finite lifetime of particles, decays before 
reaching the detector.


• Detectors have finite resolution, less than 
perfect response and efficiency.
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Decays: Detector Objects



Details
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From this:

Construct observables,

Signal and Control regions, 


estimate background…

30



From this:

Discover or set 
limits: When 

signature of a new 
model is not found, 

the model is 
excluded up to a 
certain parameter 

value

31

Presented in terms of 95% confidence level, which the associated probability of that observation

being correct 95% of the time. In other words, if the measurement is made repeatedly on independent 

datasets, the measured value will be obtained at least 95% of the time.



Components of a limit plot
• Expected line: from MC simulation (SM), usually 

using same luminosity as data. The 1 and 2 σ 
bands are from MC uncertainty. (Brazil plot!)


• Observed line: from data, actual number of events 
seen, with statistical uncertainties.  It is expected to 
stay within the expected bands if the simulation is 
accurate. 


• Theory line: calculated from new model, often with 
associated systematic uncertainties.
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Interpreting a limit plot
• As long as the expected and observed lines are below the 

theory prediction, the conclusion is no evidence of the new 
particle is seen. By this argument, the expected and 
observed limits are respectively 5.1 and 5.2 TeV, from 
where the theory prediction line intersects the expected 
and observed lines. If at any point, the observed line goes 
beyond the expected brazil-bands, that may indicate data 
contains more events than SM predicts. However, the 
threshold for an observation is 3σ  and a discovery is 5σ. 
Only in the region where observed is higher than the 
theory line, and beyond the statistically allowed deviations 
from expected, this particular new model can be 
confirmed.
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An Aside: Why Limits?

We all want to find new physics.


But out of 100 new physics models, at least 99 are wrong, 
possibly all 100 are!


So null results also tell us a lot.


And techniques/methods developed can help in a future 
discovery!

34
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Recap:

• Reconstruct objects from detector information


• Decide on sensitive observables for the specific 
final state we are interested in


• Estimate (SM) background


• Look for new physics/measure at particle level
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One collision == EVENT


Outcome of the collisions is probablistic, no exhaustive 
list of possibilities!


Cross section: how often a particular process occurs, 
measured as an effective area the target particle 

presents to projectile particles.


Actual number for a process:





Luminosity measured in units of 1/area




Objects from Collisions

Charged particles Electrons Photons

Muons Hadrons Neutrinos38



Missing (Transverse) 
Energy

• Do not interact with the detector


• Imbalance of pT 


• Can be signs of new physics as well!

Only invisible SM particles are the neutrinos. 
DM, SUSY particles have not been seen yet!

39



Jets

Strong interaction works 
like a rubber band!


No free quarks/gluons!


Collected in jets!

40



Jets

Jets are defined by how it is formed 
(algorithm), and the (cone) size/radius.

41
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Jet Making

• Defined by input objects, combination algorithm, 
and the radius.


• Usual algorithm in LHC experiments: anti-kt 
algorithm, which combines inputs in momentum-
space, starting with hardest inputs.


• Algorithms need to be theoretically robust!
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Calorimeter Objects
Calorimeter 

jet 
Bend track in 
magnetic field

neutral particles
charged particles

Energy in 
calorimeter
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ParticleFlow Objects
Bend track in 
magnetic field

ParticleFlow 
Jet

neutral particles
charged particles

Energy in 
calorimeter

45



IRC Safety

6=

Infrared safety

6=

Collinear safety46



Jet making

• Sequential recombination 
algorithms (momentum space): 
iteratively pairwise combination of 
the inputs till a minimum inter-jet 
distance is reached.

• Cone algorithms (coordinate 
space): Collect all inputs within a 
cone such that the cone axis is 
the vector sum of momenta in it.

Top Down

Bottom  U
p

47



Distance between two input objects Distance between each input object and beam

Intrinsic transverse momentum Fixed “radius” parameter

• Find the smallest of all {dij, diB} 


• If this is one of the dij values, inputs i and j are merged.


• If it is one of the diB values, ith input is considered a jet.


• Continue till all inputs are merged into jets.

Jet making
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Step 1
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Step 2

56



Step 3
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Irregularly shaped jets

Finished product!

Shape follow angular 
distribution of components

Almost circularly 
shaped jets

p=1

p=-1

p=0
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Searches

• Resonance searches: 
bumphunting


• Cut and count


• Excess of MET: DM


• Signal strength
Mass

(arbitrary units)

Cross-section
(arbitrary units)

SM background

BSM signal

59



Types of backgrounds

• Irreducible: same final state. SM ZZ for H to ZZ.


• Reducible: not the same final state, resulting from 
misreconstructed processes or misidentified 
objects. W(lnu)+jets for Z(ll)+jets.


• Combinatorial: random combination of objects 
looking like the signal. All hadronic ttbar.
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Signal and control regions
• We apply selection cuts on the objects and event topology 

to maximise signal and minimise background.


• However, when searching for a new physics signal, we do 
not want to bias ourselves. 


• So divide the events into signal region, where data is 
blinded when we fix analysis strategies, and control region 
by inverting one (or more signal cuts), where we can 
check data-MC agreement and estimate background 
contribution.


• Unblinded after cuts are optimised and fixed.
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SR and CR
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Data-MC agreement in CR

• What if simulation does not 
describe the data in CR?


• Modelling?


• Calibration/efficiency 
estimates wrong?


• Reweight :-(

Arbitrary variable

Fr
eq

ue
nc

y

Data

MC

Reweighting factor

1
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Estimate the backgrounds

• Anti-selection/inversion of cuts


• Side-bands/shape extraction by fit


• ABCD method


• … 

Data and/or 
simulation driven 

64



Sidebands

Estimate background

under a resonance peak


With or without fitting
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Sidebands

Estimate background

under a resonance peak


With or without fitting
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ABCD method
Two uncorrelated variables.

SignalSignal

cut

Signal

cut

Estimate by:

b.g in 

signal region
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Use of ML in object 
reconstruction
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Precursor: Multivariate 
analysis
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Precursor: Multivariate 
analysis
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Precursor: Multivariate 
analysis
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Precursor: Multivariate 
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Challenge:

Find the optimal decision boundary

in N-dimension!
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MVA

• N variables used in classification: feature variables


• Correlation reduces dimensionality


• N dimensional constant surface —> mapping to a 
single discriminating variable


• Actual cut on the variable, as before!
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Preprocessing

• Combine or transform the variables to bring out 
physical features —> called feature extraction


• Example: W-boson transverse mass, scaling by 
sqrt(s), 
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Machine Learning
• Algorithmically find this decision boundary based 

on data (without explicitly programmed)


• Learning: represent the data by an approximate 
functional form (whether or not such a form exists is 
immaterial) between input variables x and output 
variables y


• Use that predict behaviour of future similar datasets 
from xʹ to yʹ.
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But!
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Underfitting and 
Overfitting
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Back to the Objects
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Quiz

Why the (hadronic) decay of tau contain only 
odd number of charged particles tracks?
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• The challenge: discriminating non-tau jets


• Use a RNN


• Trained sep for 1/3 prongs using simulated samples

81

Example: ATLAS hadronic 
tau reconstruction
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Example: ATLAS hadronic 
tau reconstruction


