A global fit at 1-loop the easy way VLQs for BSM

Matthew Kirk
ICCUB, Barcelona

ICCUB

Institut de Ciències del Cosmos
EFT2023, MITP - 1 Sep 2023
(based on 2204.05962, 2212.06862 with Crivellin, Kitahara, Mescia)

Outline

- Some motivation for VLQs
- And why 1-loop is important
- How we did 1-loop calculations
- First the hard way, and then the easy way
- Putting everything in the fit
- The physics results

Motivations for vector-like fermions

- Appear in many BSM theories - GUTs, extra dimensions, composite Higgs
- Can explain $(g-2)_{\mu}, b \rightarrow s \ell \ell, C A A, \ldots$
- Not currently ruled out by experiment (unlike heavy chiral fermions)

Vector-like fermions (VLFs)

- Left and right components have same gauge charges
- Allows to directly write a mass term in the Lagrangian
- Not limited to electroweak scale

VLQs

- But after EW symmetry breaking, can mix with the SM quarks
- So all VLQs cause shifts in many processes, already tree level!
- And of course even more @ 1-loop!

Vector-like quarks (VLQs)

Name	U	D	Q_{1}	Q_{5}	Q_{7}	T_{1}	T_{2}
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$	$(3,3)_{\frac{2}{3}}$

- Lots of different representations, so can mix (and therefore affect) lots of quark processes

$$
\begin{align*}
-\mathcal{L}_{\mathrm{VLQ}} & =\xi_{f i}^{U} \bar{U}_{f} \tilde{H}^{\dagger} q_{i}+\xi_{f i}^{D} \bar{D}_{f} H^{\dagger} q_{i}+\xi_{f i}^{u} \bar{Q}_{f} \tilde{H} u_{i}+\xi_{f i}^{d} \bar{Q}_{f} H d_{i} \tag{3.5}\\
& +\xi_{f i}^{Q_{5}} \bar{Q}_{5, f} \tilde{H} d_{i}+\xi_{f i}^{Q_{7}} \bar{Q}_{7, f} H u_{i}+\frac{1}{2} \xi_{f i}^{T_{1}} H^{\dagger} \tau \cdot \bar{T}_{1, f} q_{i}+\frac{1}{2} \xi_{f i}^{T_{2}} \tilde{H}^{\dagger} \tau \cdot \bar{T}_{2, f} q_{i}+\text { h.c. }
\end{align*}
$$

Vector-like quarks (VLQs)

- Lots of different representations, so can mix (and therefore affect) lots of quark processes
- Mix with 2nd/3rd gen up-type $=>$ enhanced $t \rightarrow c Z$ plus $b \rightarrow$ sll (2204.05962)
- Mix with 1st/2nd gen up- or down-type => CAA (2212.06862)

$$
b \rightarrow s \ell \ell
$$

- Even now R_{K} seems SM like, still plenty of tension in $b \rightarrow s \mu \mu$ measurements
- Even better for VLQs - no need to do anything fancy on the lepton side

CAA?

- Cabibbo Angle Anomaly
- Recent (since 2018ish) changes to $V_{u d}$ and $V_{u s}$ determinations mean there is now a roughly
3σ discrepancy between experiments and the relationship predicted by the $\mathrm{SM}=>V_{u d}^{2}+V_{u s}^{2}=1$

2017

VLQs at tree level

- Affect Z and W decays => lots of effects
- E.g.
- Flavour changing Z vertex
- Modified W vertex

VLQs at 1-loop

- B_{s} mixing (or meson mixing in general)
- Radiative decays
- W mass

VLQs at 1-loop

- B_{s} mixing (or meson mixing in general)
- Radiative decays
- W mass

VLQs at 1-loop

- B_{s} mixing (or meson mixing in general)
- Radiative decays
- W mass

VLQs at 1-loop

- Also further modified gauge couplings
- E.g. at tree level the U VLQ only modifies Zuu vertex, but @ 1-loop also modifies $Z d d$
- So can give effects in $Z b b$ or $Z b s$ for example

VLQs at 1-loop

- ϵ_{K} from modified $Z s d$
- With real BSM couplings, no imaginary contribution to $\Delta F=2$ SMEFT coefficients
- But 1-loop matching from SMEFT to WET picks up phase from SM penguin (see $1612.08839,1703.04753$)

(a)

(b)

(c)

(d)

(e)

Calculating 1-loop effects

- Fixed order way
- Directly calculated every observable
- Large logs common e.g. B mixing: $\log \left(M / m_{t}\right)$

Calculating 1-loop effects

- EFT way
- VLQs have mass far above SM scale
- Exp limit is 1.3 TeV for 3rd gen quark couplings 1808.02343
- For 1st or 2nd gen, limit is similar 2006.07172
- So integrate them out and use the SMEFT

SMEFT

- "Factorises" calculations
- Match UV to SMEFT \rightarrow RG in SMEFT (\rightarrow match SMEFT to LEFT \rightarrow RG in LEFT) \rightarrow observables in terms of WCs

SMEFT

- "Factorises" calculations
- Match UV to SMEFT \rightarrow RG in SMEFT (\rightarrow match SMEFT to LEFT \rightarrow RG in LEFT) \rightarrow observables in terms of WCs
- Each step is independent

SMEFT

- Match UV to SMEFT
- Model dependent
- RG in SMEFT
- Alonso, Jenkins, Manohar, Trott
- Match SMEFT to LEFT
- Jenkins, Manohar, Stoffer \& Dekens, Stoffer
- Jenkins, Manohar, Stoffer
- Plus higher orders in QCD
- Observables in terms of WCs
- Everyone

SMEFT

- Match UV to SMEFT
- Until recently, by hand
- RG in SMEFT:
- DsixTools, wilson
- Match SMEFT to LEFT
- RG in LEFT
- DsixTools, wilson
- Observables in terms of WCs
- flavio,EOS
- DsixTools, wilson

1-loop SMEFT \rightarrow LEFT

- ϵ_{K} from modified $Z s d$
- But 1-loop matching from SMEFT to WET picks up phase from SM penguin (see 1612.08839, 1703.04753)

- This automatically included if you remember to turn on 1 -loop matching in wilson (which is off by default)

Matching to the SMEFT

- Tree level easy
- $C_{H q}, C_{u H}$
- 1 loop harder
- See hep-ph/9310302, 2003.12525, 2003.05936, 2107.12133, ...

VLQs @ 1-loop

- We spent about 3 months trying to calculate all the coefficients
- (where by "all" I mean the ones we thought were relevant!)
- Lots learnt along the way

VLQs @ 1-loop

- Finite and log parts comparable!
- E.g. for B_{s} mixing, divergent box with VLQ and top gives something like $3+4 \log \left(M_{\mathrm{VLQ}} / m_{t}\right)$
- Log you can get from RG running
- But finite part is new from 1-loop matching

VLQs @ 1-loop

- Also unexpected cancellations:
- B_{s} mixing:
- $\frac{\xi^{4}}{M^{2}}$ vs $\frac{8 \xi^{2} y_{\text {top }}^{2} V_{t b} V_{t s} \log \left(M / m_{t}\right)}{M^{2}}$
- Accidental at our considered coupling and masses

VLQs @ 1-loop

- Also unexpected cancellations:
$-b \rightarrow s \gamma$:
- $C_{7 \gamma}\left(M_{W}\right) \sim C_{d(B, W)}+\frac{1}{16 \pi^{2}} C_{H q}$

$$
=0.2 \frac{\xi^{2}}{M^{2}}-0.15 \frac{\xi^{2}}{M^{2}}
$$

- More robust cancellation

MatchMakerEFT

- Dec 2021 - paper on arXiv 2112.10787
- UV theory specified in terms of FeynRules .fr file
- Matching then proceeds totally automatically

MatchMakerEFT

- Dec 2021 - paper on arXiv 2112.10787
- UV theory specified in terms of FeynRules .fr file
- Matching then proceeds totally automatically Other matching software is available!

VLQs in MatchMakerEFT

```
M$ClassesDescription = {
F[101] == {
```

[101] == \{
ClassName
Indices
SelfConjugate
QuantumNumbers
Mass
Fullname
\};
\};
M\$Parameters = \{
xiQ7 == \{
ParameterType
Indices
ComplexParameter
-> Internal,
-> \{Index[Generation]\} -> True
\},
MQ7 == \{
ParameterType
ComplexParameter -> Internal, > False

```
(* ***************************** *)
(* ***** Lagrangian ***** *)
(* *************************** *)
gotoBFM={G[a__]->G[a]+GQuantum[a],Wi[a__]->Wi[a]+WiQuantum[a],B[a__]->B[a]+BQuantum[a]};
LHeavy := Block[{mu}
    +I*(VLQQ7bar.Ga[mu].DC[VLQQ7, mu])-MQ7*VLQQ7bar.VLQQ7
    ]/.gotoBFM;
LHeavylight := Block[{sp1,ii,jj,kk, aa,cc,ff1,yuk},
    yuk = -xiQ7[ff1] VLQQ7bar[sp1, ii, cc] UR[sp1, ff1, cc] Phi[ii]
    yuk+HC[yuk]
];
LNP := LHeavy + LHeavylight;
Ltot := LSM + LNP;
```


VLQs in MatchMakerEFT

- Quick, no supercomputer needed!
- All algebraic

VLQs in MatchMakerEFT

```
alpha0uG[mif1_, mif2_] }->\frac{*}{192MQ\mp@subsup{7}{}{2}\mp@subsup{\pi}{}{2}}\mathrm{ onelooporder
    (-3g3 xiQ7[mif2] xiQ7bar[fl1] yu[mif1, fl1]-g3 xiQ7[mif2] xiQ7bar[mif3] yu[mif1,mif3]),
alphaOuW[mif1_, mif2_] ->0, alphaOuB[mif1_, mif2_] ->0,
alpha0dG[mif1_, mif2_] }->0
alpha0dW[mif1_, mif2_] ->0,
lphaOdB[mif1 mif2 ] 0,
alpha0eW[mif1_, mif2_] }->0
alpha0eB[mif1_, mif2_] ->0,
alphaOHq1[mif1_, mif2_] }->\frac{1}{17280 MQ\mp@subsup{7}{}{2}\mp@subsup{\pi}{}{2}
onelooporder (135 xiQ7[fl1] xiQ7bar[fl2] yu[mif1, fl2] yubar[mif2,fl1] +
    270 Log[\frac{MQ7\mp@subsup{7}{}{2}}{\mp@subsup{\mu}{}{2}}]\times{QQ[fl1]\timesxiQ7bar[fl2] yu[mif1,fl2]\timesyubar[mif2,fl1] +
    135 xiQ7[fl1] xiQ7bar[mif3] yu[mif1,mif3] yubar[mif2, fl1] +
    135 xiQ7[mif3] xiQ7bar[fl1] yu[mif1, fl1] yubar[mif2,mif3] +
    180 xiQ7[mif4] xiQ7bar[mif3] yu[mif1,mif3] yubar[mif2,mif4]), alphaOHq3[mif1_, mif2_] )
|
    15 xiQ7[mif3] xiQ7bar[fl1] yu[mif1, fl1] yubar[mif2, mif3]
    20 xiQ7[mif4] xiQ7bar[mif3] yu[mif1,mif3] yubar[mif2,mif4]),
alphaOHu[mif1_, mif2_] }->\frac{xiQ7[mif2]\timesxiQ7bar[mif1]}{2 MQ7 }\mp@subsup{}{}{2
    onelooporder (-2700 MQ72xiQ7[fl1]\timesxiQ7[mif2] xiQ7bar[fl1]\timesxiQ7bar[mif1] +
    3240MQ\mp@subsup{7}{}{2}\operatorname{Log}[\frac{MQ\mp@subsup{7}{}{2}}{\mp@subsup{\mu}{}{2}}]\times\textrm{xQQ7[fl1]\timesxiQ7[mif2] xiQ7bar[fl1]\timesxiQ7bar[mif1]-1620 MQ7 }\mp@subsup{}{}{2}\times\textrm{xiQ7 [MIF1]}
```


MatchMakerEFT \rightarrow smelli

- From MatchMakerEFT we get algebraic expressions for the WCs at 1-loop, in nice simple format (i.e. with generic indices, and repeated indices for summation)
- In smelli (well wilson) need to specify each specific WC, in the non-redundant basis

MatchMakerEFT \rightarrow smelli

MJKirk commented on Oct 26, 2022
Contributor
When matching from a UV theory onto the SMEFT, often one gets pretty simple generic formulas for the SMEFT coefficients. As an example, take this from the wilson paper (bottom of page 9)
$\left[C_{l q}^{(1)}\right]_{i j k l}=\lambda_{i j}^{\ell} \lambda_{k l}^{q} C_{1}$,

$$
\left[C_{l q}^{(3)}\right]_{i j k l}=\lambda_{i j}^{\ell} \lambda_{k l}^{q} C_{3} .
$$

But actually typing out all the coefficients is tedious and error prone. Again from there, you give the example code
from wilson import Wilson
11 _33
w = Wilson(f',1q3_3333': 11_33 * 1q_33 * C3,
1q1_3333': 11_33 * 1q_33 * C1,
scale=Lambda, eft='SMEFT', basis='Warsaw,
If I'm correct, there are actually another 17 coefficients hidden in that "..." that you didn't bother to type out, and of course you have to remember which are the non-redundant ones.
https://github.com/wilson-eft/ wilson/issues/105

Instead, it's pretty easy to use the following code

```
\# Some example values
\(11 \_33=1\)
\(1 q-33=1\)
1q_ \(33=1\)
\(1123=0.2\)
\(11 \_23=0.2\)
1q_23 \(=-0.1\)
C1 \(=-0.05\)
\(11=\) np.array \(\left(\left((0,0,0),\left(0,11 \_23^{* *} 2,11 \_23\right),\left(0,11 \_23,11 \_33\right)\right)\right)\)
\(1 q=n p . a r r a y\left(\left((0,0,0),\left(0,1 q \_23^{* *} 2,1 q \_23\right),\left(0,1 q \_23,1 q \_33\right)\right)\right)\)
\(1 q 1=C 1 \times n p . e 1 n s u m(11, k 1->1 j k 1,11,1 q)\)
C193 = C1*np. einsum("ij kl->ijkl", 11, 19)
```

to generate all the wilson coefficients (in what should be the basis where coefficients have the same symmetries as the operators).
Then you can do

MatchMakerEFT \rightarrow smelli

- Useful: numpy.einsum
- Einstein summation convention in Python
- $C_{i j k l}=\xi_{i} \xi_{l}\left(Y^{u}\right)_{j k}$

Real life example

SMEFT modified boson WCs	s expression
alphaOHq1 [i, j]	$\frac{x i U[j] \times x i U b a r[i]}{4 \mathrm{MVLQU}^{2}}$
alphaOHq3 [i, j]	$-\frac{x i U[j] \times x i U b a r[i]}{4 \mathrm{MVLQU}^{2}}$
alphaOHu [i, j]	\bigcirc
alphaOHd [i, j]	\bigcirc
alphaOHud [i, j]	\bigcirc
SMEFT DF=2 WCs ex	expression
alphaOqq1[i, j, k, l]	$\frac{\operatorname{xiU}[j] \times x i U[l] \times x i U b a r[i] \times x i U b a r[k]}{256 \mathrm{MVLQU}^{2} \pi^{2}}+\frac{3 \times i U[l] \times x i U b a r[k] \times y u[i, f l 1] \times y u b a r[j, f l 1]}{512 M V L Q U^{2} \pi^{2}}+\frac{3 \times i U[j] \times x i U b a r[i] \times y u[k, f l 1] \times y u b a r[l, f l 1]}{512 M V L Q U^{2} \pi^{2}}$
alphaOqq3 [i, j, k, l]	$\frac{x i U[j] \times i U[l] \times x i U b a r[i] \times i U b a r[k]}{256 \mathrm{MVLQU}^{2} \pi^{2}}+\frac{3 \times i U[l] \times x \operatorname{Ubar}[k] \times y u[i, f l 1] \times y u b a r[j, f l 1]}{512 \mathrm{MVLQU}^{2} \pi^{2}}+\frac{3 \times i U[j] \times x i U b a r[i] \times y u[k, f l 1] \times y u b a r[l, f l 1]}{512 \mathrm{MVLQU}^{2} \pi^{2}}$
alphaOqu1[i, j, k, l]	$-\frac{3 \times i U[j] \times x i U b a r[i] \times y u[f l 1, l] \times y u b a r[f l 1, k]}{128 \mathrm{MVLQU}^{2} \pi^{2}}-\frac{x i U[f l 1] \times x i U b a r[f l 1] \times y u[i, l] \times y u b a r[j, k]}{96 \mathrm{MVLQU}{ }^{2} \pi^{2}}$
alpha0qu8[i, j, k, l]	$\frac{\mathrm{xiU}[f l 1] \times x i U b a r[f l 1] \times y \mathrm{y}[\mathrm{i}, \mathrm{l}] \times \text { yubar }[\mathrm{j}, \mathrm{k}]}{16 \mathrm{MVLQU}^{2} \pi^{2}}$
alphaOuu[i, j, k, l] ¢	0

Real life example

SMEFT modified boson WCs	s expression
alphaOHq1 [i, j]	$\frac{\mathrm{xiU}[\mathrm{j}] \times \mathrm{xiUbar}[\mathrm{i}]}{4 \text { MVLQU }^{2}}$
alphaOHq3 [i, j]	$-\frac{x i U[j] \times x i U b a r[i]}{4 \mathrm{MVLQU}^{2}}$
alphaOHu[i, j]	\bigcirc
alphaOHd [i, j]	0
alphaOHud [i, j]	\bigcirc
SMEFT DF=2 WCs	expression
alphaOqq1[i, j, k, l]	$-\frac{x i U[j] \times \text { xiU[l] } \times \text { xiUbar [i] } \times \text { xiUbar }[k]}{256 \mathrm{MVLQU}{ }^{2} \mathrm{~m}^{2}}+\frac{3 \times i l}{}$
alpha0qq3[i, j, k, l]	$-\frac{\operatorname{xiU}[\mathrm{j}] \times \mathrm{xiU}[\mathrm{l}] \times \mathrm{xiUbar}[\mathrm{i}] \times \mathrm{xiUbar}[\mathrm{k}]}{256 \mathrm{MVLQU}^{2} \pi^{2}}+\frac{3 \times i \mathrm{l}}{}$
alphaOqu1[i, j, k, l]	$-\frac{3 \times i U[j] \times x \operatorname{Ubar}[i] \times \operatorname{yu}[f l 1, l] \times \text { yubar }[f l 1, k]}{128 M V L Q U^{2} \pi^{2}}$
alphaOqu8[i, j, k, l]	$-\frac{\operatorname{xiU}[f l 1] \times x i U b a r[f l 1] \times y u[i, l] \times \text { yubar }[j, k]}{16 M V L Q U^{2} \pi^{2}}$
alphaOuu[i, j, k, l]	\bigcirc

```
def wc fct Uonly(wCs):
    xiU_1, xiU_2 = wcs
    xiU = np.array((xiU_1, xiU_2, 0))
    phiq1 = (1/4) * np.einsum("i,j->ij", xiU, xiU) / MVLQ**2
    phiq3 = -(1/4) * np.einsum("i,j->ij", xiU, xiU) / MVLQ**2
    phiu = 0
    phid = 0
    phiud = 0
    # DF=2 coefficients
    qq1 = (-1 * np.einsum("i,j,k,l->ijkl", xiU, xiU, xiU, xiU) / (256 * _loopfactor)
    +3 * np.einsum("k,l,iA,jA->ijkl", xiU, xiU, _yu, _yubar) / (512 * _loopfactor)
    +3 * np.einsum("i,j,kA,lA->ijkl", xiU, xiU, _yu, _yubar) / (512 * __loopfactor) )
qq3 = (-1 * np.einsum("i,j,k,l->ijkl", xiU, xiU, xiU, xiU) / (256 * _loopfactor)
    +3 * np.einsum("k,l,iA,jA->ijkl", xiU, xiU, _yu, _yubar) / (512 * _loopfactor)
    +3 * np.einsum("i,j,kA,lA->ijkl", xiU, xiU, _yu, _yubar) / (512 * _loopfactor) )
qu1 = (-3 * np.einsum("i,j,Al,Ak->ijkl", xiU, xiU, _yu, _yubar) / (128 * _loopfactor)
    -1 * np.einsum("A,A,il,jk->ijkl", xiU, xiU, _yu, _yubar) / (96 * _loopfactor) )
qu8 = -1 * np.einsum("A,A,il,jk->ijkl", xiU, xiU, _yu, _yubar) / (16 * _loopfactor)
uu = 0
wc_arrays = {"phiq1": phiq1, "phiq3": phiq3, "phiu": phiu, "phid": phid, "phiud": phiud,
    qq1": qq1, "qq3": qq3, "qu1": qu1, "qu8": qu8, "uu": uu}
    return C_arrays_to_C_wcxf(wc_arrays)
```


Future

- As I understand it, "MatchingDB" has this function built in

Future

- As I understand it, "MatchingDB" has this function built in
- Project by Juan Carlos Criado \& Jose Santiago (see talk @ SMEFT-Tools 2022 or Gitlab docs)
- Database to contain tree and loop level matching coefficients analytically, plus python interface

Future

- As I understand it, "MatchingDB" has this function built in

2 with_smelli.py 439 B

```
import numpy as np
import smelli
from matchingdb import JsonDB
gl = smelli.GlobalLikelihood()
db = JsonDB.load("smeft_dim6_tree.json")
evaluator = db.select_terms(
    fields=["B"], output_format="numeric", parameters={"gphiB", "M_B"}
)
coeff_values = evaluator({"gphiB": np.array([0.3]), "M_B": np.array([2000.0])})
pp = gl.parameter_point(coeff_values, scale=1000)
df = pp.obstable()
print(df.sort_values("pull SM", ascending=True))
```


Future

- As I understand it, "MatchingDB" has this function built in
- And there is a plan for MatchMakerEFT \rightarrow MatchingDB export
- Final piece of the puzzle!

Physics results

- So after all that, what did we learn about the universe?

Physics results: $t \rightarrow c Z$

Physics results: $t \rightarrow c Z$

$$
\left[\begin{array}{ll}
-- & \Delta M_{s} \\
- & b \rightarrow s \ell \ell+b \rightarrow s \gamma \\
- & \text { EWPO (with CDF } \left.M_{W}\right) \\
-\cdots & \text { global } \\
\cdots \cdots & \text { EWPO (without CDF } \left.M_{W}\right) \\
\cdots & \operatorname{Higgs} \text { decays } \\
\therefore \times & t \rightarrow c Z(\text { LHC excluded })
\end{array}\right.
$$

Physics results: CAA $U\left(M_{U}=2 \mathrm{TeV}\right)$

$\square \mathrm{CKM}-\mathrm{EWPO}-K \mathrm{FCNC}-\mathrm{PV} \quad-\Delta M_{D} \quad-$ Global

Physics results: CAA

Conclusions

- VLQs are interesting BSM models
- Correlation with B physics, M_{W}, EWPO, ... studied within SMEFT
- Automated 1-loop matching makes analysis very easy

Backup

$t \rightarrow c$ Z exp limits

	$\operatorname{Br}(t \rightarrow c Z) \times 10^{5}$	$\operatorname{Br}(t \rightarrow c h) \times 10^{5}$
Current LHC ($13 \mathrm{TeV}, 139 \mathrm{fb}^{-1}$)	13 [54]	99 [55]
$\begin{aligned} & \text { HL-LHC } \\ & \left(14 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right) \end{aligned}$	$\begin{aligned} & 3.13[59](0 \%) \\ & 6.65[59](10 \%) \end{aligned}$	15 [61]
HE-LHC ($27 \mathrm{TeV}, 15 \mathrm{ab}^{-1}$)	$\begin{aligned} & 0.522 \text { [59] (0\%) } \\ & 3.84[59](10 \%) \end{aligned}$	$\begin{aligned} & 7.7[60](0 \%) \\ & 8.5[60](10 \%) \end{aligned}$
$\begin{aligned} & \text { FCC-hh } \\ & \left(100 \mathrm{TeV}, 3 \mathrm{ab}^{-1}\right) \end{aligned}$		7.7 [64]
$\begin{aligned} & \text { FCC-hh } \\ & \left(100 \mathrm{TeV}, 10 \mathrm{ab}^{-1}\right) \end{aligned}$		$\begin{aligned} & 2.39[63](5 \%) \\ & 9.68[62](10 \%) \end{aligned}$
$\begin{aligned} & \text { FCC-hh } \\ & \left(100 \mathrm{TeV}, 30 \mathrm{ab}^{-1}\right) \end{aligned}$	$\begin{aligned} & 0.0887[59](0 \%) \\ & 3.54[59](10 \%) \end{aligned}$	$\begin{aligned} & 0.96[60](0 \%) \\ & 3.0[60](10 \%) \\ & 4.3[64] \end{aligned}$

MatchMakerEFT

- RGEmaker mode:
- Complete RGEs for the ALP-SMEFT up to mass dimension-5 as computed in [64]. Exact agreement was found up to a typo in the original reference.
- RGEs for the purely bosonic and two-fermion operators in the Warsaw basis [66] as computed in [15-17] and implemented in DSixTools [28, 29]. Complete agreement was found.
- Matching mode:
- Scalar singlet. The complete matching up to one-loop order of an extension of the SM with a scalar singlet was recently completed in [67], after several partial attempts $[36,68]$. We have found complete agreement with the results in [67].
- Type-I see-saw model, as computed in [69]. Complete agreement was found.
- Scalar leptoquarks, as computed in [62]. We have found some minor differences that we are discussing with the authors.
- Charged scalar electroweak singlet, as computed in [70]. We agree with the result except for a sign in Eqs. (4.14), the terms with Pauli matrices in (4.15), (B.4) and (B.5) (the latter is the culprit of the opposite sign in terms with Pauli matrices) and a factor of 2 in Eq. (4.17) and of 4 in (B.7). We have contacted the authors about these differences.

MatchMakerEFT

- Two step matching:

1) Create model - quick, low cost
2) Match model - "slow", high cost

CKM treatment

- Theory prediction needs CKM elements
- CKM elements are determined from observables
- Observables might be affected by NP

CKM treatment

- (a) Solution

The CKM parameters in the SMEFT
1812.08163

Sébastien Descotes-Genon, Adam Falkowski, Marco Fedele, Martín González-Alonso, Javier Virto

- Used by smelli with these 4 observables:
$-\Delta M_{d} / \Delta M_{s,} B \rightarrow X_{c} e \nu, B \rightarrow \tau \nu, \frac{K \rightarrow \mu \nu}{\pi \rightarrow \mu \nu}$
- Thus these missing in fit

