An Algboraic Formula for Two Loop Renormalization of Scalar Qunantum Field Theory

Lnea Daterop
University of zirich \& PSI

Elizabeth Joukins
with Aresh havohar Jutie Pagis

Supported by SNF
paper I: 2308.06315 (presented today)

$$
\mathcal{L}_{r E}=\frac{1}{2} \partial_{r} p^{i} \gamma_{\mu} \phi^{i}
$$

paper I: to appear (presented on Monday)

$$
\alpha_{k E}=\frac{1}{2} g_{j j}(d) \partial_{\mu} \phi^{i} \gamma^{u} \phi^{i}
$$

Outline

- The it Hooft formula for $\Delta \alpha^{(1)}$
- Geometric formulation
- The Background Field method at two loops
- The two-loep counterterms $\Delta \alpha^{(2)}$
- Facterizable graphs and REs
- Practical aspects of the calculation
- Results and application to the $O(N)$ model

The 't Heft formula

Start with $\mathcal{L}\left(\phi_{:}\right)$. Write $\phi_{i} \rightarrow \phi_{:}+\eta_{i}$ and expand in ψ_{i} $O\left(\eta^{2}\right)$ term is

$$
\mathcal{L}^{(1)}=\frac{1}{2} \partial_{\mu} \eta_{i} \partial_{\mu \eta_{i}}+N_{i j}^{\mu} \partial_{\mu} \eta_{i} \eta_{j}+\frac{1}{2} x_{i j} \eta_{i} \eta_{j}
$$

\rightarrow generates any 1-eoop diagram
With $X_{i j}[t], N_{i j}^{m}[\phi]$ functionals of ϕ

$$
\uparrow \quad \rho
$$

flavor indices
$N_{i j}$

Generalization to $\frac{1}{2} g_{j i}(\phi) \partial_{\mu} \varphi_{i} \partial_{\mu} \eta^{j}$
\rightarrow geometric formalism, p^{i} coordinates of U

The 't Hoof formals

We can shift \mathcal{L} by a total derivative

$$
\begin{aligned}
\mathcal{L} \rightarrow \mathcal{L}+\partial_{\mu}\left(\varphi_{i} z_{j j}^{\mu} \eta_{j}\right) & =\mathcal{L}+\lambda_{\mu} \eta_{i} z_{j j} \eta_{j}+\eta_{i} \partial_{\mu} \psi_{j} \eta_{j}+\eta_{i} z_{j j}^{\mu} \eta_{j} \\
& =\mathcal{L}+2 \partial_{\mu} \eta_{i} z_{i j} \eta_{j}+\eta_{i} \partial_{\mu} z_{j ;}^{\mu} \eta_{j}
\end{aligned}
$$

using $z_{i j}=z_{j i}$. This leads to a shift

$$
\begin{aligned}
& j^{\mu} \rightarrow N^{\mu}+2 z^{\mu} \\
& x \rightarrow x+2 \partial_{\mu} z^{\mu}
\end{aligned}
$$

So we can assume $X_{i j}=X_{i j}$ and $D_{i j}^{\mu}=-N_{j i}^{\mu}$.

The 't Hoof formals
Complete square

$$
\begin{aligned}
& \mathcal{L}^{(1)}=\frac{1}{2}(\underbrace{\left(\partial_{\mu}+N_{\mu}\right)}_{D_{\mu}} \eta_{i})(\underbrace{\left(\partial_{\mu}+N_{\mu}\right)}_{D_{\mu}} \eta_{\text {with }})_{D^{\mu}=\partial^{\mu}+N^{\mu}}^{2}+\frac{1}{2} x_{i ;} \eta_{j} \quad x \rightarrow x+N^{\mu} \nu_{\mu}
\end{aligned}
$$

$\int^{(A)}$ invariant under load $O(N)$. O(C) gre farM
$\rightarrow \Delta L^{(1)}$ built from X, D_{μ} and

$$
\varphi^{\mu N}=\left[D^{\mu}, D^{\nu}\right]=\partial^{\mu} N^{N}-\partial^{\mu} N^{\mu}+N^{\mu} N^{\nu}-N^{N} N^{\mu}
$$

Dimensional analysis: $\Delta K^{(n)}=\frac{1}{\epsilon}\left(a X_{i j} X_{j i}+b \psi_{i j}^{\mu v} \Psi_{j i}^{\mu_{i}^{v}}\right)$

Use generic X, N, compute $(X X),\left(N^{m} N^{N} N S N^{\sigma}\right)$

$$
\Delta K^{(1)}=\frac{1}{16 \pi^{2} \epsilon}\left(-\frac{1}{4} X_{i j} X_{j i}-\frac{1}{24} \psi_{i j}^{\mu v} \psi_{j i}^{\mu v}\right) \quad \text { ['t Hooft, 1973] }
$$

Geometric formulation
Higher -dimensional operators with two derivatives

$$
\alpha=\frac{1}{2} g_{i j}(k)\left(D_{\mu} \eta\right)^{i}\left(D_{\mu} \eta\right)^{j}-V(\eta)
$$

The formula

$$
\Delta \alpha^{(n)}=-\frac{1}{4 t} X_{j}^{i} X_{j}^{j}-\frac{1}{2 G \epsilon}\left(\zeta^{\mu N}\right)_{j}^{i}\left(\zeta^{\mu \omega}\right)_{i}^{i}
$$

still holds but now
before: $i \underline{\eta}_{j}=\frac{i \delta_{j}}{p^{2}}$ after : $i \eta_{j}=\frac{i j^{j} j}{p^{2}}$

$$
\begin{aligned}
& X_{i j}=-R_{i k j l}\left(D_{\mu} \phi\right)^{l /}\left(D_{\mu} \phi\right)^{l}-\nabla_{i} O_{j} V \\
& Y_{i j}^{\mu N}=R_{i j k l}\left(D^{\mu} \phi\right)^{k}\left(D^{\nu} \phi\right)^{l}+\nabla_{j} t_{\alpha_{i}} F_{\mu \nu}^{\alpha}
\end{aligned}
$$

[Alonso, Jenkins, Manohar, 2016]
[Helset, Jenkins, Manohar, 2023]

Example: Renorwatisetion of \&a theory

$$
\text { E.g. } \begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} t\right)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}-\Lambda \\
x & =\frac{\delta^{2} \alpha}{\delta \phi \delta \psi}=-m^{2}-\frac{\lambda}{2} \phi^{2}, y^{\mu \nu}=0
\end{aligned}
$$

So the counterterms ait one loop are

$$
\begin{aligned}
\Delta A^{(1)}= & -\frac{1}{4 \epsilon} x^{2}=-\frac{1}{4 \epsilon}\left(-m^{2}-\frac{\lambda}{2} \phi\right)^{2} \\
= & -\frac{m^{4}}{4 \epsilon}-\frac{\lambda m^{2}}{4 \epsilon} \phi^{2}-\frac{\lambda^{2}}{16 \epsilon} \phi^{4} \\
& z_{\Lambda} \quad z_{m} \quad z_{\lambda} \quad \text { and } z_{\phi}=1
\end{aligned}
$$

Instead of calculating

The Badkround Field Mowed at two leaps
Expand up to $O\left(\eta^{4}\right)$ and up to $O\left(\partial \eta^{2}\right)$

$$
\begin{aligned}
\mathcal{L}^{(x)}(k)= & A_{i j k} \eta^{i} \eta^{j} \eta^{k}+A_{j j k}^{\mu} D_{\mu} \eta^{i} \eta^{j} \eta^{k}+A_{j j k}^{\mu \nu} D_{\mu} \eta^{i} D_{\nu} \eta^{j} \eta^{k} \\
& +B_{j k k} \eta^{i} \eta^{j} \eta^{k} \eta^{l}+B_{i j k l}^{\mu} D_{\mu} \eta^{i} \eta^{j} \eta^{k} \eta^{l}+B_{j j k l}^{\mu v} D_{\mu} \eta^{i} D_{\nu} \eta^{j} \eta^{k} \eta^{e}
\end{aligned}
$$

Generic two -leap diagram is
sunset

or infinity

e.g.

- $A_{i j l}, B_{i j k l}$ are completely symmetric

$$
0 \quad \alpha^{(2)} \rightarrow \alpha^{(2)}+D_{\mu}\left(C_{i j k}^{\mu} \eta^{i} \eta^{j} \eta^{k}\right)+D_{\mu}\left(F_{i j k l}^{\mu} \eta^{i} \eta^{j} \eta^{k} \eta^{l}\right)
$$

to make $A_{(i j k)}^{\mu}=B_{(i j k e)}^{\mu}=0$. Can't do this for $A^{\mu N}, B^{\mu v}$.

The two - Leap conuterterms $\Delta K^{(2)}$

Dimensional anal psis

$$
\begin{aligned}
& {\left[D_{\mu}\right]=1 \quad[X]=[Y]=2 \quad[A]=1 \quad\left[A^{\mu}\right]=0 \quad\left(A^{M \sim}\right]=-1} \\
& {[B]=0 \quad\left[B^{\mu}\right]=-1 \quad\left[B^{\mu \nu}\right]=-2}
\end{aligned}
$$

Ausatz for $\Delta \kappa^{(2)}$

$$
\begin{aligned}
\Delta L^{(1)}= & A A D^{2}+A A X+A A Y+A^{M} A D^{3}+A^{\mu} A D X+\ldots \\
& +B D^{4}+B X D^{2}+B Y D^{2}+B X X+B X Y+B Y Y+B^{\mu} D^{5}+\ldots
\end{aligned}
$$

Any term can have multiple independent contractions

The two-leap counterterms $\Delta L^{(3)}$

$$
\begin{array}{r|l}
A A & D^{2} X Y \\
A^{\mu} A & D^{3} X D Y D \\
A^{\mu} A^{\mu} & D^{4} X D^{2} Y D^{2} X^{2} X Y Y Y \\
A^{\mu \nu} A & D^{4} X D^{2} Y D^{2} X^{2} X Y Y Y \\
A^{\mu N} A^{\mu} & D^{5} X D^{3} Y D^{3} X^{2} D X Y D Y Y D \\
A^{\mu \nu} A^{\mu N} & D^{6} X D^{4} Y D^{4} X^{2} D^{2} X Y D^{2} Y Y D^{2} X X X X X Y X Y Y Y Y Y \\
B & D^{4} X D^{2} Y D^{2} X X X Y Y Y \\
B^{\mu} & D^{5} X D^{3} \quad Y D^{3} X X D X Y O Y Y D \\
B^{m \sim} & D^{6} X X \quad X X D^{2} X Y D^{2} Y Y D^{2} X X X X X Y X Y Y Y Y Y
\end{array}
$$

Each cerresponds to a Green's function

The two - leap concterterms $\Delta \Omega^{(3)}$

E.g. $\quad A_{i j k} A_{i j k} Y \mu \mu=0, \quad A_{i j k}^{\mu} A_{i j k} D^{3}=0 \quad$ (D_{μ} presecres symmetry)
E.g. $\left(B \times D^{2}\right): \bigcap_{B} x$ scalelers \& power divergent

The two-leap consterterms $\Delta K^{(3)}$

Possible flaver centractions in $\left(A^{\mu} A \times D\right)$

but

$$
A_{i j k}^{\mu} A_{j k l} X_{i l} \quad A_{i j k}^{\mu} A_{i j e} X_{k l}
$$

$$
\left(A_{i j k}^{\mu}+A_{j k i}^{\mu}+A_{k i j}^{*}\right) A_{i j e} X_{k l}=0
$$

Flavor contractions in ($A^{\top} A^{n} X Y$)

\checkmark

3 independent contrections

The two-leap conaterterms $\Delta L^{(3)}$

Need to colculate 21 Green's functions.
E.g. want $B^{\mu} \times 4 D$ via $\left(B^{\mu} \times N\right)$

but both ($B^{n} \times D^{3}$) and ($B^{\mu} \times Y D$) centribute to ($B^{\mu} \times N$)
\rightarrow Gange inveriance clecks
E.g. $A^{M} A^{N} D^{4}, A^{\mu} A^{N} Y D^{2}$ can beth be determined from $A^{M} A^{N} \Psi Y$

Factoriscble garphs
Factorizable grephs only give n / ϵ^{2} poles

$$
\begin{aligned}
& I^{\sin 4}=\square^{2}+\square^{2}+\underbrace{2} \\
& =\left(\frac{I_{10}}{\epsilon}+I_{n f}\right)\left(\frac{I_{2 \infty}}{\epsilon}+I_{2 f}\right)+\left(\frac{I_{1 \omega}}{\epsilon}+I_{n f}\right)\left(-\frac{I_{20}}{\epsilon}\right)+\left(-\frac{I_{10}}{\epsilon}\right)\left(\frac{I_{2 \infty}}{\epsilon}+I_{2 f}\right) \\
& =-\frac{I_{n 1} I_{2 \omega}}{\epsilon^{2}}+I_{4 f} I_{2 f}
\end{aligned}
$$

Factoriscble graphs
k,l loop momenta, p_{i}, q_{i} external. Evaluate the loops separately.

$$
\begin{aligned}
I=O^{n} & =I_{n}^{\{\alpha\}}\left(k_{1},\{p\}\right) I_{2}^{\{\alpha\}}(e,\{q\}) \\
& =\left(\frac{1}{\epsilon} I_{n \infty}^{\{\alpha\}}(\{p\})+I_{1 f}^{\{\alpha\}}(\{p\})\right)\left(\frac{1}{\epsilon} I_{2 \infty}^{\{\alpha\}}(\{q\})+I_{2 f}^{\{\alpha\}}(\{q\})\right)
\end{aligned}
$$

The subtraction of subdivergences is

$$
\begin{aligned}
I_{\text {sub }} & =\bigodot^{1}+\bigodot^{2} \\
& =\left(\frac{1}{\epsilon} I_{n \infty}^{\{\alpha\}}(\{p\})+I_{1 f}^{\{\alpha\}}(\{p\})\right)\left(-\frac{1}{\epsilon} I_{20}^{\{n\}}(\{q\})\right) \\
& +\left(\frac{1}{\epsilon} I_{n=0}^{\{n\}}(\{p\})\right)\left(\frac{1}{\epsilon} I_{20}^{\{n\}}\left(\left\{_{q}\right\}\right)+I_{2 f}^{\{4\}}(\{q\})\right)
\end{aligned}
$$

So the subdinegence subtracted two-lcop integral is

$$
I_{\text {tot }}=I+I_{s u u_{0}}=-\frac{1}{\epsilon^{2}} I_{n \infty}^{\{\alpha\}}(\{p\}) I_{t o}^{\{\alpha\}}\left(\left\{_{q}\right\}\right)+I_{\text {if }}^{\{4\}}(\{p\}) I_{\text {if }}^{\{\alpha\}}(\{q\})
$$

Factoriseble gamps

Formula for subtracted 2-loop integral

$$
I+I_{s u u_{0}}=-\frac{n}{\epsilon^{2}} I_{n \infty}^{\{\alpha\}} I_{20}^{\{\alpha u\}}+I_{1 f}^{\{\alpha\}} I_{2 f}^{\{\alpha\}}
$$

\rightarrow predicts divergence
$\rightarrow \frac{1}{\epsilon}$ pole cancels, two-leep CT is purely $\frac{1}{\epsilon^{2}}$
\rightarrow does not affect RGE

But what if additional factor of ϵ in numerator?

Factoriseble gamps
Case 1: e generated by an individual loop.

$$
\eta_{\alpha 1}=d=4-2
$$

$$
\begin{aligned}
& O=\eta_{\uparrow}^{d}\left(\frac{I_{\infty}}{\epsilon}+I_{f}\right)=\frac{\varphi}{\epsilon} I_{\infty}+d I_{f}-2 I_{\infty} \\
& \text { from }\left(0_{\mu \eta} 0_{v \nu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bigcirc^{2}+\bigcirc^{2}+\bigodot^{2}=d\left(\frac{I_{1 \omega}}{\epsilon}+I_{1 f}\right)\left(\frac{I_{2 \omega}}{\epsilon}+I_{2 f}\right) \\
& +d\left(\frac{I_{1 \omega}}{\epsilon}+I_{1 f}\right)\left(-\frac{I_{2 \omega}}{\epsilon}\right)+4\left(-\frac{I_{1 \omega}}{\epsilon}\right)\left(\frac{I_{2 \omega}}{\epsilon}+I_{2 f}\right)=-\frac{4 I_{1 \omega \rho} I_{2 \omega}}{\epsilon^{2}}+\text { finite }
\end{aligned}
$$

\rightarrow minimal subtenction gives no $\frac{1}{6}$ pole. Nice.

Factorizeble graphs
Case 2: E geverated after combining both leeps

$$
\text { E.S. if } I_{1}^{\alpha \beta}=\eta^{\alpha \beta} I_{n}, I_{2}^{\alpha \beta}=\eta^{\alpha \beta} I_{2}
$$

$$
\overbrace{}^{2}+\overbrace{}^{2}=-\frac{1}{\epsilon^{2}} I_{1}^{\alpha \beta} I_{2}^{\alpha \beta}=-\overbrace{\epsilon^{\alpha} \alpha}^{\frac{\alpha^{2}}{4-2 \epsilon}} I_{1} I_{2}
$$

\rightarrow factorizable topologies gewirate $\frac{1}{\epsilon}$ pales.
But suppose we split

$$
\mathcal{L}_{\text {aff }}=\hat{\mathcal{L}}_{\text {aff }}+\hat{\alpha}_{\text {aff }}
$$

Now
$\mathcal{L}_{\text {aff }}^{-}$geveretes $\bar{q}^{\alpha} \alpha=4 \quad \rightarrow$ no effect on RGE
$\mathcal{L}_{\text {eff }}^{n}$ geverates $\hat{q}_{\alpha}^{\alpha}=-2 \epsilon \rightarrow \begin{aligned} & \text { no effect on } R G E \text { when } \\ & \text { we deviate from MS }\end{aligned}$
[Dugen, Grinstein, 199t]

Factoriteble gauphs
Therefor factorizable 2-leep diogrums do not affect RGES. Example 1 :

no effect

[Machacek, Vaughn, 1985]
affects $R G E$

Exauple 2:

$\sim_{m} \rightarrow$ no φ^{a} coefficients in $\gamma_{:}^{(2)}, \gamma_{\theta_{\text {acb }}^{(2)}}^{(2)}$ \rightarrow no φ^{a} coefficients in $\gamma_{G}^{(2)} \cdot \gamma_{\tilde{G}}^{(2)} \cdot \gamma_{\omega}^{(2)} \cdot \gamma_{\tilde{\omega}}^{(2)}$
[Bern, Parra-Martinet, Sawyer, 2020]

Factorizchle gaaphs
Argument geveralizes to arbitrary loop order
E.g. $\bigcirc^{2}+\ldots \mathrm{CT} . .=\frac{I_{1 \infty} I_{20} I_{30}}{\epsilon^{3}}+$ finite
E.S.

E.g.

With $I_{\text {aco }}$: the subdiveganense subtracted (local) diuggences of diag 1 .
\rightarrow prediet sultracted divesgences of factorizalle graphs
Facterizable Graphs do not centribute to RGES

Factoriteble gamphs

At 3 loops:

5

6

Don-facterizelle graphs (AA)

AA graphs produce the $\frac{1}{\epsilon}$ poles which give RGES. E.g. $A^{\mu} A^{N} \times X$:

Requires additional 1-leep counterterms
$\Delta R_{a}^{(1)} \quad \supset \quad A^{\mu} \times A^{\nu} \eta \eta+A^{\mu} A^{N} \eta \eta D^{2}$

Don-facterizelle grapples (AA)
Can find $\Delta C_{Q}^{(2)}$ algebraically

$$
\begin{aligned}
\mathcal{L}^{(2)} & =A_{i j k} \eta^{i} \eta^{j} \eta^{k}, \text { shift again: } \eta_{i} \rightarrow q_{i}+x_{;} \\
\alpha^{(2)} & =A_{i j k}\left(\eta^{i}+x^{i}\right)\left(\eta^{j}+x^{j}\right)\left(\eta^{k}+x^{k}\right) \\
& =O\left(x^{0}\right)+O\left(x^{i}\right)+3 A_{i j k} x^{i} x^{j} \eta^{k}+\ldots
\end{aligned}
$$

Apply the 't Hooft formula grain:

$$
\begin{aligned}
& x_{i j}[\psi, \eta]=6 A_{i j k}[k] \eta^{k} \\
& \Delta K_{Q}^{(1)} \supset-\frac{1}{4 \epsilon} x_{i j} x_{j i}=-\frac{g}{\epsilon} A_{i j k} A_{j j e} \eta^{\mu} \eta^{l}
\end{aligned}
$$

Determined all $\Delta K_{Q}^{(1)}$ this way, checked cancellation

Practical calculation

- Start with first nonvanishing Green's function
- Generate diagrams with graf
- Calculate UU divergences using

$$
\frac{1}{(q+p)^{2}-m^{2}}=\frac{1}{q^{2}-m^{2}}+\frac{m^{2}-p^{2}-2 p \cdot q-m^{2}}{q^{2}-m^{2}} \frac{1}{(q+p)^{2}-m^{2}}
$$

- Identify divergent subgraphs \rightarrow add terms to $\Delta \alpha_{Q}^{(\cdot)}$
- Evaluate 1-lecp integrals with package - X
- Make sure new-eocel terms cancel, using form
- Map local divergences to $\Delta \mathscr{L}^{(2)}$
(Nequeira, 1993] [clutyrkin, Misiak, Mnenz, 1997]
[Patel, 2015] [Vermasereh, 2000]

Result

$$
\begin{aligned}
\Delta \alpha^{(2)}= & -\frac{3}{4 \epsilon} D_{\mu} A_{i j k} D_{\mu \mu} A_{i j k}+\left(\frac{9}{2 \epsilon^{2}}-\frac{9}{2 \epsilon}\right) A_{i j k} A_{i j \ell} X_{k l}+\frac{3}{\epsilon^{2}} B_{i j k l} X_{i ;} X_{k l} \\
& + \text { terms with } A^{\mu}, B^{\mu} \cdot B^{\mu n}
\end{aligned}
$$

the 2-loop ceunterterm for cay scales theory (with he wore than 2 derivatives)

Application to $O(N)$ model

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left(D_{\mu} \phi_{i}\right)^{2}-\frac{m^{2}}{2} \phi_{i}^{2}-\frac{\lambda}{4}\left(\phi_{i}^{2}\right)^{2} \\
& \frac{\delta \sigma^{\prime}}{\delta \phi_{:}}=-m^{2} \psi_{i}-\lambda \phi \cdot \psi \phi_{i}, \quad x_{i j}=\frac{\delta^{2} \alpha}{\delta \phi_{i} \delta \phi_{j}}=-m^{2} \delta_{i j}-\lambda\left(2 \phi_{i} \phi_{j}+\phi \cdot \phi \delta_{i j}\right) \\
& \Delta \alpha^{(n)}=-\frac{1}{4 \epsilon} X_{i j} X_{j i}=-\frac{1}{4 \epsilon} N_{m}^{2}-\frac{1}{2}(N+2) \lambda m^{2}(\phi+\psi)-\frac{1}{4}(N+8) \lambda^{2}(\phi-\phi)^{2} \\
& A_{i j k}=\frac{1}{3!} \frac{\delta^{3} \delta}{\delta \phi_{i} \delta \phi_{j} ; \phi_{k}}=-\frac{1}{3} \lambda\left(\delta_{i j} \phi_{k}+\delta_{i k i} \phi_{j}+\delta_{j k} \phi_{i}\right) \\
& B_{i j k l}=\frac{1}{4!} \frac{\delta^{4} \alpha}{\delta 4_{i} \delta \delta_{j} \delta \alpha_{k}} \delta \delta_{l}=-\frac{1}{12} \lambda\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j e}+\delta_{i l} \delta_{j k}\right) \\
& \Delta L^{(2)}=-\frac{3}{4 \epsilon} D_{\mu} A_{i j k} D_{\mu} A_{i j k}+\left(\frac{9}{2 \epsilon^{2}}-\frac{9}{2 \epsilon}\right) A_{i j k} A_{i j \ell} x_{k l}+\frac{3}{\epsilon^{2}} B_{i j k l} x_{i ;} x_{k l} \\
& =-\frac{1}{4 \epsilon}(2+N) \lambda^{2}\left(D_{\mu} \cdot t\right)^{2}-\frac{3}{2 \epsilon}(2+N) \lambda^{2} m^{2} \phi \cdot \psi \\
& -\frac{1}{2 \epsilon}(22+5 N) \lambda^{3}(k \cdot f)^{2}+\ldots \frac{1}{\epsilon^{2}} \text { poles }
\end{aligned}
$$

\rightarrow extract $z_{\phi}, z_{m}, z_{\lambda}$. Agrees with 2-Coop SM RGE.

Conclusions

- Geometry + BF method allows algebraic renormalization
- We extend the approach to two loops
- Our results give $\Delta C^{(2)}$ for scalar EfT with ≤ 2 derivatives
- Results are most efficiently used in geometric formalism \rightarrow talk by Amesh on Monday
- Found formula for subdivergence subtraction of factorizable graphs
- Predicts some zeros in RGEs at arbitrary leep order
?

Backup: $O(N)$ mode \& Gcountry
Egg. take $O(N)$ model and add $O_{\text {HO }}$:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right) \cdot\left(\partial_{\mu} \phi\right)+\frac{m_{M}^{2}}{4} \phi \cdot \psi-\frac{\lambda}{4}(\phi \cdot \phi)^{2}-c_{H D}\left(\phi \cdot \partial_{\mu} \phi\right)\left(\phi \cdot \partial_{\mu} \phi\right)
$$

Read off $g_{j i}(\phi)=\delta_{i j}-2 c_{m B} \phi_{i} \phi_{j}, \quad V(\psi)=-\frac{m_{m}^{2}}{4} \psi \cdot \psi+\frac{\lambda}{4}(\phi \cdot \phi)^{2}$
Do some alglira on μ

$$
\begin{aligned}
& \Gamma_{i j}^{k}=\frac{1}{2} g^{k n}\left(\partial_{i} g_{j n}+\partial_{j} j_{i n}-\partial_{n} g_{i j}\right)=-2 c_{n B} \not k^{k} \delta_{i j} \\
& R_{i j k l}=\ldots=2 c_{n o}\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j e}\right)
\end{aligned}
$$

Find

Backup

Badkup: Factorizable diagams

$$
\begin{aligned}
& R\left(G_{1}\right)=\bar{R}(G)+\Delta(G) \\
& \left.\bar{R}\left(G_{1} G_{2}\right)=\begin{array}{cc}
& R\left(G_{1} G_{2}\right)-\Delta\left(G_{1} G_{2}\right) \\
& \imath_{\text {finite }}
\end{array}\right\rangle \quad \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)
\end{aligned}
$$

E.g.

Backup: Extraction of WU divergences

$$
D_{1}=4+u_{1}-2 b_{1}-2 b_{3}
$$

$$
\begin{aligned}
& D_{2}=a+n_{2}-2 b_{2}-2 b_{3} \\
& D_{3}=a+h_{1}+h_{2}-2 b_{1}-2 b_{2} \\
& D_{\text {ch }}=8+h_{1}+h_{2}-2 b_{1}-2 b_{2}-2 b_{3} \\
& \begin{array}{l}
\text { trovads tadpoles } \\
1^{\circ} 02^{0} 3^{\circ} O n^{0}+n^{-1} 2^{0} 3^{-} O A^{-}
\end{array} \frac{1}{(q+p)^{2}-m^{2}}=\frac{1}{q^{2}-m^{2}}+\frac{m^{2}-p^{2}-2 q p-m^{2}}{q^{2}-m^{2}} \frac{1}{\left(q+p^{2}-M^{2}\right.} \\
& \begin{array}{l}
\text { tomends }(1-\text {-cuq) })^{2} \\
1^{\circ} 2^{+\pi} 3^{-0} 0 \pi^{\circ}+11^{-} 2^{+}+3^{0} 0 A_{1}^{0}
\end{array} \frac{1}{\left(h_{1}+q_{2}\right)^{2}-\mu^{2}}=\frac{1}{k_{1}^{2}-m^{2}}+\frac{h^{2}-q_{2}^{2}-2 k_{1}-q_{2}-m^{2}}{k_{1}^{2}-m^{2}} \frac{1}{\left(k_{1}+q_{2}\right)^{2}-\mu^{2}}
\end{aligned}
$$

Backup: 2-Loop RGEES

$$
\mathcal{L}=\sum_{i} C_{i}^{\text {bare }} O_{i}, \quad c_{i}^{\text {bare }}=\mu^{n ; \epsilon}\left(c_{i}+\delta_{i}\right), \quad \delta_{i}=\sum_{l=1}^{\infty} \sum_{n=0}^{\frac{1}{\epsilon^{p o b e}} \text { el lops }} \frac{q^{(C, n)}}{\epsilon^{n}}
$$

Using $\mu \frac{d}{d \mu} c_{i}^{b a r e}=0$ and topological identities

$$
\begin{aligned}
& \dot{c}_{i}^{(n)}=2 a_{i}^{(1,1)} \\
& \dot{c}_{i}^{(2)}=4 a_{i}^{(2,1)}-2 a_{j}^{(1,0)} \frac{\partial a_{i}^{(1,1)}}{\partial c_{j}}-2 a_{j}^{(1,1)} \frac{\partial a_{i}^{(1,0)}}{\partial c_{j}}
\end{aligned}
$$

where $\dot{C}=\mu \frac{d}{d \mu} c$.
\rightarrow depends on finite rencrmalizations
\rightarrow sdreme dependence in REs @ two loops

Badiop: Permutation symactries

Why can we assume $N_{i j}=-N_{j:}$? Start with generic \tilde{N}^{μ} :

$$
\begin{aligned}
& 0=\partial_{\mu}\left(\tilde{N}_{i j}^{\mu} \phi_{i} \phi_{j}\right)=\partial_{\mu} \tilde{N}_{\dot{j}}^{\mu} \phi_{:} \phi_{j}+\tilde{N}_{j j}^{\mu} \partial_{\mu} \phi_{i} \phi_{j}+\hat{N}_{;}^{\mu} \phi_{i} \delta_{\mu} \psi ; \\
& \alpha \supset N^{\mu} \partial_{\mu} \phi \phi+\frac{1}{2} \times \phi \phi+
\end{aligned}
$$

Backup: Permutation symmetries

Covariant derivatives

$$
D_{a} T_{i j \ldots}=\partial_{a} T_{i j \ldots}-\Gamma_{a i}^{k} T_{k j \ldots}-\Gamma_{a j}^{k} T_{i k} \ldots-\ldots
$$

preserve tensor symmetries.
Proof for $T_{j F}=T_{j j}$:

$$
\nabla_{a} T_{j i}=\partial_{a} T_{j i}-\Gamma_{a j}^{k} T_{k i}-\Gamma_{a i}^{k} T_{j k}=\partial_{a} T_{j j}-\Gamma_{a j} T_{i k}-\Gamma_{a i} T_{k j}=D_{a} T_{j j}
$$

General proof: Switch to RNC where $g_{j j}=\delta_{j j}$ and $\Gamma_{j k}^{i}=0$.
Then $D_{a} T_{j, \ldots j_{n}}^{i, \ldots . i_{n}}=\partial_{a} T_{j n \ldots j_{n}}^{i, \ldots . i_{n}} \rightarrow$ statement trivial
\rightarrow also holds for unnlititerm symmetries like $A_{(j k)}^{\mu}=0$

