Synergies between high- and low energy: an example using HighPT

Lukas Allwicher

Physik-Institut, Universität Zürich

EFT Foundations and Tools 2023 28 August - 8 September 2023 MITP, Mainz

Based on work with: D. Faroughy, F. Jaffredo, O. Sumensari, and F. Wilsch arXiv: 2207.10714, 2207.10756 + W.I.P. https://highpt.github.io/ Introduction

HighPT: probing flavour with Drell-Yan tails

HighPT 2.0: adding low-energy observables

Example

Outlook

Introduction

E• In the presence of a mass gap, $\Lambda_{\rm NP} \gg v$, Λ parametrise effects with effective operators: SMEFT $\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda^2} \sum_{i} \mathcal{C}_i \mathcal{O}_i^{(6)} + \cdots$ m_W • Model-independent approach • In general, use EFTs whenever there is a scale LEFTseparation \rightarrow resum large logs • Given a UV model, need to match onto the EFT, then take care of RG evolution and matching between EFTs when a threshold is crossed

Tools for EFTs

The flavour of New Physics

- TeV-scale NP is motivated e.g. by the hierarchy problem
- Constraints from flavour and electroweak observables can be very stringent
- $K-\bar{K}$ mixing probes scales up to 10^5 TeV
- It's clear that the flavour structure must be non-trivial
 - \rightarrow NP coupled mainly to third generation
- A good pheno code should include as many observables as possible in order to constrain the EFT

Our final goal: extract combined limits on BSM with arbitrary flavour structure

Towards a combined fit

Image by D. Straub

• Observables missing: $H \to f\bar{f}$, LEP $e^+e^- \to \ell^+\ell^-$, ...

HighPT: probing flavour with Drell-Yan tails

- Have received a lot of attention due to B anomalies
- Q: How can we study the flavour structure of possible NP affecting semileptonic transitions?
 - In SMEFT at d = 6, ~ 850 parameters come from 4-fermion semileptonic operators alone!

 \rightarrow Need all possible ingredients to constrain it

• idea: exploit also high-energy data, complementary to low-energy observables \rightarrow Drell-Yan

Searches at different energy scales

High- p_T searches can probe the same operators directly constrained by flavour-physics experiments

[see also 1609.07138, 1704.09015, 1811.07920, 2003.12421, ...]

Example: charm observables

Compare constraints on semileptonic interactions involving charm quarks:

- D meson decays: $c \to u\ell\ell$
- Drell-Yan: $cu \to \ell \ell$

```
LHC already provides better constraints!
```


[Fuentes-Martín, Greljo, Camalich, Ruiz-Alvarez 2003.12421]

Other examples:

- de Blas, Chala, Santiago 1307.5068
- Angelescu, Faroughy, Sumensari 2002.05684
- Dawson, Giardino, Ismail 1811.12260
- Marzocca, Min, Son 2008.07541

A more general approach to high- p_T Drell-Yan was missing so far

Drell-Yan processes

Neutral current: $pp \to \ell_{\alpha}^- \ell_{\beta}^+$

- $\tau\tau$, $\mu\mu$, ee
- *τ*μ, *τ*e, μe

Charged current: $pp \to \ell_{\alpha}^- \bar{\nu}_{\beta}$

Tails of $pp \to \ell \ell$ as flavour probes

- 5 active flavours in the proton
- Hadronic cross-section:

$$\sigma(pp \to \ell_{\alpha}\ell_{\beta}) = \mathcal{L}_{ij} \times \hat{\sigma}_{ij}^{\alpha\beta}$$

• $\hat{\sigma}_{ij}^{\alpha\beta} = \hat{\sigma}(q_i \bar{q}_j \to \ell_{\alpha} \ell_{\beta})$ partonic cross-section \to energy-enhanced in the EFT. With 4-fermion operators:

$$\hat{\sigma}_{ij}^{\alpha\beta} \propto \frac{\hat{s}^2}{\Lambda^4} |\mathcal{C}_{ij}^{\alpha\beta}|^2$$

• Heavy flavours suppressed by **parton luminosities** \mathcal{L}_{ij}

Energy enhancement can overcome PDF suppression

Hadronic cross-section

$$\begin{split} \mathcal{A}(\bar{q}_{i}q'_{j} \rightarrow \ell_{\alpha}\bar{\ell}'_{\beta}) &= \frac{1}{v^{2}} \sum_{XY} \left\{ \begin{array}{c} (\bar{\ell}_{\alpha}\gamma^{\mu}\mathbb{P}_{X}\ell'_{\beta}) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q'_{j}\right) [\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})]_{\alpha\beta ij} \\ &+ (\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell'_{\beta}) \left(\bar{q}_{i}\mathbb{P}_{Y}q'_{j}\right) [\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})]_{\alpha\beta ij} \\ &+ (\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \delta^{XY} [\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})]_{\alpha\beta ij} \\ &+ (\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell'_{\beta}) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik_{\nu}}{v} [\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})]_{\alpha\beta ij} \\ &+ (\bar{\ell}_{\alpha}\sigma^{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik_{\nu}}{v} [\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})]_{\alpha\beta ij} \right\} \end{split} \quad \begin{array}{l} \text{parton-level} \\ \end{split}$$

e.g. for a bin B in neutral-current Drell-Yan:

$$\sigma_B(pp \to \ell_\alpha^- \ell_\beta^+) = \frac{1}{48\pi v^2} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_0}^0}^{m_{\ell\ell_1}^2} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^0 \frac{\mathrm{d}\hat{t}}{v^2} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_I^{XY,qq} \right]_{\alpha\beta ij} \left[\mathcal{F}_J^{XY,qq} \right]_{\alpha\beta ij}^*$$

 $\begin{array}{c} \text{interference} \\ \text{matrix} \\ M^{XY}(\hat{s},\hat{t}) = \begin{pmatrix} M_{VV}^{XY}(\hat{t}/\hat{s}) & 0 & 0 & 0 & 0 \\ 0 & M_{ST}^{SY}(\hat{t}/\hat{s}) & M_{TT}^{XY}(\hat{t}/\hat{s}) & 0 & 0 \\ 0 & 0 & M_{TT}^{SY}(\hat{t}/\hat{s}) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\hat{s}}{v^2} M_{DD}^{XY}(\hat{t}/\hat{s}) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\hat{s}}{v^2} M_{DD}^{XY}(\hat{t}/\hat{s}) \end{pmatrix} \\ \text{parton} \\ \text{luminosities} \qquad \mathcal{L}_{ij}(\hat{s}) \equiv \int_{\hat{s}/\epsilon}^{1} \frac{dx}{x} \left[f_{\tilde{q}_i}(x,\mu) f_{q_j}\left(\frac{\hat{s}}{\hat{s}x},\mu\right) + (\tilde{q}_i \leftrightarrow q_j) \right] \end{array}$

Local and non-local contributions

Discuss two NP scenarios:

- SMEFT
- TeV-scale mediators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d,k} \frac{\mathcal{C}_k^{(d)}}{\Lambda^{d-4}} \mathcal{O}_k^{(d)} + \sum_{d,k} \left[\frac{\widetilde{\mathcal{C}}_k^{(d)}}{\Lambda^{d-4}} \widetilde{\mathcal{O}}_k^{(d)} + \text{h.c.} \right]$$

Where to truncate the expansion?

SMEFT amplitude:

$$\mathcal{A} = \mathcal{A}_{\mathrm{SM}} + \sum_{i} \frac{v^2}{\Lambda^2} \mathcal{A}_i^{(6)} + \sum_{i} \frac{v^4}{\Lambda^4} \mathcal{A}_i^{(8)} + \cdots$$

Cross-section up to $\mathcal{O}(\Lambda^{-4})$:

$$\begin{split} \hat{\sigma} &\sim \int [\mathrm{d}\Phi] \left\{ |\mathcal{A}_{\mathrm{SM}}|^2 + \frac{v^2}{\Lambda^2} \sum_i 2 \operatorname{Re} \left(\mathcal{A}_i^{(6)} \, \mathcal{A}_{\mathrm{SM}}^* \right) \right. \\ &\left. + \frac{v^4}{\Lambda^4} \bigg[\sum_{ij} 2 \operatorname{Re} \left(\mathcal{A}_i^{(6)} \, \mathcal{A}_j^{(6)\,*} \right) + \sum_i 2 \operatorname{Re} \left(\mathcal{A}_i^{(8)} \, \mathcal{A}_{\mathrm{SM}}^* \right) \bigg] + \ \dots \bigg\} \end{split}$$

Drell-Yan in SMEFT: dimension 6

- Both \mathcal{A}_{SM} - $\mathcal{A}^{(6)}$ interference and $|\mathcal{A}^{(6)}|^2$ terms \rightarrow the latter open up to LFV effects
- Use Warsaw basis 1008.4884

Parameter counting and energy scaling:

Dimensi	on	d = 6			
Operator cla	sses	ψ^4	$\psi^2 H^2 D$	$\psi^2 X H$	
Amplitude scaling		E^2/Λ^2	v^2/Λ^2	vE/Λ^2	
Deremotora	# ℝe	456	45	48	
1 arameters	# [m	399	25	48	

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

Drell-Yan in SMEFT: dimension 8

• Include only operators interfering with the SM (vector currents)

Parameter counting and energy scaling:

Dimension		d = 8				
Operator classes		$\psi^4 D^2$	$\psi^4 H^2$	$\psi^2 H^4 D$	$\psi^2 H^2 D^3$	
Amplitude scaling		E^4/Λ^4	$v^2 E^2 / \Lambda^4$	v^4/Λ^4	$v^2 E^2 / \Lambda^4$	
Parameters	# Re	168	171	44	52	
	# Im	54	63	12	12	

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

TeV-scale mediators in Drell-Yan

	SM rep.	Spin	$\mathcal{L}_{ ext{int}}$	$d_j \int \ell_{\alpha}^{\ell_{\alpha}}$
Z'	(1, 1, 0)	1	$\mathcal{L}_{Z'} = \sum_{\psi} [g_1^{\psi}]_{ab} \bar{\psi}_a Z' \psi_b , \ \psi \in \{u, d, e, q, l\}$	Z', W'^{0}, H, A
\widetilde{Z}	(1, 1, 1)	1	$\mathcal{L}_{\widetilde{Z}} = [\widetilde{g}_{1}^{q}]_{ij} \overline{u}_{i} \widetilde{Z} d_{j} + [\widetilde{g}_{1}^{\ell}]_{\alpha\beta} \overline{e}_{\alpha} \widetilde{Z} N_{\beta}$	
$\Phi_{1,2}$	(1 , 2 ,1/2)	0	$\mathcal{L}_{\Phi} = \sum_{a=1,2} \left\{ [y_u^{(a)}]_{ij} \bar{q}_i u_j \widetilde{H}_a + [y_d^{(a)}]_{ij} \bar{q}_i d_j H_a + [y_e^{(a)}]_{\alpha\beta} \bar{l}_\alpha e_\beta H_a \right\} + \text{h.c.}$	d_i / χ_{β}
W'	(1, 3, 0)	1	$\mathcal{L}_{W'} = [g_3^q]_{ij} \bar{q}_i (\tau^I {W'}^I) q_j + [g_3^l]_{\alpha\beta} \bar{l}_\alpha (\tau^I {W'}^I) l_\beta$	4. 6-
S_1	$(\bar{3},1,1/3)$	0	$\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]_{i\alpha} S_1 \bar{d}_i^c N_\alpha + \text{h.c.}$	
\widetilde{S}_1	$(\bar{3},1,4/3)$	0	$\mathcal{L}_{\widetilde{S}_1} = [\widetilde{y}_1^R]_{i\alpha} \widetilde{S}_1 \overline{d}_i^c e_\alpha + h.c.$	$U_1, U_3^{(2/3)}$ $R^{(2/3)} \tilde{R}^{(2/3)}$
U_1	(3 , 1 ,2/3)	1	$\mathcal{L}_{U_1} = [x_1^L]_{i\alpha} \bar{q}_i \psi_1 l_\alpha + [x_1^R]_{i\alpha} \bar{d}_i \psi_1 e_\alpha + [\bar{x}_1^R]_{i\alpha} \bar{u}_i \psi_1 N_\alpha + \text{h.c.}$	i (t
\widetilde{U}_1	$({\bf 3},{f 1},5/3)$	1	$\mathcal{L}_{\widetilde{U}_1} = [\widetilde{x}_1^R]_{i\alpha} \overline{u}_i \widetilde{U}_1 e_{\alpha} + \text{h.c.}$	$d_i - c_\beta$
R_2	$({f 3},{f 2},7/6)$	0	$\mathcal{L}_{R_2} = -[y_2^L]_{i\alpha} \bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]_{i\alpha} \bar{q}_i e_\alpha R_2 + \text{h.c.}$	
\tilde{R}_2	$({\bf 3},{\bf 2},1/6)$	0	$\mathcal{L}_{\widetilde{R}_2} = -[\widetilde{y}_2^L]_{i\alpha} \overline{d}_i \widetilde{R}_2 \epsilon l_\alpha + [\widetilde{y}_2^R]_{i\alpha} \overline{q}_i N_\alpha \widetilde{R}_2 + \text{h.c.}$	$d_j \longrightarrow \ell_{\alpha}^{\ell_{\alpha}}$
V_2	$(\bar{3},2,5/6)$	1	$\mathcal{L}_{V_2} = [x_2^L]_{i\alpha} \bar{d}_i^c V_2 \epsilon l_\alpha + [x_2^R]_{i\alpha} \bar{q}_i^c \epsilon V_2 e_\alpha + \text{h.c.}$	$V_2^{(4/3)}$
\widetilde{V}_2	$(\bar{3},2,-1/6)$	1	$\mathcal{L}_{\widetilde{V}_2} = [\widetilde{x}_2^L]_{i\alpha} \overline{u}_i^c \widetilde{V}_2 \epsilon l_\alpha + [\widetilde{x}_2^R]_{i\alpha} \overline{q}_i^c \epsilon \widetilde{V}_2 N_\alpha + h.c.$	$\tilde{S}_1, S_3^{(4/3)}$
S_3	$(\bar{3},3,1/3)$	0	$\mathcal{L}_{S_3} = [y_3^L]_{i\alpha} \bar{q}_i^c \epsilon(\tau^I S_3^I) l_\alpha + \text{h.c.}$	\bar{d}_i ℓ_{β}
U_3	(3 , 3 ,2/3)	1	$\mathcal{L}_{U_3} = [x_3^L]_{i\alpha} \bar{q}_i (\tau^I \ \overline{\psi}_3^I) l_\alpha + \text{h.c.}$	

High- p_T Tails

A Mathematica package for flavour physics in Drell-Yan tails

with D. Faroughy, F. Jaffredo, O. Sumensari and F. Wilsch arXiv: 2207.10714, 2207.10756 https://highpt.github.io/

HighPT: main functionalities

- Includes (some of) the latest LHC Drell-Yan searches
- Large variety of NP scenarios:
 - SMEFT d = 6, d = 8
 - Bosonic mediators: leptoquarks, multiple non-interfering, m = 1, 2, 3 TeV
- Allows to compute:
 - Hadronic cross-sections
 - Event yields (per bin)
 - χ^2 likelihood as function of Wilson coefficients/coupling constants
- Includes detector effects

 $\operatorname{Extract}$ bounds on form-factors/Wilson coefficients/NP couplings

,High⊢. ∕_∕

• One search for each final state from Run-II

Process	Experiment	Luminosity	Ref.	$x_{ m obs}$	x
$pp \to \tau\tau$	ATLAS	$139{\rm fb}^{-1}$	2002.12223	$m_T^{\text{tot}}(\tau_h^1, \tau_h^2, \not\!\!\!E_T)$	$m_{\tau\tau}$
$pp \to \mu \mu$	CMS	$140 {\rm fb}^{-1}$	2103.02708	$m_{\mu\mu}$	$m_{\mu\mu}$
$pp \to ee$	CMS	$137{\rm fb}^{-1}$	2103.02708	m_{ee}	m_{ee}
$pp \rightarrow \tau \nu$	ATLAS	$139{\rm fb}^{-1}$	ATLAS-CONF-2021-025	$m_T(\tau_h, \not\!\!\!E_T)$	$p_T(\tau)$
$pp \to \mu\nu$	ATLAS	$139{\rm fb}^{-1}$	1906.05609	$m_T(\mu, \not\!\!\!E_T)$	$p_T(\mu)$
$pp \to e\nu$	ATLAS	$139{\rm fb}^{-1}$	1906.05609	$m_T(e, \not\!\!\!E_T)$	$p_T(e)$
$pp \rightarrow \tau \mu$	CMS	$138 {\rm fb}^{-1}$	2205.06709	$m_{\tau_h \mu}^{\text{col}}$	$m_{\tau\mu}$
$pp \to \tau e$	CMS	$138{\rm fb}^{-1}$	2205.06709	$m_{\tau_h e}^{col}$	$m_{\tau e}$
$pp \rightarrow \mu e$	CMS	$138\mathrm{fb}^{-1}$	2205.06709	$m_{\mu e}$	$m_{\mu e}$

Extracting likelihoods with HighPT

• Likelihood function of $\vec{\theta} = C^6$, C^8 (SMEFT) or $\vec{\theta} = [x]_{i\alpha}$, $[y]_{i\alpha}$ for Leptoquarks:

$$-2\log \mathcal{L}(\vec{\theta}) = \chi^2(\vec{\theta}) = \sum_{k \in \text{bins}} \frac{1}{\sigma_k^2} (N_{\text{sig}}^k(\vec{\theta}) + N_{\text{bkg}}^k - N_{\text{obs}}^k)^2$$

- + $N_{sig}^k(\vec{\theta})$ computed in HighPT at tree-level (NP effects only!)
- $N_{\rm bkg}^k$, $N_{\rm obs}^k$ from experimental collaborations
- Minimize within Mathematica or export to python
- e.g. switching on only $[\mathcal{O}_{lq}^{(1)}]_{2211} = (\bar{l}_1 \gamma_\mu l_1)(\bar{q}_2 \gamma^\mu q_2)$:

ChiSquareLHC["di-muon-CMS", EFTorder → 4, OperatorDimension → 6, Coefficients → {WC["lq1", {2, 2, 1, 1}]}] // Total

$$\begin{array}{l} \text{Out[13]=} 13.37 - 57.6784 \, \text{WC[lq1, } \{2, 2, 1, 1\}] + 1453.54 \, \text{WC[lq1, } \{2, 2, 1, 1\}]^2 - \\ 22\,476.1 \, \text{WC[lq1, } \{2, 2, 1, 1\}]^3 + 133\,553. \, \text{WC[lq1, } \{2, 2, 1, 1\}]^4 \end{array}$$

Limits on four-fermion operators: $C_{la}^{(1)}$

• Generally worse constraints for heavier quark flavours

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

Limits on Leptoquarks: single couplings

• e.g.
$$S_1 \sim (\bar{\mathbf{3}}, \mathbf{1}, 1/3)$$

• $\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha + \text{h.c.}$

|n[8]:= InitializeModel["Mediators", Mediators → {"S1" → {2000, 0}}]

Initialized mediator mode:

s-channel: $\langle | Photon \rightarrow \{ Vector \} \}$, ZBoson $\rightarrow \{ Vector \} \}$, WBoson $\rightarrow \{ Vector \}$

t-channel: <| |>

u-channel: $\langle | S1 \rightarrow \{ Scalar, Vector, Tensor \} | \rangle$

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

HighPT 2.0: adding low-energy observables

- The goal: fully anaytical likelihoods in terms of high-scale (SMEFT) Wilson Coefficients, in Mathematica
- w.r.t. v1.x need to add several new features:
 - More SMEFT coefficients \rightarrow full basis
 - LEFT coefficients
 - Running and matching (analytical)
 - Need to specify the input scheme
 - ...
- Disclaimer: (almost) every piece of code shown from here is still preliminary and therefore likely to change in the final version

SMEFT/LEFT RGE: DsixTools interface

Two possible analytical solutions for RG evolution:

• First Leading Log:

$$C_i(\mu_{\rm EW}) = C_i(\Lambda) + \frac{1}{16\pi^2} \log \frac{\mu_{\rm EW}}{\Lambda} \dot{C}_i(\Lambda)$$

- Anomalous dimensions from $1308.2627\,,\,1310.4838\,,\,1312.2014$ (SMEFT), $1711.05270~({\rm LEFT})$
- SetRGEMode["SMEFT"->"LL"]
- "Full" resummation using DsixTools' Evolution Matrix Method:

$$\mathcal{C}_{i}^{(6)}(\mu) = U_{ij}^{(6)}(\mu, \mu_0)\mathcal{C}_{j}^{(6)}(\mu_0)$$

- SetRGEMode["SMEFT"->"DsixTools"]

HighPT tries to load DsixTools. If not available, Leading Log still available

SMEFT-LEFT matching

- Tree-level matching: [Jenkins, Manohar, Stoffer 1709.04486]
- One-loop matching: [Dekens, Stoffer 1908.05295] One-loop matching example: $b \rightarrow s\gamma$

$$\mathcal{L}_{\text{SMEFT}} \supset [\mathcal{C}_{Hud}]_{ij} (H^{\dagger} D_{\mu} H) (\bar{u}_i \gamma^{\mu} d_j) \supset \frac{v^2}{2} \bar{u}_i \not W d_j + \text{ h.c.}$$

 \rightarrow finite contribution to dipole operators:

M(40)= SetMatchingOrder[1] WCL["dy", (2, 3)] // MatchToSMEFT; SelectTerms[%, {WC["Hud", (3, 3)]}] // TraditionalForm

Outl42WTraditionalForma

$$\frac{1}{\pi^2} \left(- \frac{g_1 \ M_1 \ \sqrt{v^2 \ g_2^2} \ V_{32}^* \ (C_{Ibad})_{33}}{16 \ \sqrt{v^2 \ (g_1^2 + g_2^2)}} - \frac{1}{48 \ \sqrt{v^2 \ (g_1^2 + g_2^2)}} \right) \\ - \frac{1}{48 \ \sqrt{v^2 \ (g_2^2 - 4 \ M_1^2)}} g_1 \ V_{32}^* \ (C_{Ibad})_{33} \left[112 \ M_1^2 \ \sqrt{v^2 \ g_2^2} - 15 \ v^4 \ g_1^4 \ M_1^3 \ \sqrt{v^2 \ g_2^2} + 2 \ v^6 \ g_2^6 \ M_1 \ \sqrt{v^2 \ g_2^2} + 2 \ v^6 \ M_1 \ \sqrt{v^2 \ g_2^2} + 2 \ v^6 \ g_2^6 \ M_1 \ \sqrt{v^2 \ g_2^2} + 2 \ v^6 \ g_2^6 \ M_1 \ \sqrt{v^2 \ g_2^2} \ M_1 \ \sqrt{v^2 \ g_2^2} \ M_1 \ M_1 \ M_1 \ M_2 \ M_2 \ M_2 \ M_1 \ M_2 \ M_1 \ M_2 \ M_1 \ M_2 \ M_1 \ M_2 \ M_2 \ M_1 \ M_2 \ M_2 \ M_1 \ M_2 \$$

[Bresó-Pla, Falkowski, González-Alonso 2103.12074]

Our choice for the SM inputs:

- $\alpha_{\rm em}, m_Z, G_F$
- CKM:

-
$$|V_{us}|$$
: $\mathcal{B}(K^+ \to \pi^0 e^+ \nu)$ and $\mathcal{B}(K_L \to \pi^\pm e^\mp \nu)$ (PDG)

- $|V_{cb}|$: $\mathcal{B}(B^0 \to D^- l^+ \nu)$ and $\mathcal{B}(B^+ \to D^0 l^+ \nu)$ (HFLAV)

-
$$|V_{ub}|: \frac{\mathrm{d}}{\mathrm{d}q^2} \Gamma(B \to \pi l \bar{\nu})$$
 at high q^2

- γ : UTfit NP analysis

$$\lambda = 0.2217(9) \qquad A = 0.822(9) \qquad \bar{\rho} + i\bar{\eta} = 0.42(2)e^{i1.20(7)}$$

What if NP is hiding in one of these observables?

Input redefinitions

[Descotes-Genon, Falkowski, Fedele González-Alonso, Virto 1812.08163] • Extract CKM elements from $P \rightarrow P' \ell \nu$ decays:

$$\frac{\mathcal{B}(P \to P' \ell \bar{\nu})}{\mathcal{B}(P \to P' \ell \bar{\nu})^{\text{SM}}} = \sum_{\alpha \beta} \rho_{\alpha \beta}^{ij \,\ell}(\mu) \, g_{\alpha}^{ij \,\ell}(\mu) \, g_{\beta}^{ij \,\ell}(\mu)^* = \frac{|V_{ij}|^2}{|V_{ij}^{(0)}|^2}$$
$$g_{\alpha}^{ij \,\ell}(\mu) \equiv \left[C_{\alpha}^{\nu e d u} \right]_{ij \ell \ell}(\mu) \qquad |V_{ij}| = |V_{ij}^{(0)}| + \delta |V_{ij}|$$

• Observables can be written as

$$O = O_{\rm SM}(V^{(0)}) + O_{\rm NP}$$

= $O_{\rm SM}(V) - \left. \frac{\partial O_{\rm SM}}{\partial V_{ij}^{(0)}} \right|_{V_{ij}^{(0)} = V_{ij}} \delta V_{ij} + O_{\rm NP}$
= $O_{\rm SM}(1 + \delta O_{\rm Input} + \delta O_{\rm NP})$

• NP in the observables used as inputs looks like a NP contribution in other observables

Observables: EWPOs, Higgs and Collider

[Bresó-Pla, Falkowski, González-Alonso 2103.12074]

- Electroweak observables
 - $\Gamma_Z, \sigma_{had}, R_e, ...$
 - $m_W, \gamma_W, \mathcal{B}(W \to e\nu), \dots$
- $H \to f\bar{f}$ decays - $\mu_{ff} = \frac{\mathcal{B}(h \to f\bar{f})}{\mathcal{B}(h \to f\bar{f})_{\text{SM}}}, f = b, c, \tau, \mu$
- LEP (above the Z pole)
 - $e^+e^- \rightarrow e^+e^-$ (Bhabha) - $e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$

[Allanach, Mullin 2306.08669]

[See also Ben Stefanek's talk]

- $H^2 \psi^2 D$ operators
- ψ^4 operators via RGE
- $H^3\psi^2$ (Yukawa) operators
- ψ^4 (scalar, tensor) operators via RGE
- four-lepton operators

- Charged currents
- $b \rightarrow c$: $R_{D^{(*)}}^{\tau/\ell}$, $R_{D^{(*)}}^{\mu/e}$, $B_c \rightarrow \tau\nu$, R_{Λ_c} , ... - $c \rightarrow d$: $\mathcal{B}(D^- \rightarrow \pi^0 e\nu)$, $\mathcal{B}(D^0 \rightarrow \pi^- e\nu)$, $\mathcal{B}_{\mu 2} = \mathcal{B}(D \rightarrow \mu\mu)$, ... - $s \rightarrow u$: ... - ... • $\Delta F = 1$ - $b \rightarrow s$: $R_K^{(*)}$, $B \rightarrow K^{(*)}\tau\tau$, $B \rightarrow K^{(*)}\nu\nu$, $B_s \rightarrow \mu\mu$, $B \rightarrow X_s\gamma$, ...
 - $b \to d$: $\mathcal{B}(B^0 \to \ell \ell)$
 - ...
- $\Delta F = 2$
 - B_s - \overline{B}_s , D- \overline{D} mixing, ...
- Leptonic

• ...

- $\tau \rightarrow \ell \nu \nu, \tau$ LFU tests
- $\tau \rightarrow 3 \mu, \, \tau \rightarrow \mu ee, \, ...$

33

Main routines: construct likelihoods

- ChiSquareFlavor[] gives the likelihood as a function of SMEFT coefficients, at the NP scale Λ
- RG evolution and SMEFT-LEFT matching taken care of automatically
- Example: R_D and R_{D^*}

• Similar routines ChiSquareEW[], ChiSquareHiggs[] and ChiSquareLEP[]

Example

$b \rightarrow s \tau \tau$ transitions

- Related to R_D , R_{D^*} explanations by $SU(2)_L$ rotation (LH case)
- Hard to measure at low energies

Experimental bounds (90% C.L.)

Standard model rates

$$\begin{split} [\text{LHCb '17}] & \mathcal{B}(B_s \to \tau \tau) &< 6.8 \times 10^{-3} \\ [\text{BaBar '16}] & \mathcal{B}(B^+ \to K^+ \tau \tau) &< 2.25 \times 10^{-3} \\ [\text{Belle '21}] & \mathcal{B}(B^0 \to K^{0*} \tau \tau) &< 3.1 \times 10^{-3} \end{split}$$

Study case: $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$ $\mathcal{L}_{U_1} = [x_1^L]_{i\alpha} \, \bar{q}_i \psi_1 l_\alpha + [x_1^R]_{i\alpha} \, \bar{d}_i \psi_1 e_\alpha + \text{h.c.}$

 \rightarrow contribution to both vector and scalar operators

$$\mathcal{O}_{lq}^{(1)} = (\bar{l}\gamma_{\mu}l)(\bar{q}\gamma^{\mu}q) \qquad \qquad \mathcal{O}_{ed} = (\bar{e}\gamma_{\mu}e)(\bar{d}\gamma^{\mu}d) \\ \mathcal{O}_{lq}^{(3)} = (\bar{l}\gamma_{\mu}\sigma^{I}l)(\bar{q}\gamma^{\mu}\sigma^{I}q) \qquad \qquad \mathcal{O}_{ledq} = (\bar{l}e)(\bar{d}q)$$

Vector scenario: $[C_{la}^{(1+3)}]_{3323}$ and $[C_{ed}]_{3323}$

• HighPT code for flavour likelihood(s)

```
x2BKtt = ChiSquareFlavor[
Observables → ("B+->K+tt"),
Coefficients - (MC["la1", (3, 3, 2, 3]), WC["la3", (3, 3, 2, 3]), WC["ed", (3, 3, 2, 3])]
```

```
11
```

```
x2BKsttt = ChiSquareFlavor[
```

```
Observables → ("B0->K0*rr"),
```

Coefficients → {WC["lq1", {3, 3, 2, 3}], WC["lq3", {3, 3, 2, 3}], WC["ed", {3, 3, 2, 3}]}

];

x2Bstt = ChiSquareFlavor[Observables → {"Bs->tt"},

UDSErValles → ("Ds->tt"), Coefficients → (WC["lq1", (3, 3, 2, 3}], WC["lq3", (3, 3, 2, 3]], WC["ed", (3, 3, 2, 3]])];

χ2Flavor = ChiSquareFlavor[

Observables → {"B+->K+ττ", "B0->K0∗ττ", "Bs->ττ"},	
Coefficients → {WC["lq1", {3, 3, 2, 3}], WC["lq3", {3, 3, 2, 3}], WC["ed", {	3, 3, 2, 3}]}
1;	

Vector scenario: $[C_{la}^{(1+3)}]_{3323}$ and $[C_{ed}]_{3323}$

• HighPT code for $pp \to \tau\tau, \tau\nu$ likelihood(s)

Hald Area ATLA		
	····,	
COETTICIENTS	s → {w	<pre>c["lq1", {3, 3, 2, 3}], Wc["lq3", {3, 3, 2, 3}], Wc["ed", {3, 3, 2, 3}]}</pre>
j // locat,		
ROCESS	:	$pp \rightarrow \tau^* \tau^*$
EXPERIMENT	:	ATLAS
ARXIV		arXiv:2002.12223
OURCE		hepdata: Table 3
BSERVABLE	:	n ^{tot}
INNING m ^{tot} [GeV]	:	{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500}
VENTS OBSERVED	:	{1167, 1568, 1409, 1455, 1292, 650, 377, 288, 92, 57, 27, 14, 11, 13}
UMINOSITY [fb ⁻¹]	:	139
SINNING VS (GeV)	:	{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500}
INNING p _T [GeV] x2tv = ChiSquareL "mono-tau-AT	: .HC[[LAS",	(0, m) ,
<pre>XINNING pr [GeV] X2tv = ChiSquareL "mono-tau-AT Coefficients] // Total;</pre>	.HC[⊺LAS" ⊧→ (₩	(0,=) , ("'(q1", (3, 3, 2, 3)), WC["(q3", (3, 3, 2, 3)], WC["ed", (3, 3, 2, 3)])
XINNING pr [GeV] X2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS	: HC[ILAS", s → (W	(0,=) , ("141", (3, 3, 2, 3)], WC["143", (3, 3, 2, 3)], WC["ed", (3, 3, 2, 3)]) pp チェマ
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS YOEPTMENT	.HC[[LAS" :→ (W	(0, =) , (["lq1", (3, 3, 2, 3)], WC["lq3", (3, 3, 2, 3)], WC["ed", (3, 3, 2, 3)]) pp → C [¬] pp → V [−] pp → V [−]
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RIV	: HC[TLAS", t→ (W :	(0,=) , ("lq1", (3, 3, 2, 3)), wC("lq3", (3, 3, 2, 3)], wC("ed", (3, 3, 2, 3)]) pp = pp = pp = (1, 4, -006 - 2027 LP3 5
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RXIV OURCE	: HC[ILAS"; : → (W : :	(0, =) , , ("lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pp = t ^v pp = t ^v pp = t ^v ATLA5 ATLA
INNING p _T [GeV] x2Tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RXIV OURCE BSERVABLE	: ILAS", :→ (W : : :	(0,=) ("lq1", (3, 3, 2, 3)), WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pp pp ATLS ATLS-COMF-2021-025 Figure 5
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients] // Total; ROCESS xPERIMENT RXIV OURCE 85ERVABLE INNING mr [GeV]	: ILAS"; :→ (₩	(0, =) C("lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pD = t ^{TV} pD = t ^{TV} ATLA5 ATLA5 ATLA5 ATLA5 CP1 pD = 500 , 000, 400, 500, 600, 700, 800, 900, 1000, 1200, 1300, 1400, 1500, 1750,
INNING pr [GeV] x2tv = ChiSquareL "mono-tau-AT Coefficients) // Total; ROCESS xPERIMENT RXIV OURCE SSERVABLE INNING mr [GeV] VENTS OBSERVED	: ILAS", s → (W : : : : : :	(0, =) ("lq1", (3, 3, 2, 3)], wC("lq3", (3, 3, 2, 3)], wC("ed", (3, 3, 2, 3)]) pp - (") pp - (") pp - (") pp - (") pp - (") pp - (") pp - (") (200, 300, -400, 500, 600, 700, 600, 1000, 1100, 1200, 1300, 1400, 1500, 1750
INNING Pr (GeV) x2tv * ChiSquarel "mono-tau-AT Coefficients] // Total; ROCESS XPERIMENT RATU OURCE SERVABLE INNING Mr (GeV) VENTS OBSERVED UNINOSITY (Fb ⁻¹)	: TLAS", :→ (W : : : : : :	(0, =) C("lq1", (3, 3, 2, 3)], WC("lq3", (3, 3, 2, 3)], WC("ed", (3, 3, 2, 3)]) pp → ± ^(V) pp → ± ^(V) ATLA5 ATLA5 ATLA5 ATLA5 C(200, 300, 400, 500, 600, 700, 600, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1750, (2305, 0304, 400, 5009, 600, 700, 600, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1750, (2305, 0304, 9079, 400, 187, 55, 55, 52, 13, 10, 4, 1, 7, 0, 1) 19
IINNING pr (GeV) x2tv = ChiSquareL "mono-tau-AT Coefficients)//Total; ROCESS XPERIMENT RXIV BOURCE MSERVABLE UINNIG m, (GeV) VENTS OBSERVED UNINGSTV (fb ⁻¹) IINNIG (GeV)	: TLAS", : → (W : : : : : : :	(0, =) ("lq1", (3, 3, 2, 3)], wC("lq3", (3, 3, 2, 3)], wC("ed", (3, 3, 2, 3)]) pp - (") pp -

[LA, Faroughy, Jaffredo, Sumensari, Wilsch, to appear]

Vector+scalar scenario: $[C_{lq}^{1+3}]_{3323}$ and $[C_{ledq}]_{3332}$

[LA, Faroughy, Jaffredo, Sumensari, Wilsch, to appear]

Vector+scalar scenario: $[C_{lq}^{1+3}]_{3323}$ and $[C_{ledq}]_{3332}$

[LA, Faroughy, Jaffredo, Sumensari, Wilsch, to appear]

Summary and Outlook

In this talk:

- Presented HighPT, a Mathematica package for pheno analyses in the SMEFT
- v1 contains:
 - a general description of Drell-Yan processes
 - both SMEFT (up to dimension-8) and explicit mediators (leptoquarks)
- v2 W.I.P.:
 - Inclusion of Electroweak, Higgs, LEP-2, and flavour observables
 - RGE and SMEFT-LEFT matching taken care of, partially integrating DsixTools
- Showed the interplay between high- p_T and flavour in the case of $b\to s\tau\tau$ transitions

In the future:

- progressive inclusion of more and more observables
- possible interface with Matchete for a fully automated pipeline from UV model to observables at all energies
- Stay tuned!

Thank you!

Backup

Form-factor decomposition

Need a way to parametrise the Drell-Yan amplitude in general \rightarrow introduce **dimensionless form factors** \mathcal{F} for $2 \rightarrow 2$ scattering:

$$\begin{split} \mathcal{A}(\bar{q}_i q'_j \to \ell_\alpha \bar{\ell}'_\beta) \, &= \, \frac{1}{v^2} \sum_{XY} \left\{ \begin{array}{l} \left(\bar{\ell}_\alpha \gamma^\mu \mathbb{P}_X \ell'_\beta \right) \left(\bar{q}_i \gamma_\mu \mathbb{P}_Y q'_j \right) \, [\mathcal{F}_V^{XY, \, qq'}(\hat{s}, \hat{t})]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_\alpha \mathbb{P}_X \ell'_\beta \right) \left(\bar{q}_i \mathbb{P}_Y q'_j \right) \, [\mathcal{F}_S^{XY, \, qq'}(\hat{s}, \hat{t})]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_\alpha \sigma_{\mu\nu} \mathbb{P}_X \ell'_\beta \right) \left(\bar{q}_i \sigma^{\mu\nu} \mathbb{P}_Y q'_j \right) \, \delta^{XY} \, [\mathcal{F}_T^{XY, \, qq'}(\hat{s}, \hat{t})]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_\alpha \gamma_\mu \mathbb{P}_X \ell'_\beta \right) \left(\bar{q}_i \sigma^{\mu\nu} \mathbb{P}_Y q'_j \right) \, \frac{ik_\nu}{v} \, [\mathcal{F}_{D_q}^{XY, \, qq'}(\hat{s}, \hat{t})]_{\alpha\beta ij} \\ &+ \left(\bar{\ell}_\alpha \sigma^{\mu\nu} \mathbb{P}_X \ell'_\beta \right) \left(\bar{q}_i \gamma_\mu \mathbb{P}_Y q'_j \right) \, \frac{ik_\nu}{v} \, [\mathcal{F}_{D_\ell}^{XY, \, qq'}(\hat{s}, \hat{t})]_{\alpha\beta ij} \right\} \end{split}$$

- $X, Y \in L, R, \hat{s} = k^2 = (p_\ell + p_{\ell'})^2, \hat{t} = (p_\ell p_{q'})^2$
- General parametrisation of tree-level effects invariant under $SU(3)_c \times U(1)_e$
- Captures both local and non-local effects

Local and non-local contributions

$$\mathcal{F}_{I}(\hat{s}, \hat{t}) = \mathcal{F}_{I, \text{Reg}}(\hat{s}, \hat{t}) + \mathcal{F}_{I, \text{Poles}}(\hat{s}, \hat{t})$$

- Analytic function of \hat{s}, \hat{t}
- Describes contact interactions \rightarrow SMEFT
- Expansion for v^2 , $|\hat{s}|$, $|\hat{t}| < \Lambda^2$:

$$\mathcal{F}_{I, \operatorname{Reg}}(\hat{s}, \hat{t}) = \sum_{n, m=0}^{\infty} \mathcal{F}_{I(n, m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$

• Contains the energy-growing part

- Isolated simple poles in \hat{s}, \hat{t}
- Non-local effects due to exchange of a mediator (SM and NP)

$$\begin{aligned} \mathcal{F}_{I,\,\mathrm{Poles}}(\hat{s},\hat{t}) &= \sum_{a} \frac{v^2 \,\mathcal{S}_{I\,(a)}}{\hat{s} - \Omega_a} \\ &+ \sum_{b} \frac{v^2 \,\mathcal{T}_{I\,(b)}}{\hat{t} - \Omega_b} \,-\, \sum_{c} \frac{v^2 \,\mathcal{U}_{I\,(c)}}{\hat{s} + \hat{t} + \Omega_c} \end{aligned}$$

$$\Omega_i = m_i^2 - im_i \Gamma_i \qquad \hat{u} = -\hat{s} - \hat{t}$$

• S, T, U can be reduced using partial fractioning: put into \mathcal{F}_{Reg}

$$\frac{\mathcal{S}(\hat{s})}{\hat{s} - \Omega} = \frac{\mathcal{S}(\Omega)}{\hat{s} - \Omega} + f(\hat{s}, \Omega)$$

d = 8 basis: energy enhanced operators

• From Murphy 2005.00059

d = 8	$\psi^4 D^2$	$pp \to \ell \ell$	$pp \to \ell \nu$
$\mathcal{O}_{l^2q^2D^2}^{(1)}$	$D^{\nu}(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})D_{\nu}(\bar{q}_{i}\gamma_{\mu}q_{j})$	\checkmark	_
$\mathcal{O}_{l^2q^2D^2}^{(2)}$	$(\bar{l}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}q_{j})$	\checkmark	—
$\mathcal{O}_{l^2q^2D^2}^{(3)}$	$D^{\nu}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})D_{\nu}(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})$	\checkmark	\checkmark
$\mathcal{O}_{l^2q^2D^2}^{(4)}$	$(\bar{l}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{I\nu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\overleftrightarrow{D}^{I}_{\nu}q_{j})$	\checkmark	\checkmark
$\mathcal{O}_{l^{2}u^{2}D^{2}}^{(1)}$	$D^{ u}(\bar{l}_{lpha}\gamma^{\mu}l_{eta})D_{ u}(\bar{u}_{i}\gamma_{\mu}u_{j})$	\checkmark	—
$\mathcal{O}^{(2)}_{l^2 u^2 D^2}$	$(\bar{l}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}u_{j})$	\checkmark	-
$\mathcal{O}_{l^2 d^2 D^2}^{(1)}$	$D^{ u}(\bar{l}_{lpha}\gamma^{\mu}l_{eta})D_{ u}(\bar{d}_{i_{\prime}}\gamma_{\mu}d_{j})$	\checkmark	-
$\mathcal{O}_{l^2 d^2 D^2}^{(2)}$	$(\bar{l}_{\alpha}\gamma^{\mu}\overleftarrow{D}^{\nu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}\overleftarrow{D}_{\nu}d_{j})$	\checkmark	_
$\mathcal{O}^{(1)}_{e^2q^2D^2}$	$D_{\nu}(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})D^{\nu}(\bar{q}_{i}\gamma^{\mu}q_{j})$	\checkmark	_
$\mathcal{O}^{(2)}_{e^2q^2D^2}$	$(\bar{e}_{\alpha}\gamma_{\mu}\overleftrightarrow{D}_{\nu}e_{\beta})(\bar{q}_{i}\gamma^{\mu}\overleftrightarrow{D}^{\nu}q_{j})$	\checkmark	-
$\mathcal{O}^{(1)}_{e^2 u^2 D^2}$	$D^{ u}(\bar{e}_{lpha}\gamma^{\mu}e_{eta})D_{ u}(\bar{u}_{i}\gamma_{\mu}u_{j})$	\checkmark	-
$\mathcal{O}^{(2)}_{e^2 u^2 D^2}$	$(\bar{e}_{\alpha}\gamma^{\mu}\overleftarrow{D}^{\nu}e_{\beta})(\bar{u}_{i}\gamma_{\mu}\overleftarrow{D}_{\nu}u_{j})$	\checkmark	_
$\mathcal{O}^{(1)}_{e^2_{-}d^2D^2}$	$D^{ u}(ar{e}_{lpha}\gamma^{\mu}e_{eta})D_{ u}(ar{d}_{i}\gamma_{\mu}d_{j})$	\checkmark	_
$\mathcal{O}^{(2)}_{e^2 d^2 D^2}$	$(\bar{e}_{\alpha}\gamma^{\mu}\overleftarrow{D}^{\nu}e_{\beta})(\bar{d}_{i}\gamma_{\mu}\overleftarrow{D}_{\nu}d_{j})$	\checkmark	-

Example: vector FF matching to SMEFT

$$\mathcal{F}_{V} = \mathcal{F}_{V(0,0)} + \mathcal{F}_{V(1,0)} \frac{\hat{s}}{v^{2}} + \mathcal{F}_{V(0,1)} \frac{\hat{t}}{v^{2}} + \sum_{a} \frac{v^{2} \left[\mathcal{S}_{(a, \,\mathrm{SM})} + \delta \mathcal{S}_{(a)} \right]}{\hat{s} - m_{a}^{2} + im_{a}\Gamma_{a}}$$

Matching:

$$\begin{split} \mathcal{F}_{V(0,0)} &= \frac{v^2}{\Lambda^2} \mathcal{C}_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} \mathcal{C}_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} \mathcal{C}_{\psi^2 H^2 D^3}^{(8)} + \cdots, \\ \mathcal{F}_{V(1,0)} &= \frac{v^4}{\Lambda^4} \mathcal{C}_{\psi^4 D^2}^{(8)} + \cdots, \\ \mathcal{F}_{V(0,1)} &= \frac{v^4}{\Lambda^4} \mathcal{C}_{\psi^4 D^2}^{(8)} + \cdots, \\ \delta \mathcal{S}_{(a)} &= \frac{m_a^2}{\Lambda^2} \mathcal{C}_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[\mathcal{C}_{\psi^2 H^2 D}^{(6)} \right]^2 + \mathcal{C}_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} \mathcal{C}_{\psi^2 H^2 D^3}^{(8)} + \cdots, \end{split}$$

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

Accounting for detector effects

- $\frac{\mathrm{d}\sigma}{\mathrm{d}x}$ computed analytically $(x = m_{\ell\ell}, p_T)$
- Need to compare with measured quantity $\frac{d\sigma}{dx_{obs}}$ $(x_{obs} = m_{\ell\ell}, m_T^{tot}, m_T, ...)$
- For binned distributions, introduce Kernel matrix ${\cal K}$

$$\sigma_q(x_{\rm obs}) = \sum_{p=1}^M K_{pq}(x_{\rm obs}|x)\sigma_p(x)$$

- *K* extracted with MC simulations using Madgraph + Pythia + Delphes
- One matrix K for any combination of interfering form-factors
 → a lot of simulations!

 $K_{ij}\left(m_T^{\rm tot} \mid m_{\tau\tau}\right)$

Limits on Leptoquarks: two couplings

- Two non-interfering LQs
- $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3),$ $R_2 \sim (\mathbf{3}, \mathbf{2}, 7/6)$
- $\mathcal{L} \supset [x_1^L]_{i\alpha} \bar{q}_i \psi_1 l_\alpha [y_2^L]_{i\alpha} \bar{u}_i R_2 \epsilon l_\alpha + \text{h.c.}$

- Same LQ, two couplings
- get e.g. LFV effects
- $S_3 \sim (\bar{\mathbf{3}}, \, \mathbf{3}, \, 1/3)$
- $\mathcal{L}_{S_3} = [y_3^L]_{i\alpha} \bar{q}_i^c \epsilon(\tau^I S_3^I) l_{\alpha} + \text{h.c.}$

Basis alignment

Jackknife analysis

- Study the impact of $\frac{1}{\Lambda^4}$ terms for dimension-6 operators
- Which bins are relevant for $|\mathcal{A}^{(6)}|^2$ terms?

$$R_{\rm Jack} = \frac{\rm Limits \ without \ one \ bin}{\rm Limits \ with \ all \ bins}$$

• Find that at $\sim 1 \text{ TeV NP}^2$ terms become relevant

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

Cutting the data (clipping)

[Contino et al. 1604.06444, Brivio et al. 2201.04974]

- Neglect events above a threshold $M_{\rm cut}$ to ensure the validity of the EFT expansion
- Easily implemented in HighPT: the χ^2 is given bin-by-bin \rightarrow the user can choose how to combine/throw away bins
- Worse constraints removing the highest bins

[LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

Impact of dimension-8: form-factor fits

• Focus on LL vector form-factor [LA, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10714]

$$\mathcal{F}_{V}^{LL} = \mathcal{F}_{V(0,0)}^{LL} + \frac{\hat{s}^2}{v^2} \mathcal{F}_{V(1,0)}^{LL} + \frac{\hat{t}^2}{v^2} \mathcal{F}_{V(0,1)}^{LL}$$

- $\mathcal{F}_{V(1,0)}^{LL}$ and $\mathcal{F}_{V(0,1)}^{LL}$ come from dimension-8
- impose perturbativity: $|\mathcal{F}_{V(0,0)}^{LL}| \leq 4\pi \frac{v^2}{\Lambda^2} \quad |\mathcal{F}_{V(1,0)}^{LL}|, |\mathcal{F}_{V(0,1)}^{LL}| \leq 4\pi \frac{v^4}{\Lambda^4}$

Constraints from LFV searches

- Need at least two couplings switched on to get LFV effects
- LFV searches give complementary information to the flavour conserving ones
- U_1 vector leptoquark

Results: U_1 - Including RH currents

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + \mathcal{C}_{LL}^c) \mathcal{O}_{LL}^c \right] \\ -2\mathcal{C}_{LR}^c \mathcal{O}_{LL}^c \right]$$

$$\mathcal{O}_{LL}^c = (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma^\mu \nu_L) \mathcal{O}_{LR}^c = (\bar{c}_L b_R) (\bar{\tau}_R \nu_L)$$

Results: S_1

 $S_1 \sim (\bar{\mathbf{3}}, \mathbf{1}, 1/3)$

EFT

LQ model

 $R_2 \sim (\mathbf{3}, \mathbf{2}, 7/6)$

Validity of the EFT approach at the LHC

- Have all the ingedients to study the convergence of the EFT:
 - SMEFT d = 6, d = 8
 - full model
- Compare these scenarios from the constraints
- Requires some more MC simulations

$P \to P' \ell \bar{\nu}$	$\rho_{VV}^{ij\ell}(m_Z)$	$\rho_{SS}^{ij\ell}(m_Z)$	$\rho_{TT}^{ij\ell}(m_Z)$	$\rho_{SV}^{ij\ell}(m_Z)$	$\rho_{TV}^{ij\ell}(m$
$K^+ \to \pi^0 e \bar{\nu}$	1	7.4	1.7×10^{-1}	2×10^{-2}	5×10^{-5}
$B^+ \to \pi^0 e \bar{\nu}$	1	1.7	6.7	3.9×10^{-5}	1.3×10
$B^+ \to \pi^0 \mu \bar{\nu}$	1	1.1	5.8	1.2	2.9
$B^+ \to D^0 e \bar{\nu}$	1	5.3×10^{-1}	8.7×10^{-1}	5×10^{-4}	10^{-3}
$B^+ \to D^0 \mu \bar{\nu}$	1	$5.3 imes10^{-1}$	8.7×10^{-1}	10^{-1}	2.2×10