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Some comments:

2. 84, 36, 1019, 624, 15666, 12620,
264389, 269026, 4669553, 5740202, ...

Number of (real) SMEFT terms of dimension 5, 6, 7, 8, ...

B2 P RIS P Gl AR TR R L G A B B
2, 84, 30, 993, 560, 15456, 11962, 261485,.. .:
é Higher dimension operators in the SM EFT

Brian Henning,* Xiaochuan Lu,’ Tom Melia®? and Hitoshi Murayama®®¢

e e —— et b i st s T

B 204+ 5 | 895+ 15 | 895(36971), ny = 1(3)
B 19+3 | 98422 | 98(7836), ny = 1(3)
Total | 223 + 8 [ 993 + 37 | 993(44807), n, = 1(3)

Murphy basis has 1030>1019 terms

O
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2. 84, 36, 1019, 624, 15666, 12620,
264389, 269026, 4669553, 5740202, ...

I have provided bounds on these numbers in [RF 1907.12584]. But they are not quite correct.
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Operators, terms, types of operators

-
- T T T T T T T T T
& Dimension-Six Terms in the Standard Model Lagrangian* 10000000000} e 300062
[
= 1000000000}
w
— . ) . ) 100000000
—_ B. Grzadkowski', M. Iskrzyniski!, M. Misiak"? and J. Rosiek!
=
'C,l* ' Institute of Theoretical Physics, University of Warsaw, . 10000000 5474170
= Hoza 69, PL-00-681 Warsaw, Poland. &
g = 1000000
— 2 Institut fiir Theorelische Teilchenphysik, Karlsruhe Institute of Technology (KIT), %
rg D-76128 Karlsruhe, Germany. z 100000 - -
= 2
% = 10000}
=3
= S
1000

g Abstract =
o
. When the Standard Model is considered as an effective low-energy theory, higher dimensional 100 .
2 interaction terms appear in the Lagrangian. Dimension-six terms have been enumerated in the
>< classical article by Buchmiiller and Wyler [3]. Although redundance of some of those operators 10
E‘ has been already noted in the literature, no updated complete list has been published to date.

Here we perform their classification once again from the outset. Assuming baryon number 1k J

conservation, we find 15 + 19 + 25 = 59 independent operators |barring flavour structure and

Hermitian conjugations), as compared to 16 + 35 + 29 = 80 in Ref. [3]. The three summed 3 G 7 5 7 0 Y 12 13 vy 5

numbers refer to operators containing 0, 2 and 4 fermion fields. If the assumption of baryon

number conservation is relaxed, 4 new operators arise in the four-fermion sector. Mass dimension

[Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884] [Henning, Lu, Melia, Murayama 1512.03433|

Different authors call ” to different things:
does SMEFT at dimension 6 have 3045 real operators or 847
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Operators, terms, types of operators

In [RF 1907.12584] I suggested using the words
“operator”, “(Lagrangian) terms” and “type of operator/term” as follows

(LL)(LL)
Qu b)) | ) me(me 2 ofundn G |t & | Eyge o Wm (0702 Q)

1 -y —y L
i (@pYu9r) (G q1)

S @y ) @ q)
Q) (Ll ) (G qr)

/B
QE::} (E_p’}‘p‘r”r)(‘js’f”’rth) ) 2/VL’+ Wm %7 e tQ/umA % \ t>/1_¢, 06_, WML (9£9?>

Counting of operators with Hilbert series (ECO,...) or /
traditional methods (Sym2Int, BasisGen) works well

Counting of types of operators/terms is quite simple

[RF 1703.05221] [Criado 1901.03501] [RF 1907.12584]
[Marinissen, Rahn, Waalewijn 2004.09521]

Counting terms for is not trivial, although they might arguably be more

important to count than operators. E.g.: How many terms in SMEFT at dim 87

As far as I known, Sym2Int is the only program to count terms of an EFT

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 4



History of counting terms

Counting terms is not easy! , Take the QQQL-type of interactions (more on this later)
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History of counting terms

Counting terms is not easy! . Take the QQQL-type of interactions (more on this later)

Oa%ld = (FFoaz ITISA) (‘?gycLl:dL)e aBy€1i€rs 3)

Oi‘éia = @?aaf,qj abL)@fycthdL)E aBy

X GE)U . Ge)kl ) )

[Weinberg 1979] [Wilczek, Zee 1979]
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History of counting terms

i Counting terms is not easy! . Take the QQQL-type of interactions (more on this later)

Oa%ld = (FFoaz ITISA) (‘?gycLl:dL)e aBy€1i€rs 3)
ch‘éia = (afotanijL)(ékcycLlldL)EaB y

X Ge)u . Ge)kl ) )

[Weinberg 1979] [Wilczek, Zee 1979]

the operators being considered. The operators

0 and 0" can be written as the symmetric and
antisymmetric part (in the first two generation in-
dices) of a single operator. We therefore find it
most convenient to define an operator

dd(g:}d':(qulal.'?ﬂju NGy verlian Jew sy €€ sn (1.7)
and note that® _

Ogsea==(Oapea + Opaca (1.8)
and

Odsea=~(0gsea = Osiea) - (1.9)

With the relations (1.8) and (1.9) the effective
Hamiltonian for nucleon decay can be expressed
in terms of only four types of operators:

i) 2) ~ 4 5)
Oabu » Oabcd H O-bcd E] and Oucd .

[Abbott, Wise 1980]
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History of counting terms

| Counting terms is not easy! . Take the QQQL-type of interactions (more on this later)

05k = (@7 cary850) Tryorliar)€ as y€1i€nis 3) B-violating
0(4) 2(50 q EC 1 € . o
abed oL ijL)( kycL zca(i))asy(. | " de;f gaﬁ’ygjk [(d;)x)l C‘uf] [(q;y)i Clﬂ
X{T€)y; (T€) Yy, 4 T & T
Qaqu Eumgjk [(q;‘ ) C‘IE ] [(“Z) Cet]
[Weinberg 1979] [Wilczek, Zee 1979] ) eV 1emn [(¢9) Cqf*| [(g7™) ' CI}]
R (3) aBy( LY (] ai\T 1 Bk ym\T
the operators being considered. The operators 999 = (T S)Jk[T E)m” [(qp ) qu ] [(qff ) Oli]
0 taf and 0" can be v.:ritten as the symmetri.c ar?d Quuu caBy [(d“)TC'uE] [(u:{)TCet]
antisymmetric part (in the first two generation in- p ‘
dices) of a single operator. We therefore find it 4 . G R
most convenient to define an operator [Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884 — v1 2010]
dég:}d':(qulal.q{lju)(Qrkdllﬂ.kaﬂyeileﬂ (1.7)
and note that®
Ogsea==(Oapea + Opaca (1.8)
and
04:(:3:11: "'(63;3_6;:;1 . (1.9)

With the relations (1.8) and (1.9) the effective
Hamiltonian for nucleon decay can be expressed
in terms of only four types of operators:

i) 2) ~ 4 5)
Oabcd » Oubcﬂ H] O-bcd E] and Onbcd .

[Abbott, Wise 1980]
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History of counting terms

Counting terms is not easy! . Take the QQQL-type of interactions (more on this later)

08),= @fuanJBbL)@gycleL)e aBy€ii€rs @) B-violating
@) _(5C ~C m m
Ogbea (qiotanijL)(qk'ycLlld(i)jo‘.B y(. ) o de;: caBg ik [ du)l C'u’ﬁ] [(q;w)i (}lﬂ
X{T€)y; (T€) Yy, 4 m
Qaqu e, jk [(QGJ)IC ] [(UZ)IC%]

. . 1 T
[Weinberg 1979] [Wilczek, Zee 1979] ) eV 1emn [(¢9) Cqf*| [(g7™) ' CI}]
Tl et ol T i ey oty e (3) afdy (1. I aj\T Bk FymAT
the operators being considered. The operators 999 (T S)Jk[T €)mn [(qp )" Cqr ] [( ) Cl ]

0 and O can be written as the symmetric and aBy [(ge\T 1, B T
£ d®) Cu ul) Ce
antisymmetric part (in the first two generation in- Qau [( p) ’“] [( 2 t]
dices) of a single operator. We therefore find it 4 . G R
most convenient to define an operator [Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884 — v1 2010]
dégc}dz{qulal.quhf. Ny serliar Jeo sy €ii€ s (1.7)
6 . .
and note that B—vwl&tmg
0By= = (08 +0020) (1.8) . s
- abe abe ac Qduq Eu,(:hrg mn [ da}l C‘U,‘H] [(q;)u 1 (}lk]
(mﬁ'}* 0:3 Ty 'y T
Oasea=~(Ogpea = Oaca)- (1.9) Qgqu eik (7)) Caqp| [(u])" Cey
With the relations (1.8) and (1.9) the effective Quq eV jnerm [(¢27)TCP*] [(@a™) T Cl?]
Hamiltonian for nucleon decay can be expressed T 7
in terms of only four types of operators: Qdun gxBY [(dg‘) Cuf] [(u’,}’) Ce;}

Oubea > Oty Ogbla, and 030,
[Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884 — v3 2017]
[Abbott, Wise 1980]
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The numbers for SMEFT

Dimension # operators # terms # types of operators

* Kinetic terms were not 2 * 1 1 1
included in the counting 3 0 0 0

| 55} 7 7

D 12 2 2

6 3045 84 72

7 1542 36 32

8 44807 1025 to 1102 241

9 90456 628 to 852 296

10 2092441 15769 to 18345 2868

11 3472266 12726 to 19666 1898

12 THo77476 266031 to 343511 11942

13 175373592 266802 to 457898 9824

14 2795173575 4669533 to 6717444 43158

15 7507369962 5599846 to 10567408 42206

Renato Fonseca

[RF 1907.12584]

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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* Kinetic terms were not
included in the counting

Renato Fonseca

The numbers for SMEFT

Dimension # operators # terms # types of operators

2" 1 1 1

3 0 0 0

4 55 7 7

5 12 2 2

6 3045 84 72
7 1542 36 32
] 14807 1025 to 1102 ) 541
9 90456 628 to 852 206
10 2092441 15769 to 18345 2868
11 3472266 12726 to 19666 1898
12 TH5TTAT6 266031 to 343511 11942
13 175373592 266802 to 457898 0824
14 2795173575 | 4669533 to 6717444 43158
15 7557369962 &599846 to 10567408 ) 42206

[RF 1907.12584]

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...

6



The numbers for SMEFT

Dimension # operators # terms # types of operators
* Kinetic terms were not 2 * 1 1 1
included in the counting 3 0
4 55 I now think these are the correct
5 12 numbers which sometimes fall outside
6 3045 the ranges in [RF 1907.12584]
7 1542 U
8 44807 (1025 to 1102
9 90456 628 to 852
10 2092441 15769 to 18345
11 3472266 12726 to 19666
12 THH77476 266031 to 343511
13 175373592 266802 to 457898
14 2795173575 | 4669533 to 6717444
15 7557369962 ¥5599846 to 10567408

[RF 1907.12584]

[Murphy 2005.00059] has 1030 real terms, inside the range but in excess of 1019.

The extra terms might have been included due to the mistake in [RF 1907.12584]
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Dim 8 SMEFT: excess terms

Sym2Int code (delegates to GroupMath the group theory computations): [RF 2011.01764]

gaugeGroup [SM] ~= {SU3, SU2, Ul1};

fld1l = {"u", {3, 1, 2/3}, "R", "C", n};

fld2 = {"d", {3, 1, -1/3}, "R", "C", n};

£1d3 = {"Q", {3, 2, 1/6}, "L", "C", n};

L8 = {767, (1, 1, -3, "R, ", s Define the model (SMEFT)
f1d5 = {"L", {1, 2, -1/2}, "L", "C", n};

fld6 = {"H", {1, 2, 1/2}, "S", "C", 1};
fields[SM] ~= {fld1, f1d2, f1d3, flda, f1d5, f1d6};

savedResults = GenerateListOfCouplings [SM, MaxOrder - 8, Verbose - False];

resultsMod = Cases[savedResults, x_/; x[[3]] == 8];
resultsMod = Join[#, {Null, Null}] & /@resultsMod;
resultsMod[ [All, 10]] = Sort /@ (resultsMod[ [All, 2]] /. x_Infeger :»Which[x == @, "D", Abs[x] == 6, "H", Abs[x] <5, "y", Abs[x] < 10, "X"]);

resultsMod[ [All, 11]] = Total /@ (resultsMod[ [All, 2]] /. x_Integer = Sign[x] Which[@ < Abs[x] < 3, 1/3, True, 0]); Some code to parse and compi]e the

i results in a table
{Timesee #[[1, 10]], #[[1, 11]], #[[All, 6]].(#[[All, 4]] /. {True » 1, False -» 2}),
Simplify[#[[All, 5]].(#[[A11l, 4]] /. {True—> 1, False » 2})]} & /@ SortBy[GatherBy[resultsMod, #[[{10, 11}]] &], #[[1, {10, 11}]] &];
Grid[Prepend[data, {"Op Class™, "AB™, "Terms", "Operators"}], Frame -» All, FrameStyle - LightGray]

Renato Fonseca 2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669553, 5740202, ...



Sym2Int code (delegates to GroupMath the group theory computations):

gaugeGroup [SM] ~= {SU3, SU2, Ul1};

fld1 = {"u", {3, 1,
f1ld2 = {"d", {3, 1,
fld3 = {"Q", {3, 2,
fld4 = {"e", {1, 1,
f1d5 = {"L", {1, 2,
flde = {"H", {1, 2,

2/3}, "R", "C", n};
-1/3}, "R", "C", n};
1/6}, "L", "C", n};
-1}, "R", "C", n};
-1/2}, "L", "C", n};
1/2}, "s", “c*, 1};

Dim 8 SMEFT: excess terms

[RF 2011.01764]

fields[SM] ~= {fld1, f1d2, f1d3, flda, f1d5, f1d6};

savedResults = GenerateListOfCouplings [SM, MaxOrder - 8, Verbose - False];

resultsMod = Cases[savedResults, x_/; x[[3]] == 8];

resultsMod = Join[#, {Null, Null}] & /@resultsMod;

resultsMod[ [All, 10]] = Sort /@ (resultsMod[ [All, 2]] /. x_Infeger :»Which[x == @, "D", Abs[x] == 6, "H", Abs[x] <5, "y", Abs[x] < 10, "X"]);
resultsMod[ [All, 11]] = Total /@ (resultsMod[[All, 2]] /. x Integer :»Sign[x] Which[@ < Abs[x] <3, 1/3, True, 0]);

data =

{Timesee #[[1, 10]], #[[1, 11]], #[[All, 6]].(#[[All, 4]] /. {True » 1, False » 2}),
Simplify[#[[All, 5]].(#[[A11l, 4]] /. {True—> 1, False » 2})]} & /@ SortBy[GatherBy[resultsMod, #[[{10, 11}]] &], #[[1, {10, 11}]] &];
Grid[Prepend[data, {"Op Class™, "AB™, "Terms", "Operators"}], Frame -» All, FrameStyle - LightGray]

Renato Fonseca

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...

Op Class
x*
sz I.'fz
H2 X3
H X2 ey
Xyt
Xyt
D2 H? X2
D2 H X y?

D% H* X
D2 H3 5,2
DH* y?
HS 5,2
D% H*
D? HE
HS

AR Terms

[~ B < B < B R« TR o~ T R < B -~ B -~ B R < B < B < TR o T

[~ IR o B o= T o B« B o B o SR v

43
57
6
96
168
48
18
48
55

12
92
136
32
1@
22
75
18

Operators
43
57 n?
6
96 n?
An? (-1+4@n?)
2n® (1+21n)
18
48 n?
1 (n>+9 n4}
2
n®(-1+11n)
92 n?
n® (-1+135n)
n® (3+29n)
10
22n?

n? (7 +n+67n%)
S (2-9n+4307)
16 n?

6
36 n?

13 n?

6 n?

3
2
1



Sym2Int code (delegates tc

gaugeGroup [SM] ~= {SU3, SU2, Ul1};

fld1 = {"u", {3, 1, 2/3}, "R", "C", n};
fld2 = {"d", {3, 1, -1/3}, "R", "C", n};
fld3 = {"Q", {3, 2, 1/6}, "L", "C", n};
£1d4 = ("e", (1, 1, -1}, "R", "C", n};
f1d5 = {"L", {1, 2, -1/2}, "L", "C", n};
fld6 = {"H", {1, 2, 1/2}, "s", "C", 1};

fields[SM] ~= {fld1, fld2, f1d3, flda, f1d5, flc

savedResults = GenerateListOfCouplings [SM, Max

resultsMod = Cases [savedResults, x_/; x[[3]] :
resultsMod = Join[#, {Null, Null}] & /@ results|
resultsMod[ [All, 10]] = Sort /@ (resultsMod[ [A]
resultsMod[ [All, 11]] = Total /@ (resultsMod][ [/

data =
{Timesee #[[1, 10]], #[[1, 11]], #[[All, 6]
Simplify[#[[All, 5]].(#[[All, 4]] /. {Th
Grid[Prepend[data, {"Op Class™, "AB™, "Terms",

Renato Fonseca

Dim 8 SMEFT: excess terms

[Murphy 2005.00059]

# Class Niype Niorm Nop [10] Table(s)
1 X! 7 13 43 2 ons): [RF 2011.01764]
2 o 1 1 1 2
3 HSD? 1 2
4 D4 1 2
5 X312 3 6 6 3
6 x2pt 5 10 10 3
7 X2H2D? 4 18 18 3
8 XHAD? 2 6 6 3
9 P X2H 16 06 96n? 4
10 Pt X H* 8 22 22?1?‘ 5
11| 2H2p3 6 16 1602 5
12 2 HB 3 6 6n2 5
13 | *H'D 6 13 13n2 5
14 P2 XD 21 57T 5Tn2 6,7
15 | ¢2XII2D 16 92 92n2 T8 bs[x] 510, "X"]);
16 | Y2XHD? 8 18 18n2 ]
17 WEHAD? 3 36 36n7 9
18(B) S 19 75+ 1 n2(67n2 +n, +7) 10, 11
18(B) 443 | 1248 | in2(43a2 —9n, +2)
19(B) . 4045 | 156412 4n2(40n2 — 1) 12, 13, 14 B e SRR
19(8) va 4 44+ 12 2n3(21n, + 1) 15
20(12) GHD 16 134+ 2 n3(135n, — 1) 16, 17
20(R) 7 32 n3(29n, + 3) 17
21(R) SD? 18 55 Un2(9n? +1) 10, 18
21(1) 4 10+ 2 ni(llng — 1) 10
B 204+ 5 | 895 + 15 | 895(36971), n, = 1(3)
B 19+3 | 98+22 | 98(7836), n, = 1(3)
Total | 223+ 8 | 993 4 37 | 993(44807), n, = 1(3)

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...

Soil

Op Class
x*
sz I|'l'2
H2 X3
H XZ ey
Xyt
Xyt
D2 H? X2
D2 H X y?

D% H* X
D2 H3 1‘,;,2
DH* y?
HS 1‘,;,2
D% H*
D? HE
HS

AB - Terms Operators

8 43 43

@ 57 57 n?

0 6 6

@ 96 96 n?

@ 168 An? (-1+4@n?)
1 48 2n® (1+21n)
@ 18 18

@ 48 48 n?

@ 55 12—1 (n? +9n*
1 12 n®(-1+11n)
8 92 92 n?

8 136 n® (-1+135n)
1 32 n3 (3+29n)

9 10 10

e 22 22n? » the
@ 75 n? (7 +n+67n%)
1

[~ IR o B o= T o B« B o B o SR v

18 inz (2-9n+43n2)

16 16 n?
6 6
36 36 n?
13 13 n?
6 6n?
3 3
2 2
1 1



Sym2Int code (delegates tc

gaugeGroup [SM] ~= {SU3, SU2, Ul1};

fld1 = {"u", {3, 1, 2/3}, "R", "C", n};
fld2 = {"d", {3, 1, -1/3}, "R", "C", n};
fld3 = {"Q", {3, 2, 1/6}, "L", "C", n};
£1d4 = ("e", (1, 1, -1}, "R", "C", n};
f1d5 = {"L", {1, 2, -1/2}, "L", "C", n};
fld6 = {"H", {1, 2, 1/2}, "s", "C", 1};

fields[SM] ~= {fld1, fld2, f1d3, flda, f1d5, flc

savedResults = GenerateListOfCouplings [SM, Max

resultsMod = Cases [savedResults, x_/; x[[3]] :
resultsMod = Join[#, {Null, Null}] & /@ results|
resultsMod[ [All, 1@]] = Sort /@ (resultsMod[ [A]
resultsMod[ [All, 11]] = Total /@ (resultsMod][ [/

data =
{Timesee #[[1, 10]], #[[1, 11]], #[[All, 6]
Simplify[#[[All, 5]].(#[[All, 4]] /. {Th
Grid[Prepend[data, {"Op Class™, "AB™, "Terms",

Renato Fonseca

Dim 8 SMEFT: excess terms

[Murphy 2005.00059]

g Class Niype Niarm Nop [10] Table(s)

1 X! 7 13 43 2 ons): [RF 2011.01764]

2 HE 1 1 1 2

3 HSD? 1 2

4 HADA 1 2

5 X312 3 6 6 3

6 X2ZHA 5 10 10 3

7 X2H?D? 4 18 18 3

] XHAD? 2 6 6 3

9 P2 X2H 16 06 96n? 4

10 P2 X H? 8 22 22n2 5

11| 2H2p3 6 16 1602 5

12 2 HB 3 6 6n2 5

13 | *H'D 6 13 13n2 5

14 P2 XD 21 57T 5Tn2 6,7

r 2 2 . Y 32

15 = X1=D 16 92 02, 7,8 \bs[x] <10, "X"1);

16 | Y2XHD? 8 18 18n2 ]

17 WEHAD? 3 36 36n7 9
18(B) S 19 h + 1 n2(67n2 +n, +7) 10, 11
18 443 12+ 8 || in2(43n2 —9n, + 2

(B) (28] ani o, } #[[1, {16, 11}]] &];
19(B) X 4045 | 156 1 12 4n2(40n2 — 1) 12, 13, 14
19(B) ' 4 44+ 12 2n3(21n, + 1) 15
2 v B P KISE: .
20(1) GHD 16 134 +2 n3(135n, — 1) 16, 17
20(R) 7 32 n3(29n, + 3) 17
21(R) SD? 18 55 Un2(9n? +1) 10, 18
21(1) 4 10+ 2 ni(llng — 1) 10

B 204+ 5 | 895+ 15 | 895(36971), n, = 1(3)
B 19+3 | 98422 | 98(7836), n, = 1(3)
Total 223 + 8 | 993 + 37 | 093(44807), n, = 1(3)

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...

Soil

Op Class
x*
sz I|'l'2
H2 X3
H XZ ey
Xyt
Xyt
D2 H? X2
D2 H X y?

D% H* X
D2 H3 1‘,;,2
DH* y?
HS 1‘,;,2
D% H*
D? HE
HS

AB - Terms Operators

8 43 43

@ 57 57 n?

0 6 6

@ 96 96 n?

@ 168 An? (-1+4@n?)
1| 48 | 2n®(1:21n)
@ 18 18

@ 48 48 n?

@ 55 12—1 (n? +9n*
1 12 n®(-1+11n)
8 92 92 n?

8 136 n® (-1+135n)
1 32 n3 (3+29n)

9 10 10

e 22 22n? » the
0 n® (7 +n+67n%)
1 §n2f2 9n 43 n2)
@ 16 16 n?

0 6 6

B 36 36 n?

8 13 13 n?

0 6 6n?

0 3 3

0 2 2

0 1 1



Dim 8 SMEFT: excess terms

19(B) : v*X + h.c.

18 : (LL)(LL)H? 18(B) : ¥*H? + h.c.
(1) ANS (e v kB (Y A
7 7 1 o gy gy ke o 2ulr T4)2 €s5ape Corvgif)(ulCey )G,
Qs (1) Loyl () Qb Cafir i (d5.Cul) (¢ CIE) (H H) Gemac | (7 Dstioptula" o3 O Ci
7 7 2 o Qepuc (T)(Epyys€ir (@ CatP ) (ulCor e )Gy,
Qs (1) @y L) (7 ) Qi | €apnler)n(d3Cul) (@7 CLE) (HIT! H) e e ;
(1) . A + k qu2uw (-(rﬂ*}f(('r )jk(Q;;m(}gf‘vQ1-ﬂ)(Ju’gcel)Wm/
Quip2 (@7"9:) (@5 vuqe) (HTH) Qeqrun? €apr€ik(ay " Caqr’ ) (ulCey ) (HyY, H) ) o e
?2) I I (1) B P t (:Jazrr9 ulB ‘&ﬁ‘r(jk(‘{;.jaa C‘q'r A ) ("LECUPHB:)BIW
Qi (@7"4r) @7 @) (H 7' H) Qugs 12 Capremneik (050" (07 CL) (HH) Qpe | (TY)esapemnesn(gy=Car gif ) (g CIF)Gi,
(3) . 1 = i (2) I (e i B (ke t1 . ;
quﬂz (G 7" @r) (FsyuT Qt)(HiH) thi‘uz €apy (€T )mnejk{qp CqlP) (g CIF)(H T H) nggc (TA)((SaGﬁ)ananjk(q;,mCQﬁﬁ)(Qf7CU”"5§°)G£U
Qizgon> (b y"12) @ 7u0) (T 1) Qosanz | Copy(@Cul)Ce)(HH) Ay | coprler mmeielgpCalP g Cam )W,
3 T 1 n T g g Tn
Q}E;:;H'z UP’)A‘TI":!')(QSW;AQJ(‘rrrTf”r) ng:l_u:! Ea,ﬂ'yemn(ETI)jk{qP qu’"s)(qg’}.czt )(H*TIH) QS'::W (nﬁar((.Tf)mj(.kn(q;’naca'r (ﬁﬂ)(qf‘fcﬁl)W‘jv
Qi(i);z 2 Ly T ) (" ae) (H T H) Qup2 112 €apr€ikemn (OGN (uf Cuy ) TEIT™ Qs €apremn€ik(dy*Caql’ ) (g5 Cor17) By,
= H 1 i} ¥ L
Qf;lium (Lpy*1-) (@' @) (H T H) Qugaz 2 Eapry€ikemn (g ) (diCd] ) H* ™ Qe (T)es0p(dy Corull) (ul Ce )G,
_ ) o (2) AN, facee e B v A
Qs | X 1) @) (H YK ) Quparrs | €omesiemn(en?) @2 Car M HAH" o |
*************************** (3 AVE PP v, Y3 A
2 g 1 (’ T d;’c G L
Qij)uz 17K (1! 4,) (qs et qo) (5 H) Qeurac (T2 € pyya(ug Cul ) (dICot e, )G
QChun €apy(dyCorull)(u) Cer) By
o) R
e . 2 complex QQQLH*H Qeutan | Capy( Co ) (B Ce) B
3 Q*Q*QQH*™H terms suffice terms suffice 0 | om e el Ca ) a2 Comven W,
Qf?r; wB €afy ij(qgﬂ C(ﬂwq'fﬂcﬁ) (“gcet) B;w
Qe | (TN ep)ysemnein (g Cor” i) (g CIGA,
Qi | (TN esapemnein(grCai?) (g Cor 1?)G,
Q2w | Capyemnler!)j(goCaif) (@ Co )W),
This is JllSt a countlng exercise: less terms are pOSSlble 1n QA5 Capremntik(@)*Cor @P) (g5 CIP) By,

these cases. It does not serve as a full check of the validity
of this Lagrangian.

2 complex QQQLG terms suffice

2 complex QQQLW terms suffice
1 complex QQQLB terms suffice
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Repeated fields is a complication

When all fields are different

Simple: there must be 1 term for every independent contraction of the Lorentz and gauge indices

For example, L*LQ*Q: 4 B
- 1 way to contract the Lorentz indices (IpVulr) (@s7" )

- 2 ways to contract the SU(2) indices of 4 doublets (Ipvutl,) (@71 q:)
- 1 way to make the color contractions

When some fields are repeated

For example, L*L*LL: Loy uls) (L™ 1y)
- 1 way to contract the Lorentz indices i i T, :
- 2 ways to contract the SU(2) indices of 4 doublets (LpYut br) Ly 7 1)

We must start thinking about the effect of permutating same fields
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Repeated fields is a complication

When all fields are different

Simple: there must be 1 term for every independent contraction of the Lorentz and gauge indices

For example, L*LQ*Q: 4 B
- 1 way to contract the Lorentz indices (IpVulr) (@s7" )

- 2 ways to contract the SU(2) indices of 4 doublets (Ipvutl,) (@71 q:)
- 1 way to make the color contractions

When some fields are repeated

For example, L*L*LL: Loy uls) (L™ 1y)

- 1 way to contract the Lorentz indices 5 I T, Not part of the
- 2 ways to contract the SU(2) indices of 4 doublets (IpYut 1 t Warsaw basis

We must start thinking about the effect of permutating same fields
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[more details: Wu-Ki Tung]

Tensors with symmetries

Let’s call |21%2 « « + 2) = |¢1) * |22) * - * |2n) to the basis of the tensor space V., X V,, X ++- X V,,,

e

We can perform a linear transformation U of some group G each copy V,, :
[61) « |32) » « - [in) = UjiiaUjpiy » + * Ujin|91) + 192) ++ + |dn)

Vm is an m-dimensional
vector space

We can also permute the V,, :

|i1> Y IZ2> il g |"/n> g Iiﬂ‘_l(l)> i |7:7r—1(2)> pps Iifr—l(n)>

These two transformations commute. Consequence:

(Vi)™ decomposes into irreducible representation of G x S,, (not just of G)

Under exchange
of the 2’s

Under exchange

2X2X3=98g+1g+3s+ 34 / of the 3’s

SU(2) 2X2X3X3="T55+2(3ss)+3sa+344+5ss+554+545+ 1sa+ las
examples:
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[more details: Wu-Ki Tung]

Tensors with symmetries

Let’s call |21%2 « « + 2) = |¢1) * |22) * - * |2n) to the basis of the tensor space V., X V,, X ++- X V,,,

e

We can perform a linear transformation U of some group G each copy V,, :
[61) « |32) » « - [in) = UjiiaUjpiy » + * Ujin|91) + 192) ++ + |dn)

Vm is an m-dimensional
vector space

We can also permute the V,, :

|i1> Y IZ2> il g |"/n> g Iiﬂ‘_l(l)> i |7:7r—1(2)> pps Iifr—l(n)>

These two transformations commute. Consequence:

(Vi)™ decomposes into irreducible representation of G x S,, (not just of G)

Under exchange
of the 2’s

Under exchange

2X2X3=98g+1g+3s+ 34 / of the 3’s
bU(2) 2X2X3%X3=755+2(3ss)+354+344+5s5+554+54as+ 154+ 1las
examples:
7 i b i TR Sh e
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[more details: Wu-Ki Tung]

Tensors with symmetries

Let’s call |21%2 « « + 2) = |¢1) * |22) * - * |2n) to the basis of the tensor space V., X V,, X ++- X V,,,

e

We can perform a linear transformation U of some group G each copy V,, :
|41) - [22) =+ - |in) = Uji4, Uiy » < Uji [91) - 1d2) *  * |dn)

Vm is an m-dimensional
vector space

We can also permute the V,, :

|7:1> Y |?’2> e |7’ﬂ> e Iiﬂ_1(1)> i liw—1(2)> ppes Iifr—l(n)>

These two transformations commute. Consequence:

(Vi)™ decomposes into irreducible representation of G x S,, (not just of G)

Under exchange
of the 2’s

Under exchange

2X2X3=98g+1g+3s+ 34 / of the 3’s
sU(2) 2X2X3X3=755+2(3ss) +3sa+3aa—+5ss+554+bas+ 1sa+ 1las

examples:
2X2X2X2=0gp+ SEFE' i 1EE| ' Group is S4. It has irreps which are no longer just A or S.
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[more details: Wu-Ki Tung]

Tensors with symmetries

Let’s call |21%2 « « + 2) = |¢1) * |22) * - * |2n) to the basis of the tensor space V., X V,, X ++- X V,,,

e

We can perform a linear transformation U of some group G each copy V,, :
[61) « |32) » « - [in) = UjiiaUjpiy » + * Ujin|91) + 192) ++ + |dn)

Vm is an m-dimensional
vector space

We can also permute the V,,, :

|7:1> Y |7’2> e |7’ﬂ> e |7:1'r—1(1)> i liw—1(2)> ppes Iifr—l(n)>

These two transformations commute. Consequence:

(Vi)™ decomposes into irreducible representation of G x S,, (not just of G)

Under exchange
of the 2’s

Under exchange

2X2X3=98g+1g+3s+ 34 / of the 3’s
sU(2) 2X2X3X3=755+2(3ss) +3sa+3aa—+5ss+554+bas+ 1sa+ 1las

examples:
2X2X2X2=0gp+ SH:EI i 1EE| ' Group is S4. It has irreps which are no longer just A or S.

Q\ 5+3+34+3+1+4+1 if we remove the S, information

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... ihe



ofololo

Four SU(2) doublets

It is quite clear from here that 0 contractions
are possible if all doublets are equal

Let us build the two contractions explicitly, ) = €ij€kl ¢i¢; qb;c' E”

assuming that we have 4 distinct doublets @ = e i1 qb; (Jbg ;n

Any of the m! permutation of m can be generated from two
permutations: 1 -2 —wland 1 -2 -3 —> .- —>m — 1

(@), ~(51) ()
c® D> e c® The effect of any other permutation can be
o) iy G s | (D) obtained from products of these two matrices
c® ) o' — L0 —-1) \ @
¢'”—>¢”’—>¢P

The two matrices above cannot be simultaneously diagonalized.

Therefore ¢ and ¢(* form a 2-dimensional irreducible representation of Sy

Compare this to the completely symmetric (S) and anti-symmetric (A) representations, which are 1-
dimensional: it all boils down to a +/- sign. But as we see here in general things get more complicated

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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The permutation group of n objects (S,,)

Elements

Generators

Representations

One can also write
these representations
explicitly
(in some basis)

Renato Fonseca

It has n! elements: {1,2,::: ,n} — {w(1),7(2),--- ,7w(n)}

As you know, they can also be represented with cycle notation ()()()...
E.g.: (142)(35) is the same as {1,2,3,4,5} — {4,1,5,2,3}

[Extremely useful info
All elements can be generated from just two: (12)(3)---(n) and (123--- n) in some calculations]

The irreducible representations of Sn can be labelled with partitions A of n. For n=4:

(ay=[T1T1] uy=[111 {22} = {2,1,1y =L "] 1,1,1,1} =
o | (:0

W
~

R

V3
2
e e L0 etc...
6
V2

Above I’'m just showing the matrices for the two generators: (12) (3)(4) and (123 4)

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Renato Fonseca

d(\) and S (A, n)

= Number of standard Young tableaux with a given shape

d(A)
i el 214 3|4
But it is quicker to use () m.
the following formula: [,k (w)
h(u) : = d({3,1}) =

Sd (31 =3

h(u) = Hook length of cell u

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Renato Fonseca

d(\) and S (A, n)

Number of semi- Semi simple Young tableaux = tableaux filled with the numbers
simple Young 1 to some n (omissions/repetitions allowed) such that the
tableaux numbers increase along columns and do no decrease along rows

d A ¢ 11 11 1|2 5 2|2
) ’ ’ ’ ’ = 5({2,2},3) =6
23 3|3 213 3|3 3|3
Quick formula: S (\,n) = H w4 cla) c(u) = Content of cell u
] B R s T %
0|12 1) 2
s e,

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Back to fields and operators

Let’s consider uude-type: how many terms are needed?

If we consider all types of indices (spinor, color, SU(2)) we arrive at the conclusion that
there are two contraction which are Lorentz and gauge invariant

What do we find in the

B T B T
Warsaw basis? St {(d;‘) Cur} [(ug) Cet]

For L*L*LL-type operators we saw that there are two contractions too (of the SU(2) indices) ...

... but only one term in i o
the Warsaw basis (LpYuulr) (Tav"Le) -

confused looking penguin, lots of question mark symbols,

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Back to fields and operators

Consider the simplified case where are two contractions and just two flavor indices (i,j):
e S AT A
- £ A S S A A
We could write a Lagrangian with two terms: w;; Oz-j T W Oz-j
The w® and w* can be arbitrary matrices, but only their symmetric (w®) and anti-symmetric (w*) parts matter.
This is generic: the symmetry of the field contractions is propagated to the Wilson coefficients.

Define O;; = cS ij —- CAO;;‘- with any non-zero c-coefficients

But why not just 1 term?

Then w;;O;; with a generic Wilson coefficient matrix encoded the two previous terms

For two repeated fields, this is it: we can merge S+A terms, not S+S nor A+A.

Operator Dim Self Number of Number of Repeated Permutation " Operator . Self Number of Number of Repeated Permutation

im.
type conj.? operators )EEHE\ fields type conj.? operators ;‘K fields

46 wuwude 6 False n# < 1 > u 24 L+« L+ L L 6 True %(n2+nqu{L*, L}

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 17




More complex situations

For two repeated fields (S, symmetry) we have the full picture.
With m+m’ contractions, m symmetric and m’ anti-symmetric, ...

ml | ]+ m/ H — max(m,m’) terms in the Lagragian

From here we can appreciate that it is important to track the permutation symmetry of the gauge/Lorentz index
contractions, not just to know that the Wilson coefficients (WC) might have some symmetry but even to decide how
many WC (i.e. terms) one needs in the Lagrangian

What happens for more complex symmetry groups (S, S...)

which appear when there are 3 or more fields of the same type?

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...



Take a quartic coupling between doublets with flavor. Recall that so there are two contraction we a mixed symmetry:

Renato Fonseca

More complex situations

2><2><2><2=5DE—|—3

One can show (I will not to it here) that only 1 term is needed for the two SU(2) invariant contractions.

If (153) 1and (1EE|) are the two linearly independent singlet contractions
2

then it is enough to consider a non-zero linear combination of the two:

o (1), + (1m),

ci1 #0 or c2 #0

Valid more broadly: for any irreducible representation of the

permutation group only one term is needed

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Most general case

One can compress into a single term a combination of several

irreps A, as long as the multiplicity of A\ does not excess d()

[RF 1907.12584]

For example, up to 6=3! invariants with the following symmetries can be accounted for with a single term:

1 [[[] + 2 +1@

A single linear combination
1 2 (1*’ ) 1
ol + CEF' ) hE CB O

of the 6 Clebsch-Gordan contractions suffices, as long as
AREAEND
ijecaadet (ngl (Ejz) 7 0
T

Up to two copies of the mixed symmetry irrep can be

placed in a single term, as long as they are not “aligned”

Renato Fonseca 2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669553, 5740202, ... 20



Most general case (one more example)

One more example, just to make it clear. Consider the quartic interactions of some field ¢; with
flavor (that’s the i).

It has some gauge quantum numbers and maybe transforms non-trivially under the Lorentz
group. We seek invariants under both groups to build the most general Lagrangian:

wgﬁ,z (¢i¢j¢k¢1)(1) ar wg:)c; (¢i¢j¢k¢:‘,)(2) T

How far can we compact this expression? We must see how the gauge/Lorentz

contractions transform under S,

mi [TT1] + mafr— + maflr + ma[[ 4 ms

Round up to the nearest integer

Minimum number of terms: Denominators are the size of the irreps

The (qbiqugbkqbg)(n) can be combined in these many terms (no less; no more are needed).
As in the last slide, this combination must avoid the 0-measure cases where there are ‘“alignments”.

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Renato Fonseca

A troublemaker over the last decades
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Renato Fonseca

A troublemaker over the last decades

QR L
SU(3)e u 0
SU(Q)L F l [
SU(?); n l L]
SU(2), O O
Grassmann @ O
r1 2 2 5
lotal symmetry B X H Rl e B 5 5 ] '—i—a O =0
Operator Di Self Number of Number of Repeated Permutation
type e conj.? operators terms fields symmetry
49 QQQL 6 False i (n? +2n%) 1 Q H+ l+ T

)
(\)
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Renato Fonseca

A troublemaker over the last decades

QR L
SU(3)e u 0
SU(Q)L F l [
SU(?),{ n l L]
SU(2), O O
Grassmann @ O
2 2
Total symmetry B X i ks EIAEE
Operator Di Self Number of Number of Repeated Permutation
type e conj.? operators terms fields symmetry

49 QQQL 6  False I (n2:2n%) Q Q
S )

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Renato Fonseca

A troublemaker over the last decades

QR L
SU(3)e u 0
SU(Q)L F l ]
SU(Q); H l O]
SELL2T O
Grassmann O
)
Total symmetry H X EIAEE
Operator ) Self Number of Number of Repeated Permutation
type e conj.? operators terms fields symmetry

49 0Q0QQL 6  False

o=

{n2+2n4) Q Q

Computation becomes straightforward.

Does not say what exact form to use; only that a single term is needed

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 20



Renato Fonseca

QQQQQQLL & QQQQQQQQQLLL

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...

Sphaleron
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Renato Fonseca

QQQQQQLL & QQQQQQQQQLLL

Sphaleron

Operator D Self Number of Number of Repeated
im.
type conj.? operators terms fields

Permutation

symmetry

1 eQ0QQ@QQLL 12 False 4818 {Q, L}

5 x 14 x 14 = 980 independent contractions of gauge/spinor

quantum numbers. But we need only 2 terms. Only possible
because fields are repeated in this interaction.

B Bl el
«a {3, B}-s {1, B}+6 {@ ) +1e {HH
s

s B}+1B{_

nny B}*g{EEB’ B}

- [:D}+4

T, m}+10 ([{HP. m} +2 (. m)+2 (mmme my

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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e
QRQQQQLL & QQQQAQQQQQLLL

Operator Dim Self Number of Number of Repeated Permutation
type ) conj.? operators terms fields symmetry
1 QQQQQQLL 12 False 4818 {Q, L} {ﬁ B}*M{——: ] B}_'_ia{_TI]J B}*g{EEB’ )
, . . 4] , s (D, 5{ I 19{ H, }4
5 x 14 x 14 = 980 independent contractions of gauge/spinor . "EH:D B}+ 1 B}+ @ g -y
quantum numbers. But we need only 2 terms. Only possible { I } ; r
o . e » mf 2 [, m}+2 (oaom. m!
because fields are repeated in this interaction. C 1EEII] -2 ]
. Operator Di Self Number of Number of Repeated Permutation
im.
type conj.? operators terms fields symmetry

+47 {:_}””, B}:m{: UL, B}ﬂg {Eﬂ ﬁ}+25 =, B}

1 00QQQQQQQLLL 18 False 162774 (Q, L} 27{ ’B}+BB{ :]’B}+53{-:II]’B}+42{_”LB}*”{_””’B}
{

132 x 132 x 42 = 731808 (!) independent contractions

us H, EP}+?9 {: Lo E|3}+56{_ HH, }+139
(™. EP}+?3{:_:””, E|3}+21{: L e (P B
33 {FFEFE. [} -20 (FEFEEIE, ) -s {FECEID, £ a2

{ ] [:E[]}Hfi{ H, EII]}+25{_: , [:ED}+1B{ HH., EII]}

, D:D}_:z,l{_JTIH' [:l;:]}"'?{_ I[]Ii]j [:l:l:]]‘

-8 {HHP. oo} -11 D, o) -s {0, an) -2

Y, oo} + { oo P+ (oo, oo

+33 {
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e
QRQQQQLL & QQQQAQQQQQLLL

Operator Dim Self Number of Number of Repeated Permutation
type ) conj.? operators terms fields symmetry
1 QQQQQQLL 12 False 4818 {Q, L} {ﬁ B}*M{——: ] B}_'_ia{_TI]J B}*g{EEB’ )
, . . 4] , s (D, 5{ I 19{ H, }4
5 x 14 x 14 = 980 independent contractions of gauge/spinor . "EH:D B}+ 1 B}+ @ g -y
quantum numbers. But we need only 2 terms. Only possible { I } ; r
o . e » mf 2 [, m}+2 (oaom. m!
because fields are repeated in this interaction. C 1EEII] -2 ]
. Operator Di Self Number of Number of Repeated Permutation
im.
type conj.? operators terms fields symmetry

+47 {:_}””, B}:m{: UL, B}ﬂg {EHEEP ﬁ}+25 =, B}

1 00QQQQQQQLLL 18 False 162774 (Q, L} 27{ ’B}+BB{ :]’B}+53{-:II]’B}+42{_IH’B}*”{_””’B}
{

132 x 132 x 42 = 731808 (!) independent contractions

- P, E}]}"?g {: tH, EP}+55{_ HH. }+199
{ :: I]JI B:]}+?3{:JTI IlJI H:]}+21{: [TTT IlJI B:]}+3B-{HHEH:]J EF]]
+33 {HHHH, HF}+2e {(FHD, )+ (O, HH}+a2

|l

n=3 generations was used (observed that . . .
Young tableaux have at most 3 rows) { i DI}+ {__ e [333}* {—: - DI}* { EEE DI}

, DI}+21{_JTII1' [:l;:]}"'?{_ I[]Ii]j [:l:l:]]‘

-8 {HHP. oo} -11 D, o) -s {0, an) -2

Y, oo} + { oo P+ (oo, oo

+33 {

Changing n can affect the number of terms

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 23



QQQQQQQQQLLL (for n flavors)

Operator . self Mu b er of Mu mb er of Repeated
i Dim

type " conj.? ors rms fields

Permutatio
Wlmtr:-r

- 96n7 4242 nf| 2

1 000QQ0QQQQLLL 18 False - n*(472-168n+181n*-84n+96n*-12n%+89n¢
¥l ]

In this example, even in the most
conservative scenario where n is left

unspecified (i.e. n could be arbitrarily large)
the answer stays the same)

E 9 Eﬂ g -ae| E g 2e] EI )2 ? m[gj, a}+26[gljj,a}+19[$, g}m@:, a}és[?,ﬁ}ma

?ﬂa 28] - 1+42 E:‘ EH%F ﬁ\\+192 @II 514925553 E\WSEEE §1+25Em §1+2?
(R ) [ B e ) B o (B o B e o

+25 | D, a}m,[:_u 10, ﬁf*“[U"""“ aa[m a}m[g, ms) +29{§, EP:‘*“[EI“ [P} 33

O R O

SEE:‘HJIIEFB: 144@3:‘5:‘ 144?38:‘ 124?:D:‘B:| BEE:D:EDB:‘ ZS@B:‘ +116
(. B 7o {H ) ose {EEED, P} eaeo {HEEF, P} 72 {HFS, @b (0 B2 (R P

+33 |, B} +20 | D, 1) <8 (PO, ) @ B @ ans) [E: m:}ﬁ[ga o) [EI assy

#11 [?, |:|:|:| +21[E:, |:|:|:| +12[§ED, |:|:|:| +s{§, |:|:|:| 33 [?, |:|:|:| 125 [Ea, |I|:| +38[?::J |I|:| 12

" cmj s f coo) oo (B, com o [, con) oo (P e oo (0, ccm o [0 e

{@ o) +34 [@:‘ m=s] +25[§ID, m=s] +1S{EEEEL o) +33 {QEEI‘ o) 1 {QEFID ) o7 a:l:\::l:\:v o)
8 | R, om)} +11 {0, oo} +6 |0, oo} +2 {0, o) + | Pt ===

(QRQLY' -1 (QQQL)> -2  (QQQL)> -2

Renato Fonseca

(QRQRL)* -3  (QQQRL)° -3  (QQQL)° — 4
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Field redefinitions

To include derivatives, one must apply them in all possible ways to the fields.

For every field X = ¢, v, F,, add a tower of fields
X ,8%X, ... which are independent of X

These objects (8™ X ) are not irreducible representations of the Lorentz group. But after (1) symmetrizing the
derivatives (2) using field redefinitions/EOMs and (3) Bianchi identities they are

Retain only the highest spin part of "X [Lehman Martin 1510.00372]

To be specific, consider a scalar ¢, a left Weyl fermion ¥
and a field strength tensor F’

(=]

(;b (0 ) mn mn n .
p = (1’ 0) gy == (2, 5) + EOM-redundant bits
b g (i 0) ' it T ('"’ L %) + EOM-redundant bits
2y 2
oy (%, %) O = (—”’—23:—2-, "—;’—) + EOM-redundant bits
(Jr.JR) Recall that the Lorentz group ~ SU(2) X SU(2)

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Total derivatives

Integration by parts For some operators, f Od*z =0
M

In the language of differential forms, these redundant operators are associated
exact to exact differential forms / (by assumption)

Bttt / MORT :/ G e
M Boundary (M)

we need to be careful: for some 3-forms, dw(®) ™4 = 0
and we shouldn’t consider them because dd=0, so these
account for identically null 4-forms

[Henning, Lu, Melia,
Murayama 1512.03433]

We have a recursive process, which

. i 4 (8),red _ (2)
Which are these 3-forms? = dw SRde T ek e arel Dotors

Translation into language of operators:

The total number of non-redundant operators up to dimension d is:

(posnss) — (posinss-) 1 (potrss=)  (pofins™™") + (#ofnst")

K, v, p,0 are Lorentz completely anti-symmetrized indices

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...



Total derivatives

Performing the computation in the previous slide is fine
(we just have to count also operators which are not Lorentz invariants)

Add a dummy field D, with the quantum numbers of a derivative but which is a Grassman field
Alternative 4 : :
> (—1)F (#O%mSd with i D's)

1=0

Example for a scalar singlet S (8%S* interactions)

#D’s Operator type Symmetry of the fields (5,95, 925)
S5 045075 (O, —, )
0 S (9S) (0S) (0%9) (O, o, O)
(85) (85) (85) (85) (=, T, =) + (=, 05, ) + (—E -)
DS Sas (0o, 0, O)
DS(85)(0S)(0S) oo -)+oH )+ -)
9 DDSS(AS) (9S) GiEEEL
3 DDDSSS (0S) (FELE Fies)

4 DDDDSSSS T SR




Alternative

Total derivatives

Performing the computation in the previous slide is fine
(we just have to count also operators which are not Lorentz invariants)

4

Add a dummy field D, with the quantum numbers of a derivative but which is a Grassman field

> (—1)F (#O%mSd with i D's)

1=0

Add

Renato Fonseca

Example for a scalar singlet S (9*S* interactions)

The list of operators

to include

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...

#D’s Operator type Symmetry of the fields (5,95, 925)
S5 045075 (O, —, )
0 S (9S) (0S) (0%9) (O, o, O)
(95)(05) (95) (08) (~,om, =) + (- -) + (- -)
b eRleni G e (o, 0, 0)
DS(85)(0S)(0S) oo -)+oH )+ -)
9 DDSS (89) (8S) 2R o)
3 DDDSSS (0S) (0,0, —)
4 DDDDSSSS GEEmE

(V)
=



Total derivatives

Performing the computation in the previous slide is fine
(we just have to count also operators which are not Lorentz invariants)

Add a dummy field D, with the quantum numbers of a derivative but which is a Grassman field
Alternative 4

Yo ) (#odimﬁd with 4 'D’s)

Example for a scalar singlet S (9*S* interactions)

Operator type Symmetry of the fields (5,95, 925)
S5 045075 (O, —, )
e The l:;s; 1(r)1fc ;E)de(:'ators S (05) (0S) (0*9) (O,m,0)
(95)(05) (95) (08) (~,om, =) + (- -) + (- -)
= T D55 (05) (9%) @00
derivatives DS(85)(0S)(0S) oo -)+oH )+ -)
DDSS (9S) (9S) 2(@o,H )
3 DDDSSS (0S) (0,0, —)
4 DDDDSSSS e

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 2.



Alternative

Total derivatives

Performing the computation in the previous slide is fine
(we just have to count also operators which are not Lorentz invariants)

Add a dummy field D, with the quantum numbers of a derivative but which is a Grassman field
4

Y1)’ (#od*’mid with i 'D's)

Add

Remove

Add

Renato Fonseca

Example for a scalar singlet S (9*S* interactions)

Operator type Symmetry of the fields (5,95, 925)
S5 (9°8) (9°5) (o, —,m)
The list of operators S (9S) (0S) (0%9) (O, o, 0)
to include
(95)(05) (95) (08) (~,om, =) + (- -) + (- -)
Remove total D55 (88) (828) (EI:I, L, D)
derivatives DS (05) (0S) (09) (O, I, —)+(0, -, —)—{—(IZ[, H, —)
(eredundanties of regundancios”) DDSS (05) (05) 2 (.4, -)
DDDSSS (0S) (o, 0, —)
4 DDDDSSSS i
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Total derivatives

Performing the computation in the previous slide is fine
(we just have to count also operators which are not Lorentz invariants)

Add a dummy field D, with the quantum numbers of a derivative but which is a Grassman field
Alternative 4

Yo ) (#od*’mid with 4 D's)

Example for a scalar singlet S (9*S* interactions)

Operator type Symmetry of the fields (5,95, 925)
SS(9°5) (0°5) (o, —, )
P The list of operators S @SS a5 (O,m,0)
to include
(95)(05) (95) (08) (~,om, =) + (- -) + (- -)
Rétove Remove total DSS (95) (9°5) (0,00
derivatives DS (05) (0S) (09) (O, I, —)+(0, -, —)—{—(D, H, —)
Add  eredundancion of redundancien’) DDSS (95) (05) 2 -)
Remove “Redundall‘;c(ilelzlsn gi Il;sidel;f,ldancies of DDD S S S ( 8 S ) (D:D, D, _)
DDDDSSSS (CEEE, =5 —)

Renato Fonseca 2, 84, 36, 1019, 624, 15666, 12620, 26389, 269026, 4669553, 5740202, ... 27



Total derivatives

Performing the computation in the previous slide is fine
(we just have to count also operators which are not Lorentz invariants)

Add a dummy field D, with the quantum numbers of a derivative but which is a Grassman field

Alternative 4

Add

Remove

Add

Remove

Add

Renato Fonseca

Yo ) (#od*’mid with 4 'D's)

1=0

Example for a scalar singlet S (9*S* interactions)

#D’s Operator type Symmetry of the fields (5,95, 925)
S5 (9°8) (9°5) (S S
The list of operators 0 S (0S) (0S) (0%9) (O, 1, )
to include
(95)(05) (95) (08) (~,om, =) + (- -) + (- -)
Remove total D55 (99) (828) (.00
s DS (9S) (8S) (8S) ooo-)+o . -)+(oH -)
=M >  DDSS (05) (05) (@ )
“Redundall‘;c(ilelzlsn gi rrlsidel;f,ldancies of 3 DDD S S S ( a S ) (D:D, O, _)
pivmetivurustlll 1  DDDDSSSS (-, -)

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Total derivatives

Performing the computation in the previous slide is fine
(we just have to count also operators which are not Lorentz invariants)

Add a dummy field D, with the quantum numbers of a derivative but which is a Grassman field
4

S (#od*’mid with 4 D's)

1=0

Alternative

Does not even refer to a
common group; spoil the
algorithm to count terms

Example for a scalar singlet S (9*S* intera

Operator type Symmetry o 0 o)
| | S5 045075
The list of operators | S (0S) (0S) (0%S)
e | to include
(0S) (05) (9S) (09)
Rerhiia | Remove total DSS (95) (9°5)
| derivatives | DS (05) (0S) (09)
Add | (rodundancies of redundatcies”) DDSS (95) (95)
Remove “Redunda;c(i;sn gf;l :l(e;i(i:’r’ldancies of DDD S S S ( a S )
Add | redundancies of redundancies” DDDDSSSS

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Use Littlewood—Richardson rule

A 2-index tensor with no symmetry can still be seen as a mixture of
parts with an S, symmetry: a symmetric and an anti-symmetric part

Cix[l = 1+ H

The same logic applies to more complicated situations. E.g.: SS (32 S) (82 S) (o, —, )
EEEY [TTL0+ o+
e e N _/
Sz X Sz S &
-
#D’s Operator type Symmetry of the fields (S, dS, 529)
S5 (925) (6°5) (o, —,m)
0 S (0S) (0S) (9%9) (O,m,0)
(@503} (OSYIaS) i (e e Bl e e oy 2t iti
< E ) I:I:l:lj i after all addlt.lons
DSS (9S) (628) (|:|:| 0,0) and subtractions
DS(99)(09)(0S)  (@mm-)+GH -)+(@H-)
2 DDSS(9S)(dS) H i .
k DDDSSS (95) ( S So 1 term is enough
4 DDDDSSSS (D:ED —)

More generally we see that derivatives are not a problem

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Important caveat

Consider some scalar doublets with flavor ¢; plus a scalar singlet S' and triplet A (both with no flavor).
We can have the following trilinear interactions:

S A
Oij == qbz-quS Oij == qbqujA

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...

29



Important caveat

Consider some scalar doublets with flavor ¢; plus a scalar singlet S' and triplet A (both with no flavor).
We can have the following trilinear interactions:

Fiikal ik A
Oij == qbiquS Oij == qb@quA
The first is anti-symmetric in the flavor indices; the second is symmetric

We can therefore make a linear combination of both

expressions and write a single term in the Lagrangian!

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 29



Important caveat

Consider some scalar doublets with flavor ¢; plus a scalar singlet S' and triplet A (both with no flavor).
We can have the following trilinear interactions:

S A
O,ij == qbquJS oij = qb@quA

The first is anti-symmetric in the flavor indices; the second is symmetric

We can therefore make a linear combination of both

expressions and write a single term in the Lagrangian!

Most of us will probably find this (very) unuseful/distastful, as we are mixing different types of operators

If we commit not to doing this, then the numbers given by Sym2Int are the lowest possible terms.

In the case of SMEFT: numbers are given in the title of this talk.

Renato Fonseca

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Important caveat

Consider some scalar doublets with flavor ¢; plus a scalar singlet S' and triplet A (both with no flavor).
We can have the following trilinear interactions:

S A
Oij == qbz-quS Oij == qb?,quA

The first is anti-symmetric in the flavor indices; the second is symmetric

We can therefore make a linear combination of both

expressions and write a single term in the Lagrangian!

Most of us will probably find this (very) unuseful/distastful, as we are mixing different types of operators

If we commit not to doing this, then the numbers given by Sym2Int are the lowest possible terms.
In the case of SMEFT: numbers are given in the title of this talk.

However, in the case of field strength tensors, we probably are willing to consider these mixtures. That’s because
the program uses F' f:;% ot 2(F‘“‘"~:F tF'*") as the basic objects. If we were to write the operators as a function of
F*Y and F"” we must combine interactions with Fr, and Fr = F;

Using instead F*¥ and F*¥ might lead to a (small) difference in the number of terms

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...



d space-time dimensions

Remember this example?

QR L

SU(3)c 0 O

SU(Z)L H:I H

SU{Q); Bj [l

SU(2), i O

Grassmann a O

Bl _ 4 2 5

lotal symmetry H X Hj o N T e EP 25 E O0° =0

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...



d space-time dimensions

Remember this example?

QAR L
SU(3)c = = . . .
SU(2) FF‘ = Lorentz group is not treated in any special way
= (it is just another group...)
ot 1] (2)1 EF‘ O
BEAE 1T O
Grassmann H O
Total symmetry H xH* xoo=on+H + a A

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 30



d space-time dimensions

Remember this example?

QAR
SU(3)c 0
SU( 2) um Lorentz group is not treated in any special way
(2)L (it is just another group...)
SU(2), e
BEA BEE
Grassmann H Fierz identities are taken into account in a trivial

way (6-fermion, 8-fermion ones ... all the same)

2
Total symmetry H X EP? x O = O+ + a

Renato Fonseca 2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ... 30



d space-time dimensions

Remember this example?

QAR
SU(3)c 0
SU( 2) um Lorentz group is not treated in any special way
(2)L (it is just another group...)
SU(2), e
BEA BEE
Grassmann H Fierz identities are taken into account in a trivial

way (6-fermion, 8-fermion ones ... all the same)

2
Total symmetry H X EP? x O = O+ + a

However, as you know better than me, we may need to insert d-dimensional operators in loops. For divergent
ones, the 4-d difference gives finite contributions.

It is unfortunately far from obvious to me what happens to the SO(1,3) ~ SU(2) x SU(2) group.
In any case, it is clear that the relations which depended on SO(1,3) can no longer be used.

A seemingly infinite amount of extra terms are needed, and many of you have focused on reducing them back to
the 4-dimensional basis. However, it seems to me that on top of that, the number of operators associated to a
term may also increase. For example in 4d (€;7"e;) (€xyuer) is symmetric in ¢ <> k and j <> [.

Does not need to be so in d-dimensions (*);
so more parameters in the WC; shift them?

31 ex ex e e 6 True n? (1+n)? 1 {ex, e} (D> )

1
a

(*) Still symmetric under (23) <> (k)
Renato Fonseca 2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669553, 5740202, ... 30
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Summary

Knowing in advance the number of terms of an EFT is useful (e.g., to build them explicitly).

Terms are harder to count than operators. One needs to study the effect of permutations of equal
fields; becoming a standard approach in building operators explicitly.

I've shown how to count terms systematically. This has been implements in Sym?2Int

In the case of SMEFT, at dimension 8, one needs 1019 real terms
[assuming we use Fi'; = 1/2(F* F iF*) for gauge bosons].

it
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Summary

As for the title of this talk:

013627 THE ON-LINE ENCYCLOPEDIA
E'RE%S OF INTEGER SEQUENCES ®

w21l 2l

founded in 1964 by N. ]. A. Sloane

2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669553, 5740 || Search | Hiu
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:2.84.36,1019.624.15666.12620.264389.269026.4669553,5740202

Sorry, but the terms do not match anything in the table.

If vour sequence 1s of general interest, please submat 1t using the form
provided and it will (probably) be added to the OEIS! Include a brief
description and if possible enough terms to fill 3 lines on the screen. We need
at least 4 terms.

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Summary

As for the title of this talk:

FindSequenceFunction[{2, 84, 36, 1819, 624, 15666, 126208, 264 389, 269826, 4669553, 5740202},
n-4]

FindSequenceFunction[ {2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669 553, 57402021,

founded in 1964 by N. ]. A. Sloane

2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669553, 5740 || Search | Hiu
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:2.84.36,1019.624.15666.12620.264389.269026.4669553,5740202

Sorry, but the terms do not match anything in the table.

If vour sequence 1s of general interest, please submat 1t using the form
provided and it will (probably) be added to the OEIS! Include a brief
description and if possible enough terms to fill 3 lines on the screen. We need
at least 4 terms.

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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Summary

As for the title of this talk:

Renato Fonseca

FindSequenceFunction[{2, 84, 36, 1819, 624, 15666, 126208, 264 389, 269826, 4669553, 5740202},
n-4]

FindSequenceFunction[ {2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669 553, 57402021,

FindGeneratingFunction[{2, 84, 36, 1019, 624, 15666, 12620, 264 389, 269026, 4669553, 5740202},
n-4]

FindGeneratingFunction[ {2, 84, 36, 1019, 624, 15666, 12620, 264 389, 269 826, 4669553, 5740202},

a .

A .

nj

nj

Sorry, but the terms do not match anything in the table.

If vour sequence 1s of general interest, please submat 1t using the form
provided and it will (probably) be added to the OEIS! Include a brief
description and if possible enough terms to fill 3 lines on the screen. We need
at least 4 terms.

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...



Renato Fonseca

Summary

As for the title of this talk:

FindSequenceFunction[{2, 84, 36, 1819, 624, 15666, 126208, 264 389, 269826, 4669553, 5740202},
n-4]

FindSequenceFunction[ {2, 84, 36, 1019, 624, 15666, 12620, 264389, 269026, 4669553, 5740202}, -4 +n]

FindGeneratingFunction[{2, 84, 36, 1019, 624, 15666, 12620, 264 389, 269026, 4669553, 5740202},
n-4]

FindGeneratingFunction[ {2, 84, 36, 1019, 624, 15666, 12620, 264 389, 269826, 4669553, 5740202}, -4 + n]

InterpolatingPolynomial[{2, 84, 36, 1019, 624, 15666, 12620, 264 389, 269026, 4669553, 5748202}, n-4] //
Expand

210859941489299n 103024089008519n? 58387989570335n° 129563 807925959 n*

72 370049 540 - .
2520 2400 4536 51840
5675316502229 n° 1278345625591 n° 21840065365n’ 1234207637n° 120073781n° 1104713 n'?
17 280 43200 12096 17 280 72576 64 300

o

2, 84, 36, 1019, 624, 156606, 12620, 264389, 269026, 4669553, 5740202, ...
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