

Hunting for U(2) New Physics with Flavor, Electroweak, and Collider Data

Ben Stefanek

Physik-Institut University of Zurich

EFT Foundations and Tools 2023 Mainz Institute for Theoretical Physics *August 30, 2023*

The Higgs and the Flavor Puzzle

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\text{gauge}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

 The Higgs, the last piece of the SM discovered in 2012, strongly disagrees! Yukawas with Higgs are the only source of flavor violation in the SM, with a very hierarchical pattern that does not look accidental- SM flavor puzzle.

[Credit for cool drawings: Claudia Cornella]

The Higgs and the Flavor Puzzle

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\text{gauge}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_\ell$

 The Higgs, the last piece of the SM discovered in 2012, strongly disagrees! Yukawas with Higgs are the only source of flavor violation in the SM, with a very hierarchical pattern that does not look accidental- SM flavor puzzle.

Is there a connection between the nature of the Higgs boson and the SM flavor puzzle? Clues toward the structure and scale of new physics (NP)?

[Credit for cool drawings: Claudia Cornella]

Hints of NP structure: Flavor symmetries of the SM

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

Hints of NP structure: Flavor symmetries of the SM

Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

• But, since the light family Yukawa couplings are very small:

 $\mathscr{G}_F(\mathrm{SM}) \approx U(2)^5 \equiv U(2)_q \times U(2)_u \times U(2)_d \times U(2)_\ell \times U(2)_\ell$

 $U(2)^5$ is a good accidental approximate symmetry of the SM!

Hints of NP structure: Flavor symmetries of the SM

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

• But, since the light family Yukawa couplings are very small:

$$\mathscr{G}_F(\mathrm{SM}) \approx U(2)^5 \equiv U(2)_q \times U(2)_u \times U(2)_d \times U(2)_\ell \times U(2)_\ell$$

Perhaps this is not an accident- maybe there is NP responsible for this pattern that follows the same structure....

Hints towards NP scale: Nature of the Higgs boson

Higgs Hierarchy Problem *Pre-LHC viewpoint: Nature must be natural!*

The Higgs mass is unstable under quantum corrections- it is quadratically sensitive to NP in the UV. The top Yukawa gives the largest correction:

 Naturalness principle: Light NP that protects the Higgs mass from large quantum corrections should appear no higher than the TeV scale.

$$\delta m_h^2/m_h^2 \lesssim 1 \qquad \Longrightarrow \qquad \Lambda_{\rm NP} \lesssim 500 \ {\rm GeV}$$

The Flavor Problem of Light New Physics

- Flavor bounds push the scale of flavor anarchic new physics (NP) above 1000 TeV.
- But, to address the EW hierarchy problem, NP must be light. It follows that light NP must have a very specific flavor structure in order to pass flavor bounds.

[Physics Briefing Book 2020, <u>1910.11775</u>]

The Flavor Problem of Light New Physics

 It follows that light NP must have a very specific flavor structure in order to pass flavor bounds. SM Yukawa-like flavor protection?

Minimal Flavor Violation (MFV)

 Key idea: Flavor puzzle probably solved at a high scale. Lightest NP can then be nearly flavor universal. All CP and flavor violation in the NP sector originates from the SM Yukawa couplings.

$$\lambda_{\rm FC} \approx (Y_U Y_U^{\dagger})_{\rm FC} \approx y_t^2 \begin{pmatrix} 0 & V_{td}^* V_{ts} & V_{td}^* V_{tb} \\ V_{td} V_{ts}^* & 0 & V_{ts}^* V_{tb} \\ V_{td} V_{tb}^* & V_{ts} V_{tb}^* & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & \lambda^5 & \lambda^3 \\ \lambda^5 & 0 & \lambda^2 \\ \lambda^3 & \lambda^2 & 0 \end{pmatrix}$$

Minim	Λ [7	$\Gamma eV]$				
dime	ension six operator	obs	_	+		
$\mathcal{O}_0 = \frac{1}{2}(\bar{Q})$	$_L\lambda_{ m FC}\gamma_\mu Q_L)^2$	$\epsilon_K,$	Δm_{B_d}	6.4	5.0	
$\mathcal{O}_{F1} = H^{\dagger}$	$\left(ar{D}_R\lambda_d\lambda_{ m FC}\sigma_{\mu u}Q_L ight)F_{\mu u}$	В	$\rightarrow X_s \gamma$	9.3	12.4	
$\mathcal{O}_{G1} = H^{\dagger}$	$\left(ar{D}_R\lambda_d\lambda_{ m FC}\sigma_{\mu u}T^aQ_L ight)G^a_{\mu u}$	В	$\rightarrow X_s \gamma$	2.6	3.5	
$\mathcal{O}_{\ell 1} = (\bar{Q}_L$	$\lambda_{ m FC} \gamma_\mu Q_L) (ar L_L \gamma_\mu L_L)$	$B \to (X) \ell \bar{\ell},$	$K \to \pi \nu \bar{\nu}, (\pi) \ell \bar{\ell}$	3.1	2.7	*
$\mathcal{O}_{\ell 2} = (\bar{Q}_L$	$\lambda_{ m FC}\gamma_\mu au^a Q_L)(ar L_L\gamma_\mu au^a L_L)$	$B \to (X) \ell \bar{\ell},$	$K \to \pi \nu \bar{\nu}, (\pi) \ell \bar{\ell}$	3.4	3.0	*
$\mathcal{O}_{H1} = (\bar{Q}_L$	$\lambda_{ m FC} \gamma_\mu Q_L) (H^\dagger i D_\mu H)$	$B \to (X) \ell \bar{\ell},$	$K \to \pi \nu \bar{\nu}, (\pi) \ell \bar{\ell}$	1.6	1.6	*
$\mathcal{O}_{q5} = (\bar{Q}_L$	$\lambda_{ m FC} \gamma_\mu Q_L) (ar D_R \gamma_\mu D_R)$	$B \to K$	$\pi, \epsilon'/\epsilon, \dots$	~	, 1	

[G. D'Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, hep-ph/0207036]

Universal NP + MFV 20 Years Later

- In the case of flavor universal NP + MFV, NP couples to valence quarks!
- For this reason, flavor bounds are still ok, but *direct searches* at the LHC push flavor universal NP to the 10 TeV ballpark.

Naturalness Paradigm 20 Years Later

 Light NP protecting the Higgs mass from large corrections should appear. That didn't happen so far. If NP is almost flavor universal, we now have an experimentally proven "little hierarchy problem":

$$\Lambda_{\rm NP} \gtrsim 10 \ {\rm TeV} \qquad \Longrightarrow \qquad m_h^2 / \delta m_h^2 \sim 10^{-3}$$

So, did naturalness fail as a paradigm?

• This seems to be an increasingly common viewpoint. Personal opinion: Indeed, we were too aggressive, but this view is overly pessimistic.

$$m_h^2/\delta m_h^2 \sim 10^{-3}$$
 vs. $m_h^2/M_P^2 \sim 10^{-34}$ ($\Lambda_{\rm NP} \sim 10$ TeV) ($\Lambda_{\rm NP} \sim M_P$)

- Nature seems a bit fine-tuned. However, naturalness arguments still provide the best hope that light NP could be around the corner.
- Can we do better than 10 TeV? To answer this question, we need to ask: Is there a "more natural" flavor protection for NP?

U(2) is the natural successor

- Key idea: New physics is **NOT** flavor universal. In particular, there are new flavor non-universal interactions at the TeV scale coupled dominantly to the third family.
 NP coupled to Higgs & top is what we need to address the hierarchy problem.
- Unlike in the U(3) case, these new interactions see flavor just like the SM Higgs. They could be connected to a low scale solution to the SM flavor puzzle.

U(2) is the natural successor

- Key idea: New physics is **NOT** flavor universal. In particular, there are new flavor non-universal interactions at the TeV scale coupled dominantly to the third family.
 NP coupled to Higgs & top is what we need to address the hierarchy problem.
- Unlike in the U(3) case, these new interactions see flavor just like the SM Higgs. They could be connected to a low scale solution to the SM flavor puzzle.
- NP dominantly coupled to the third family quarks (+leptons) enjoys a $U(2)^3$ ($U(2)^5$) flavor symmetry, just like the SM Yukawa couplings.

10

U(2) compared with U(3)

Flavor diagonal couplings (direct searches)

• In the exact U(2) limit, we have flavor diagonal, but non-universal NP.

Exact U(3)Exact U(2) $\bar{q}_L^3 \gamma_\mu q_L^3 + \epsilon \, \bar{q}_L^i \gamma_\mu q_L^i$ $\bar{q}_L^a \gamma_\mu q_L^a$

• *Key benefit*: Different NP coupling for light families makes it possible to suppress couplings to valence quarks and relax direct search bounds.

U(2) compared with U(3)

Flavor diagonal couplings (direct searches)

• In the exact U(2) limit, we have flavor diagonal, but non-universal NP.

Exact U(3)Exact U(2) $\bar{q}_L^3 \gamma_\mu q_L^3 + \epsilon \, \bar{q}_L^i \gamma_\mu q_L^i$ $\bar{q}_L^a \gamma_\mu q_L^a$

• *Key benefit*: Different NP coupling for light families makes it possible to suppress couplings to valence quarks and relax direct search bounds.

Flavor violating couplings

MFV: Minimally broken U(3)

<u>Minimally broken U(2)</u>

 $\bar{q}_{I}^{a}\lambda_{\rm FC}^{ab}\gamma_{\mu}q_{I}^{b}$

 $ar{q}^i_L V^i_q \gamma_\mu q^3_L$

 $V_q \sim \mathcal{O}\left(\frac{V_{td}}{V_{ts}}\right)$

Model independent pheno of the U(2) hypothesis

Flavor diagonal couplings:
$$\bar{q}_L^3 \gamma_\mu q_L^3 + \epsilon \, \bar{q}_L^i \gamma_\mu q_L^i + \bar{\ell}_L^3 \gamma_\mu \ell_L^3$$

• Third family direct searches at the LHC (limit $\epsilon \rightarrow 0$)

 $U(2)^3$ (quarks only)

 $U(2)^5$ (also leptons)

• Signals: $t\bar{t}$, $b\bar{b}$ and $t\bar{b}$

Drell-Yan $\tau \overline{\tau}$ and mono- $\tau + E_T$

Model independent pheno of the U(2) hypothesis

Flavor violating couplings: $\bar{q}_L^i V_q^i \gamma_\mu q_L^3$, $V_q^T \sim \mathcal{O}(V_{td}, V_{ts})$

• Leading effects: $3 \rightarrow i$ transitions: top decays, *B*-physics, tau decays. Focus here on the operators for *B*-physics one can construct together with $\bar{\ell}_L^3 \gamma^{\mu} \ell_L^3$:

U(2)-breaking operator	Process	Example Observables
$(ar{q}^i_L V^i_q \gamma_\mu q^3_L)^2$	<i>B</i> -meson mixing	$\Delta M_{B_s}, \Delta M_{B_d}$
$(\bar{q}_L^i V_q^i \gamma_\mu q_L^3) (\bar{\ell}_L^3 \gamma^\mu \ell_L^3)$	Neutral current <i>B</i> -decays	$B \to K^{(*)} \tau \bar{\tau}, \ B \to K^{(*)} \nu_{\tau} \bar{\nu}_{\tau}, \ B_s \to \tau \bar{\tau}$
$(\bar{q}_L^i V_q^i \gamma_\mu \sigma^I q_L^3) (\bar{\ell}_L^3 \gamma^\mu \sigma^I \ell_L^3)$	Charged current <i>B</i> -decays	$B \to D^{(*)} \tau \bar{\nu}_{\tau}, \ \Lambda_b \to \Lambda_c \tau \bar{\nu}_{\tau}, \ B_c \to \tau \bar{\nu}_{\tau}$
$(\bar{q}^i_L V^i_q \gamma^\mu q^3_L) (H^\dagger D_\mu H)$	Neutral current <i>B</i> -decays	$B \to K^{(*)}\ell\bar{\ell} , \ B \to K^{(*)}\nu_{\ell}\bar{\nu}_{\ell} , \ B_s \to \ell\bar{\ell}$
$(\bar{q}^i_L V^i_q \sigma_{\mu u} H b_R) F^{\mu u}$	Neutral current <i>B</i> -decays	$B \to X_s \gamma$

• To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

 $C_{Hq}^{(1)[33]}(H^{\dagger}D_{\mu}H)(\bar{q}_{L}^{3}\gamma^{\mu}q_{L}^{3})$ EWPT: $C_{Hq}^{(1)[33]} \lesssim (4 \text{ TeV})^{-2}$

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

• These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in the third-family).

Both operators are $U(2)^5$ preserving! Difficult for NP to hide once the Higgs is brought into the game!

EWPT are (still) a powerful probe of NP

The 'LEP paradox' Riccardo Barbieri Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN Alessandro Strumia Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia Abstract Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly

done at LEP.

EWPT are (still) a powerful probe of NP

The 'LEP paradox'

Riccardo Barbieri

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN

Alessandro Strumia

Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia

Abstract

Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly done at LEP.

5 Conclusion

27 Nov 2000

A straight interpretation of the results of the EWPT, mostly performed at LEP in the last decade, gives rise to an apparent paradox. The EWPT indicate both a light Higgs mass $m_h \approx (100 \div 200)$ GeV and a high cut-off, $\Lambda \gtrsim 5$ TeV, with the consequence of a top loop correction to m_h largely exceeding the preferred value of m_h itself. The well known naturalness problem of the Fermi scale has gained a pure 'low energy' aspect. At present, supersymmetry at the Fermi scale is the only way we know of to attach this problem.

EWPT are (still) a powerful probe of NP

The 'LEP paradox'

Riccardo Barbieri

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN

Alessandro Strumia

Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia

Abstract

Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly done at LEP.

5 Conclusion

27 Nov 2000

A straight interpretation of the results of the EWPT, mostly performed at LEP in the last decade, gives rise to an apparent paradox. The EWPT indicate both a light Higgs mass $m_h \approx (100 \div 200)$ GeV and a high cut-off, $\Lambda \gtrsim 5$ TeV, with the consequence of a top loop correction to m_h largely exceeding the preferred value of m_h itself. The well known naturalness problem of the Fermi scale has gained a pure 'low energy' aspect. At present, supersymmetry at the Fermi scale is the only way we know of to attach this problem. This way of looking at the data may be too naive. As we said, in EWPT the SM with a light Higgs and a large cut-off can at least be faked by a fortuitous cancellation. In any case the point is not to replace direct searches for supersymmetry or for any other kind of new physics. Rather, we wonder if a better theoretical focus on the LEP paradox might be not without useful consequences. Its solution, we think, is bound to give us some surprise, in a way or another.

All new physics must confront a triad of bounds

All new physics must confront a triad of bounds

• U(2) helps pass flavor + collider bounds, but is less effective against EWPT.

All new physics must confront a triad of bounds

• U(2) helps pass flavor + collider bounds, but is less effective against EWPT.

A future EW precision machine is ideal to test the U(2) hypothesis!

SMEFT in the Exact U(2) Limit

- SMEFT with 3 generations has 1350 + 1149 = 2499 independent WC's at dim-6.
- In the exact $U(2)^5$ limit, this is reduced to 124 + 23 = 147 independent WC's.

	$U(2)^5$ [terms summed up to different orders]													
Operators	Exa	act	$\mathcal{O}(V^1)$		$\mathcal{O}(V^2)$		$\mathcal{O}(V^1,\Delta^1)$		$\mathcal{O}(V^2,\Delta^1)$		$\left egin{array}{c} \mathcal{O}(V^2,\Delta^1 V^1) ight.$		$\Big \ \mathcal{O}(V^3,\Delta^1 V^1)$	
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	_	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	—	29	_	29	_	29	_	29	_	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	_	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

[D. A. Faroughy, G. Isidori, F. Wilsch, K. Yamamoto, arXiv:2005.05366]

SMEFT in the Exact U(2) Limit

- SMEFT with 3 generations has 1350 + 1149 = 2499 independent WC's at dim-6.
- In the exact $U(2)^5$ limit, this is reduced to 124 + 23 = 147 independent WC's.

	$U(2)^5$ [terms summed up to different orders]													
Operators	Exa	act	$\mathcal{O}(V^1)$		$\mathcal{O}(V^2)$		$\mathcal{O}(V^1,\Delta^1)$		$\mathcal{O}(V^2,\Delta^1)$		$\left egin{array}{c} \mathcal{O}(V^2,\Delta^1 V^1) ight.$		$\Big ~ \mathcal{O}(V^3,\Delta^1 V^1) \Big $	
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	_	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	—	29	_	29	_	29	_	29	_	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	_	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

• Focus on the 124 CP-even independent WC's in the exact $U(2)^5$ limit. Makes an exhaustive phenomenological analysis tractable.

[D. A. Faroughy, G. Isidori, F. Wilsch, K. Yamamoto, arXiv:2005.05366]

Pheno analysis: Our procedure

- WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. Using DsixTools 2.0, possible to do this analytically in the WC's beyond LL.
- We then impose $U(2)^5$ flavor symmetry on the high-scale WC's.
- For EWPT and direct searches, which constrain only the flavor-conserving WC's, the exact $U(2)^5$ limit is already sufficient. For example:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \to & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + \ldots \end{split}$$

[J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente, J. Virto, arXiv:2010.16341]

Pheno analysis: Our procedure

- WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. Using DsixTools 2.0, possible to do this analytically in the WC's beyond LL.
- We then impose $U(2)^5$ flavor symmetry on the high-scale WC's.
- For EWPT and direct searches, which constrain only the flavor-conserving WC's, the exact $U(2)^5$ limit is already sufficient. For example:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \rightarrow & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + \ldots \end{split}$$

• Flavor-violating effects taken into account by considering the cases where the $U(2)^5$ basis corresponds to the 1) down-quark mass basis and 2) up-quark mass basis.

[J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente, J. Virto, arXiv:2010.16341]

Pheno analysis: Our procedure

- WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. Using DsixTools 2.0, possible to do this analytically in the WC's beyond LL.
- We then impose $U(2)^5$ flavor symmetry on the high-scale WC's.
- For EWPT and direct searches, which constrain only the flavor-conserving WC's, the exact $U(2)^5$ limit is already sufficient. For example:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \rightarrow & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + \ldots \end{split}$$

- Flavor-violating effects taken into account by considering the cases where the $U(2)^5$ basis corresponds to the 1) down-quark mass basis and 2) up-quark mass basis.
- We then construct a likelihood as a function of the high-scale $U(2)^5$ invariants and switch on one at a time to obtain bounds.

[J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente, J. Virto, arXiv:2010.16341]
Pheno analysis: Our observables

EW Precision

• W-pole observables

- [V. Bresó-Pla, A. Falkowski, M. González-Alonso, 2103.12074]
- Z-pole observables [L. Allwicher, G. Isidori, J. M. Lizana, N. Selimovic, BAS, 2302.11584]
- Higgs signal strengths + LFU tests in τ -decays

Direct searches

- LHC Drell-Yan $pp \to \ell \ell$ and mono-lepton $pp \to \ell \nu$
- LHC 4-quark observables
 LEP 4-lepton ee → ℓℓ
 [L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari, F. Wilsch, 2207.10756]
 [Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang, 2105.00006]

Flavor Bounds

- $\Delta F = 1 (B \to X_s \gamma, B \to K \nu \bar{\nu}, K \to \pi \nu \bar{\nu}, B \to K^{(*)} \mu^+ \mu^-, B_{s,d} \to \mu^+ \mu^-)$
- $\Delta F = 2 (B_{s,d}$ -mixing, *K*-mixing, *D*-mixing)
- Charged-current B-decays (R_D , R_{D^*} , $B_{u,c} \rightarrow \tau \nu$)

- With no RGE, only 16 of 124 operators enter the EW fit.
- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.

No RGE

#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$
1	cHWB	A _b ^{FB}	9.63
2	CHl1[l]	$\sigma_{\sf had}$	8.07
3	CHl3[l]	A _b ^{FB}	7.96
4	CHe[l]	$\sigma_{\sf had}$	6.93
5	cHD	A _b ^{FB}	5.74
6	CHq3[l]	R _τ	5.73
7	CHl1[h]	R _τ	4.57
8	CHl3[h]	Rτ	4.48
9	Cll[l, p, p, l]	A _b ^{FB}	4.43
10	CHe[h]	Rτ	3.97
11	CHq3[h]	R _b	3.43
12	CHq1[h]	R _b	3.43
13	CHu[l]	Rτ	2.58
14	CHq1[l]	R _c	2.07
15	CHd[l]	Rτ	1.81
16	CHd[h]	R _b	1.4

- With no RGE, only 16 of 124 operators enter the EW fit.
- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.

No RGE

Ħ	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$
1	cHWB	A _b ^{FB}	9.63
2	CHl1[l]	$\sigma_{\sf had}$	8.07
3	CHl3[l]	A _b ^{FB}	7.96
4	CHe[l]	$\sigma_{\sf had}$	6.93
5	cHD	A _b ^{FB}	5.74
6	CHq3[l]	Rτ	5.73
7	CHl1[h]	R _τ	4.57
8	CHl3[h]	Rτ	4.48
9	Cll[l, p, p, l]	A _b ^{FB}	4.43
10	CHe[h]	R _τ	3.97
11	CHq3[h]	R _b	3.43
12	CHq1[h]	R _b	3.43
13	CHu[l]	R _τ	2.58
14	CHq1[l]	R _c	2.07
15	CHd[l]	Rτ	1.81
16	CHd[h]	R _b	1.4

#	Wilson Coef.	[Obs] _{bound}	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	AbFB	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	R _τ	5.56	5.48	1.4
6	cHD	AbFB	5.05	4.71	6.7
7	Cll[l, p, p, l]	AbFB	4.52	4.52	0.
8	CHl1[h]	R _τ	4.37	4.3	1.6
9	CHl3[h]	R _τ	4.36	4.3	1.4
10	CHe[h]	R _τ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	A _b ^{FB}	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	AbFB	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	R _τ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	AbFB	1.24		
33	Cqe[h, h, h, h]	R _τ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6

- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.
- Resummation is important, even from $\Lambda_{\rm NP} = 3$ TeV.

#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	AbFB	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	R _τ	5.56	5.48	1.4
6	cHD	A _b FB	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	R _τ	4.37	4.3	1.6
9	CHl3[h]	Rτ	4.36	4.3	1.4
10	CHe[h]	Rτ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	A _b ^{FB}	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	R _τ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	R _τ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	A _b ^{FB}	1.24		
33	Cqe[h, h, h, h]	R _τ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6

[Allwicher, Cornella, Isidori, BAS, to appear] [Allwicher, Isidori, Lizana, Selimovic, BAS, <u>2302.11584</u>]

- Including RGE, we have 120 of 124, 38 with bounds $\gtrsim 1$ TeV.
- Resummation is important, even from $\Lambda_{\rm NP} = 3$ TeV.

#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	AbFB	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	Rτ	5.56	5.48	1.4
6	cHD	A _b ^{FB}	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	R _τ	4.37	4.3	1.6
9	CHl3[h]	R _τ	4.36	4.3	1.4
10	CHe[h]	Rτ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	AbFB	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	AbFB	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	Ab	1.24		
33	Cqe[h, h, h, h]	R _τ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6

[Allwicher, Cornella, Isidori, BAS, to appear] [Allwicher, Isidori, Lizana, Selimovic, BAS, 2302.11584]

- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.
- Resummation is important, even from $\Lambda_{NP} = 3$ TeV.

$$[\mathcal{C}_{HD}]^{\mathrm{NLL}} \approx \frac{4N_c^2 y_t^4}{(16\pi^2)^2} \,\mathcal{C}_{uu} \log^2\left(\frac{\mu^2}{\Lambda_{\mathrm{NP}}^2}\right)$$

[Allwicher, Cornella, Isidori, BAS, to appear] [Allwicher, Isidori, Lizana, Selimovic, BAS, <u>2302.11584</u>]

#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	AbFB	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	Rτ	5.56	5.48	1.4
6	cHD	A^{FB}_b	5.05	4.71	6.7
7	Cll[l, p, p, l]	A_b^{FB}	4.52	4.52	0.
8	CHl1[h]	Rτ	4.37	4.3	1.6
9	CHl3[h]	Rτ	4.36	4.3	1.4
10	CHe[h]	R_{τ}	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	AbFB	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	AbFB	1.24		
33	Cqe[h, h, h, h]	Rτ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	R _τ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _w	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	R _τ	0.95	1.26	-32.6

Bounds: EWPT + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, to appear]

• In total, EW dominates in 42 of 124 bounds.

Bounds: EWPT + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, to appear]

• In total, EW dominates in 42 of 124 bounds.

Projection: FCC-ee + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, to appear]

Projection: FCC-ee + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, to appear]

Projection: FCC-ee + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, to appear]

Plenty of room for third-family NP (currently)

collider EW Flavor (Up) Flavor (Down)

[Allwicher, Cornella, Isidori, BAS, to appear]

Plenty of room for third-family NP (currently)

collider EW Flavor (Up)

[Allwicher, Cornella, Isidori, BAS, to appear]

Plenty of room for third-family NP (currently)

collider EW Flavor (Up)

[Allwicher, Cornella, Isidori, BAS, to appear]

FCC-ee will push third-family NP above 10 TeV!

[Allwicher, Cornella, Isidori, BAS, to appear]

FCC-ee will push third-family NP above 10 TeV!

collider EW Flavor (Up) Flavor (Down)

[Allwicher, Cornella, Isidori, BAS, to appear]

<u>Part 2</u>

How does it work in a particular UV model?

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

[See also G. Isidori, <u>2308.11612</u>]

• Extend the SM based on the concept of flavor deconstruction: the hypothesis that the SM gauge interactions are manifestly flavor non-universal in the UV.

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

[See also G. Isidori, <u>2308.11612</u>]

- Extend the SM based on the concept of flavor deconstruction: the hypothesis that the SM gauge interactions are manifestly flavor non-universal in the UV.
- To explain both fermion masses and mixings, we must flavor deconstruct (at least part of) the electroweak gauge symmetry- this forces the Higgs to become effectively flavored!

- Extend the SM based on the concept of flavor deconstruction: the hypothesis that the SM gauge interactions are manifestly flavor non-universal in the UV.
- To explain both fermion masses and mixings, we must flavor deconstruct (at least part of) the electroweak gauge symmetry- this forces the Higgs to become effectively flavored!
- Simplest possibility: A deconstruction of SM hypercharge symmetry:

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

[See also G. Isidori, <u>2308.11612</u>]

- Extend the SM based on the concept of flavor deconstruction: the hypothesis that the SM gauge interactions are manifestly flavor non-universal in the UV.
- To explain both fermion masses and mixings, we must flavor deconstruct (at least part of) the electroweak gauge symmetry- this forces the Higgs to become effectively flavored!
- Simplest possibility: A deconstruction of SM hypercharge symmetry:

$$\mathcal{G}_{\rm DH} = SU(3)_c \times SU(2)_L \times U(1)_{Y_3} \times U(1)_{Y_{12}}$$

$$SSB \text{ at } \sim \text{few TeV} \qquad \text{massive Z'}$$

$$\mathcal{G}_{\rm SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$$

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

[See also G. Isidori, <u>2308.11612</u>]

- Extend the SM based on the concept of flavor deconstruction: the hypothesis that the SM gauge interactions are manifestly flavor non-universal in the UV.
- To explain both fermion masses and mixings, we must flavor deconstruct (at least part of) the electroweak gauge symmetry- this forces the Higgs to become effectively flavored!
- Simplest possibility: A deconstruction of SM hypercharge symmetry:

*Now physical: Higgs as 3rd-family field

$$\mathscr{G}_{DH} = SU(3)_c \times SU(2)_L \times \begin{array}{l} W_3 \\ U(1)_{Y_3} \\ \Psi_{L,R}^{(3)} \end{array} \times U(1)_{Y_{12}}$$

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

[See also G. Isidori, <u>2308.11612</u>]

- Extend the SM based on the concept of flavor deconstruction: the hypothesis that the SM gauge interactions are manifestly flavor non-universal in the UV.
- To explain both fermion masses and mixings, we must flavor deconstruct (at least part of) the electroweak gauge symmetry- this forces the Higgs to become effectively flavored!
- Simplest possibility: A deconstruction of SM hypercharge symmetry:

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

[See also G. Isidori, <u>2308.11612</u>]

- Extend the SM based on the concept of flavor deconstruction: the hypothesis that the SM gauge interactions are manifestly flavor non-universal in the UV.
- To explain both fermion masses and mixings, we must flavor deconstruct (at least part of) the electroweak gauge symmetry- this forces the Higgs to become effectively flavored!
- Simplest possibility: A deconstruction of SM hypercharge symmetry:

*Now physical: Higgs as 3rd-family field

$$\mathscr{G}_{\rm DH} = SU(3)_c \times SU(2)_L$$

*Gauging realizes an accidental, exact $U(2)^5$ flavor symmetry!

 $\begin{array}{c} H_{3} \\ U(1)_{Y_{3}} \times U(1)_{Y_{12}} \\ \Psi^{(3)}_{L,R} \\ \end{array} \begin{array}{c} \Psi^{(1,2)}_{L,R} \\ \Psi^{(1,2)}_{L,R} \end{array}$

[J. Davighi and BAS, arXiv: 2305.16280]

[See also G. Isidori, <u>2308.11612</u>]

Deconstructed Hypercharge: Minimally-broken U(2)

*Light Yukawas via a heavy Higgs

$$\mathscr{G}_{DH} = SU(3)_c \times SU(2)_L \times \begin{pmatrix} H_3 \\ U(1)_{Y_3} \\ \Psi^{(3)}_{L,R} \end{pmatrix} \times \begin{pmatrix} H_{12} \\ U(1)_{Y_{12}} \\ \Psi^{(1,2)}_{L,R} \end{pmatrix}$$

[J. Davighi and BAS, arXiv: 2305.16280]

Deconstructed Hypercharge: Minimally-broken U(2)

*Light Yukawas via a heavy Higgs

$$\mathscr{G}_{DH} = SU(3)_{c} \times SU(2)_{L} \times \begin{pmatrix} H_{3} \\ U(1)_{Y_{3}} \\ \Psi^{(3)}_{L,R} \end{pmatrix} \times \begin{pmatrix} U_{1} \\ U(1)_{Y_{12}} \\ \Psi^{(1,2)}_{L,R} \end{pmatrix}$$
*Small mixing of Higgses after DH SSB:

$$V \supset fH_{12}^{\dagger}\Phi_{H}H_{3} \implies \frac{\langle H_{12} \rangle}{\langle H_{3} \rangle} \approx \frac{f\langle \Phi_{H} \rangle}{m_{12}^{2}} \implies \frac{m_{c}}{m_{t}} \approx \frac{1}{16\pi^{2}} \qquad \left[\langle \Phi_{H} \rangle \sim f, \ m_{12} \sim 4\pi f \right]$$

[J. Davighi and BAS, arXiv: 2305.16280]

Deconstructed Hypercharge: Minimally-broken U(2)

*Light Yukawas via a heavy Higgs

$$\mathscr{G}_{DH} = SU(3)_{c} \times SU(2)_{L} \times \begin{pmatrix} H_{3} \\ U(1)_{Y_{3}} \\ \Psi^{(3)}_{L,R} \end{pmatrix} \times \begin{pmatrix} H_{12} \\ U(1)_{Y_{12}} \\ \Psi^{(1,2)}_{L,R} \end{pmatrix}$$
*Small mixing of Higgses after DH SSB:

$$V \supset fH_{12}^{\dagger}\Phi_{H}H_{3} \implies \frac{\langle H_{12} \rangle}{\langle H_{3} \rangle} \approx \frac{f(\Phi_{H})}{m_{12}^{2}} \implies \frac{m_{c}}{m_{l}} \approx \frac{1}{16\pi^{2}} \qquad \left[\langle \Phi_{H} \rangle \sim f, \ m_{12} \sim 4\pi f \right]$$
*Small CKM mixing at dim-5 via a VLQ doublet: $\mathscr{L}_{d=5} \supset \frac{y_{\pm}\lambda_{q}^{i}}{m_{Q}} \bar{q}_{L}^{i}\Phi_{q}H_{3}\psi_{R}^{\pm}$

[J. Davighi and BAS, arXiv: 2305.16280]

Z' gauge coupling to Fermion and Higgs currents

$$\tan\theta = g_{12}/g_3$$

$$g_{\psi}^{ij} = g_Y Y_{\psi} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta), \quad g_H = g_Y Y_H \cot \theta$$

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

Z' gauge coupling to Fermion and Higgs currents $\tan \theta = g_{12}/g_3$

$$g_{\psi}^{ij} = g_Y Y_{\psi} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta), \quad g_H = g_Y Y_H \cot \theta$$

• Since the model embeds SM hypercharge, the two original gauge couplings can be traded for g_Y and $\tan \theta$, which controls how the Z' talks to the light+third family.

[J. Davighi and BAS, <u>arXiv: 2305.16280]</u>

Z' gauge coupling to Fermion and Higgs currents $\tan \theta = g_{12}/g_3$

$$g_{\psi}^{ij} = g_Y Y_{\psi} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta), \quad g_H = g_Y Y_H \cot \theta$$

- Since the model embeds SM hypercharge, the two original gauge couplings can be traded for g_Y and $\tan \theta$, which controls how the Z' talks to the light+third family.
- One can only switch off couplings to the light families (small tan θ limit) at the expense of increasing couplings to the third family and the Higgs. Large corrections expected in EWPO in this limit! (possibly flavor too, depending on alignment)

[J. Davighi and BAS, arXiv: 2305.16280]

Z' gauge coupling to Fermion and Higgs currents $\tan \theta = g_{12}/g_3$

$$g_{\psi}^{ij} = g_Y Y_{\psi} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta), \quad g_H = g_Y Y_H \cot \theta$$

- Since the model embeds SM hypercharge, the two original gauge couplings can be traded for g_Y and $\tan \theta$, which controls how the Z' talks to the light+third family.
- One can only switch off couplings to the light families (small tan θ limit) at the expense of increasing couplings to the third family and the Higgs. Large corrections expected in EWPO in this limit! (possibly flavor too, depending on alignment)
- In particular, Higgs-bifermion operators behave as: $C_{H\psi} \propto g_Y^2 Y_{\psi} Y_H(1,1,-\cot^2\theta) / M_{Z'}^2$

[J. Davighi and BAS, <u>arXiv: 2305.16280]</u>

Z' gauge coupling to Fermion and Higgs currents $\tan \theta = g_{12}/g_3$

$$g_{\psi}^{ij} = g_Y Y_{\psi} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta), \quad g_H = g_Y Y_H \cot \theta$$

- Since the model embeds SM hypercharge, the two original gauge couplings can be traded for g_Y and $\tan \theta$, which controls how the Z' talks to the light+third family.
- One can only switch off couplings to the light families (small tan θ limit) at the expense of increasing couplings to the third family and the Higgs. Large corrections expected in EWPO in this limit! (possibly flavor too, depending on alignment)
- In particular, Higgs-bifermion operators behave as: $C_{H\psi} \propto g_Y^2 Y_{\psi} Y_H(1,1,-\cot^2\theta) / M_{Z'}^2$
- If flavor violation occurs only in the left-handed sector (e.g. minimally-broken U(2)), then quark-flavor violating observables are always suppressed by powers of $g_Y Y_q$. As a consequence, the DH model easily passes flavor bounds.

[J. Davighi and BAS, arXiv: 2305.16280]

Deconstructed Hypercharge vs. the Bound Triad

[J. Davighi and BAS, arXiv: 2305.16280]

Deconstructed Hypercharge vs. the Bound Triad

• Predictive 2 parameter model, not trying to fit any anomaly.

[J. Davighi and BAS, <u>arXiv: 2305.16280]</u>

Deconstructed Hypercharge vs. the Bound Triad

- Predictive 2 parameter model, not trying to fit any anomaly.
- Flavor-conserving constraints: High-pT searches and EWPO.

[J. Davighi and BAS, arXiv: 2305.16280]
Deconstructed Hypercharge vs. the Bound Triad

- Predictive 2 parameter model, not trying to fit any anomaly.
- Flavor-conserving constraints: High-pT searches and EWPO.
- Flavor-violating constraints: Meson mixing and $b \to s \ell \ell$

[J. Davighi and BAS, <u>arXiv: 2305.16280</u>]

Deconstructed Hypercharge vs. the Bound Triad

- Predictive 2 parameter model, not trying to fit any anomaly.
- Flavor-conserving constraints: High-pT searches and EWPO.
- Flavor-violating constraints: Meson mixing and $b \rightarrow s\ell\ell$
- Model is fully natural: gives small radiative Higgs mass corrections and satisfies finite naturalness conditions.

[J. Davighi and BAS, <u>arXiv: 2305.16280]</u>

Deconstructed Hypercharge vs. the Bound Triad

- Predictive 2 parameter model, not trying to fit any anomaly.
- Flavor-conserving constraints: High-pT searches and EWPO.
- Flavor-violating constraints: Meson mixing and $b \rightarrow s\ell\ell$
- Model is fully natural: gives small radiative Higgs mass corrections and satisfies finite naturalness conditions.
- Region explaining m_c/m_t gives large positive shifts in M_W and an enhancement to $\mathscr{B}(B_{s,d} \to \mu^+\mu^-)$

[J. Davighi and BAS, arXiv: 2305.16280]

Deconstructed Hypercharge: Fully probed by FCC-ee

- We also give projections for current and future exps.
- HL-LHC with 3/ab of int. lum.
- FCC-ee (assuming EWPO errors improve by only a factor of 10)

Key take-away:

FCC-ee easily has the reach to fully probe the model! We expect it to be the case for any low-scale model with direct NP couplings to the Higgs.

[J. Davighi and BAS, arXiv: 2305.16280]

 If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.
- We have shown that plenty of room remains for 3rd family new physics. But the most interesting NP also couples to the Higgs, making EWPT a powerful probe. Even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.
- We have shown that plenty of room remains for 3rd family new physics. But the most interesting NP also couples to the Higgs, making EWPT a powerful probe. Even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.
- Because EWPT are much more flavor democratic, one cannot hide forever by imposing U(2) and coupling more to the third family. In this sense, and echoing the pre-LHC LEP paradox message, it seems rather clear that a future EW precision machine such as FCC-ee is the best path forward.

Thanks a lot for your attention!

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.
- We have shown that plenty of room remains for 3rd family new physics. But the most interesting NP also couples to the Higgs, making EWPT a powerful probe. Even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.
- Because EWPT are much more flavor democratic, one cannot hide forever by imposing U(2) and coupling more to the third family. In this sense, and echoing the pre-LHC LEP paradox message, it seems rather clear that a future EW precision machine such as FCC-ee is the best path forward.

Backup Slides

Deconstructed Hypercharge: Scale Setup

Collider Constraints on 4Q operators

Class	DoF	$t\bar{t}$	$t\bar{t}V$	t	tV	$t\bar{t}Q\bar{Q}$	$\begin{array}{c} h \ (\mu_i^f, \\ \text{Run-I}) \end{array}$	$\begin{array}{c} h \ (\mu_i^f, \\ \text{Run-II}) \end{array}$	h (STXS, Run-II)	VV
2-heavy- 2-light	$\begin{vmatrix} c_{Qq}^{1,8} \\ c_{Qq}^{Qq} \\ c_{Qq}^{3,8} \\ c_{Qq}^{3,8} \\ c_{Qq}^{3,1} \\ c_{Qq}^{3,8} \\ c_{Qq}^{3,1} \\ c_{tq}^{3,8} \\ c_{Qq}^{1,1} \\ c_{tq}^{8} \\ c_{tu}^{1} \\ c_{tu}^{8} \\ c_{Qu}^{1} \\ c_{td}^{8} \\ c_{Qd}^{1} \\ c_{Qd}^{1}$	$\left \begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) ($	$ \begin{vmatrix} \checkmark \\ (\checkmark) \\ (\land) \\ (\land)$	(√) ✓	(√) ✓		$\left \begin{array}{c} \checkmark \\ (\checkmark) \\ \\ (\land) \\ ($	$\begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\land) \\ (\checkmark) \\ (\land) \\ ($	$\begin{pmatrix} \checkmark \\ (\checkmark) \\ \\ (\land) \\ (\land$	
4-heavy	$\begin{vmatrix} c_{QQ}^1 \\ c_{QQ}^8 \\ c_{Qt}^1 \\ c_{Qt}^8 \\ c_{Qt}^8 \\ c_{tt}^1 \end{vmatrix}$									
4-lepton	c_{ll}			✓	✓		✓	 ✓ 	 ✓ 	 ✓
2-fermion +bosonic	$\begin{array}{c} c_{t\varphi} \\ c_{tG} \\ c_{b\varphi} \\ c_{c\varphi} \\ c_{\tau\varphi} \\ c_{tW} \\ c_{tZ} \\ c_{\varphi Q} \\ c_{\varphi l_{i}} \\ c_{\varphi e} \\ c_{\varphi \mu} \\ c_{\varphi q} \\ c_$	✓ ✓	✓ ✓ (b) ✓ ✓ ✓ ✓	√ √ √		✓	√ √ √ √ √ (b) √ √ √ √ √ √ √ √ √ √ √ √ √	 ✓ ✓	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ (b) \end{array}$	

[Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang, <u>2105.00006</u>]

Higgs Bi-fermion operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}_{H\ell}^{(1)[33]}$	0.1	0.1	4.4	1.6	4.3	$R_{ au}$	4.3	$R_{ au}$
$\mathcal{C}_{H\ell}^{(1)[ii]}$	0.7	0.7	7.6	3.	7.8	$\sigma_{ m had}$	7.8	$\sigma_{ m had}$
$\mathcal{C}_{H\ell}^{(3)[33]}$	3.6	3.6	4.4	1.7	4.9	$R_{ au}$	4.9	$R_{ au}$
$\mathcal{C}_{H\ell}^{(3)[ii]}$	3.7	3.7	7.7	3.8	7.9	$\sigma_{ m had}$	7.9	$\sigma_{ m had}$
$\mathcal{C}_{He}^{[33]}$	-	-	3.8	1.5	3.7	$R_{ au}$	3.7	$R_{ au}$
$\mathcal{C}_{He}^{[ii]}$	0.9	0.9	6.6	2.7	6.7	$\sigma_{ m had}$	6.7	$\sigma_{ m had}$
$\mathcal{C}_{Hq}^{(1)[33]}$	0.2	5.7	3.7	0.1	3.7	Γ_Z	5.	$B_s ightarrow \mu \mu$
$\mathcal{C}_{Hq}^{(1)[ii]}$	0.4	5.7	2.2	0.5	2.2	R_c	5.2	$B_s ightarrow \mu \mu$
${\cal C}_{Hq}^{(3)[33]}$	1.2	6.	3.5	0.4	3.4	R_b	5.4	$B_s ightarrow \mu \mu$
$\mathcal{C}_{Hq}^{(3)[ii]}$	1.3	5.6	5.5	3.1	5.7	$R_{ au}$	7.6	$B_s ightarrow \mu \mu$
$\mathcal{C}_{Hd}^{[33]}$	-	-	1.3	0.2	1.3	R_b	1.3	R_b
$\mathcal{C}_{Hd}^{[ii]}$	-	-	1.7	0.3	1.7	$R_{ au}$	1.7	$R_{ au}$
$\mathcal{C}_{Hu}^{[33]}$	0.6	0.6	3.	0.1	3.1	$A_b^{ m FB}$	3.1	$A_b^{ m FB}$
$\mathcal{C}_{Hu}^{[ii]}$	-	-	2.4	0.3	2.4	$R_{ au}$	2.4	$R_{ au}$
$\mathcal{C}^{[33]}_{Hud}$	3.2	3.2	0.4	-	3.2	$B \to X_s \gamma$	3.2	$B \to X_s \gamma$

3H and Dipole operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{\text{coll.}}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[33]}_{eH}$	5.1	5.1	-	-	5.1	$H\to\tau\tau$	5.1	$H\to\tau\tau$
$\mathcal{C}^{[33]}_{uH}$	0.2	0.2	-	-	0.2	$H\to\tau\tau$	0.2	$H \to \tau \tau$
$\mathcal{C}_{dH}^{[33]}$	3.7	3.7	_	-	3.7	H ightarrow bb	3.7	H ightarrow bb

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{\text{coll.}}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[33]}_{eB}$	0.1	0.1	0.2	1.2	1.2	$pp \to \tau\tau$	1.2	$pp \rightarrow \tau \tau$
$\mathcal{C}^{[33]}_{uB}$	0.7	0.8	2.4	1.9	2.7	A_b^{mFB}	2.7	A_b^{mFB}
$\mathcal{C}^{[33]}_{dB}$	15.2	74.8	0.3	0.7	15.2	$B \to X_s \gamma$	74.8	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{eW}$	1.	1.	0.2	1.9	1.8	$pp \to \tau \nu$	1.8	pp ightarrow au u
$\mathcal{C}^{[33]}_{uW}$	0.5	0.9	2.3	3.6	3.7	4Q	3.8	4Q
$\mathcal{C}_{dW}^{[33]}$	15.7	53.	0.1	0.6	15.7	$B \to X_s \gamma$	53.	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{uG}$	0.2	0.3	0.5	2.6	2.6	4Q	2.6	4Q
$\overline{\mathcal{C}_{dG}^{[33]}}$	4.	25.5	_	_	4.	$B \to X_s \gamma$	25.5	$B \to X_s \gamma$

Scalar and Tensor operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[3333]}_{\ell edq}$	0.6	0.1	-	1.2	1.1	$pp \rightarrow \tau \tau$	1.2	$pp \to \tau\tau$
$\mathcal{C}_{quqd}^{(1)[3333]}$	2.2	5.5	-	0.4	2.2	$B \to X_s \gamma$	5.5	$B \to X_s \gamma$
$\mathcal{C}^{(8)[3333]}_{quqd}$	1.	5.1	-	0.2	1.	$B \to X_s \gamma$	5.1	$B \to X_s \gamma$
$\mathcal{C}_{\ell equ}^{(1)[3333]}$	2.1	2.1	-	-	2.1	$H\to\tau\tau$	2.1	$H\to\tau\tau$
$\mathcal{C}^{(3)[3333]}_{\ell equ}$	0.8	0.8	-	-	0.8	$H \to \tau \tau$	0.8	$H \to \tau \tau$

LLLL vector operators

	coeff.	$\Lambda_{ m flay}^{ m down}$	$\Lambda^{ m up}_{ m flay}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
=	$\mathcal{C}^{[3333]}_{\scriptscriptstyle heta ho}$	-	-	0.3	0.2	0.3	$\sigma_{ m had}$	0.3	$\sigma_{ m had}$
	$\mathcal{C}^{[ii33]}_{\ell \ell}$	0.8	0.8	0.6	3.4	3.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	3.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
	$\mathcal{C}^{[i33i]}_{\ell\ell}$	3.5	3.5	0.4	3.3	4.6	$(g_{ au}/g_{\mu})_{ au}$	4.6	$(g_{ au}/g_{\mu})_{ au}$
	$\mathcal{C}_{\ell\ell}^{[iijj]}$	0.8	0.8	0.9	4.4	4.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	4.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
	$\mathcal{C}_{\ell\ell}^{[ijji]}$	3.5	3.5	4.5	4.4	5.1	A_b^{mFB}	5.1	A_b^{mFB}
-	${\cal C}_{qq}^{(1)[3333]}$	1.	7.7	1.6	1.1	1.7	Γ_Z	7.6	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(1)[ii33]}$	1.3	11.2	1.	1.5	1.7	4Q	11.2	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(1)[i33i]}$	2.4	11.3	0.7	1.6	2.5	$B_s o \mu \mu$	11.3	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(1)[iimm]}$	0.9	8.1	0.4	-	0.9	$\operatorname{Im}(C_D)$	8.1	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(1)[immi]}$	1.1	8.1	0.5	-	1.	$\operatorname{Im}(C_D)$	8.1	$ C_{Bs} $
_	${\cal C}_{qq}^{(3)[3333]}$	0.9	8.2	1.2	1.1	1.5	m_W	8.2	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(3)[ii33]}$	1.8	11.5	2.3	2.1	3.	R_b	11.3	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(3)[i33i]}$	2.6	11.2	1.	2.4	3.	$B_s ightarrow \mu \mu$	11.3	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(3)[iimm]}$	1.	7.9	1.5	0.2	1.5	$R_{ au}$	7.9	$ C_{Bs} $
	$\mathcal{C}_{qq}^{(3)[immi]}$	1.1	8.	0.9	0.1	1.2	$K^+ \to \pi^+ \nu \bar{\nu}$	8.	$ C_{Bs} $
	$\mathcal{C}_{\ell q}^{(1)[3333]}$	0.1	0.9	1.4	1.	1.4	$R_{ au}$	1.6	$R_{ au}$
	$\mathcal{C}_{\ell q}^{(1)[ii33]}$	0.4	5.	2.5	1.5	2.5	$\sigma_{ m had}$	5.1	$B_s o \mu \mu$
	$\mathcal{C}_{\ell q}^{(1)[33ii]}$	0.2	0.9	0.3	3.4	3.4	$pp \to \tau\tau$	3.5	$pp \to \tau\tau$
_	$\mathcal{C}_{\ell q}^{(1)[iimm]}$	0.4	5.1	0.5	5.4	5.4	$pp ightarrow \mu \mu$	5.6	$pp ightarrow \mu \mu$
_	$\mathcal{C}_{\ell q}^{(3)[\overline{3333}]}$	1.	1.3	1.3	1.	1.4	$R_{ au}$	1.8	$R_{ au}$
	$\mathcal{C}_{\ell q}^{(3)[ii33]}$	0.9	5.1	2.4	1.5	2.6	A_b^{mFB}	5.	$B_s o \mu \mu$
	$\mathcal{C}_{\ell q}^{(3)[33ii]}$	1.4	1.6	0.8	8.6	9.	pp ightarrow au u	9.	pp ightarrow au u
	$\mathcal{C}_{\ell q}^{(3)[iimm]}$	1.5	5.3	1.1	22.5	22.4	$pp ightarrow \mu u$	23.7	$pp ightarrow \mu u$

RRRR vector operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{\mathrm{up}}_{\mathrm{flav.}}$	Λ_{EW}	$\Lambda_{\rm coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[3333]}_{ee}$	-	-	0.3	0.2	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}_{ee}^{[ii33]}$	-	-	0.7	3.2	3.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	3.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{ee}^{[iijj]}$	-	-	0.8	4.2	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}^{[3333]}_{uu}$	0.4	0.4	1.2	0.8	1.3	$A_b^{ m FB}$	1.3	$A_b^{ m FB}$
$\mathcal{C}_{uu}^{[ii33]}$	0.1	0.1	1.1	1.3	1.4	4Q	1.4	4Q
$\mathcal{C}^{[i33i]}_{uu}$	-	-	0.5	1.3	1.4	4Q	1.4	4Q
$\mathcal{C}_{uu}^{[iijj]}$	-	-	0.3	-	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}^{[ijji]}_{uu}$	-	-	0.3	-	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}_{dd}^{[3333]}$	-	-	-	-	-	R_b	-	R _b
$\mathcal{C}_{dd}^{[ii33]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}_{dd}^{[i33i]}$	-	-	-	-	-	Γ_Z	-	Γ_Z
$\mathcal{C}_{dd}^{[iijj]}$	-	-	0.2	-	0.2	$R_{ au}$	0.2	$R_{ au}$
$\mathcal{C}_{dd}^{[ijji]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}^{[3333]}_{eu}$	-	-	1.2	0.4	1.2	$R_{ au}$	1.2	$R_{ au}$
$\mathcal{C}^{[ii33]}_{eu}$	0.9	0.9	2.1	0.7	2.2	$\sigma_{ m had}$	2.2	$\sigma_{ m had}$
$\mathcal{C}^{[33ii]}_{eu}$	-	-	0.3	2.8	2.8	$pp \to \tau\tau$	2.8	$pp \to \tau\tau$
$\mathcal{C}^{[iijj]}_{eu}$	-	-	0.6	7.4	7.4	$pp \to ee$	7.4	$pp \to ee$
$\mathcal{C}_{ed}^{[3333]}$	-	-	0.2	1.	1.	$pp \to \tau\tau$	1.	$pp \to \tau\tau$
$\mathcal{C}_{ed}^{[ii33]}$	-	-	0.3	1.5	1.5	$pp ightarrow \mu \mu$	1.5	$pp ightarrow \mu \mu$
$\mathcal{C}_{ed}^{[33ii]}$	-	-	0.2	2.8	2.8	$pp \to \tau\tau$	2.8	$pp \to \tau\tau$
$\mathcal{C}_{ed}^{[iijj]}$	-	-	0.4	4.4	4.4	$pp ightarrow \mu \mu$	4.4	$pp ightarrow \mu \mu$
${\cal C}^{(1)[3333]}_{ud}$	0.1	0.1	0.4	0.3	0.4	R_b	0.4	R_b
$\mathcal{C}_{ud}^{(1)[ii33]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}_{ud}^{(1)[33ii]}$	-	-	0.5	1.2	1.2	4Q	1.2	4Q
$\mathcal{C}_{ud}^{(1)[iimm]}$	-	-	0.2	-	0.2	$R_{ au}$	0.2	$R_{ au}$
${\cal C}^{(8)[3333]}_{ud}$	0.1	0.1	-	0.2	0.2	4Q	0.2	4Q
$\mathcal{C}_{ud}^{(8)[ii33]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{ud}^{(8)[33ii]}$	-	-	0.1	0.7	0.7	4Q	0.7	4Q
$\mathcal{C}_{ud}^{(8)[iimm]}$	-	-	-	-	-	-	-	-

LLRR vector operators

coeff.	$\Lambda_{\mathrm{flav.}}^{\mathrm{down}}$	$\Lambda^{\mathrm{up}}_{\mathrm{flav.}}$	Λ_{EW}	$\Lambda_{\rm coll.}$	$\Lambda_{\mathrm{all}}^{\mathrm{down}}$	Obs.	$\Lambda^{\mathrm{up}}_{\mathrm{all}}$	Obs.
$\mathcal{C}^{[3333]}_{\ell e}$	-	-	0.2	0.1	0.2	$A_{ au}$	0.2	$A_{ au}$
$\mathcal{C}_{\ell e}^{[ii33]}$	-	-	0.4	2.	1.9	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	1.9	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$
$\mathcal{C}_{\ell e}^{[i33i]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{\ell e}^{[iijj]}$	-	-	0.5	3.8	3.8	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	3.8	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell u}^{[3333]}$	0.1	0.1	1.4	0.4	1.3	$R_{ au}$	1.3	$R_{ au}$
$\mathcal{C}^{[ii33]}_{\ell u}$	0.7	0.7	2.4	0.8	2.3	$\sigma_{ m had}$	2.3	$\sigma_{ m had}$
$\mathcal{C}^{[i33i]}_{\ell u}$	-	-	-	-	-	-	-	-
$\mathcal{C}^{[iijj]}_{\ell u}$	-	-	0.7	5.2	5.2	$pp ightarrow \mu \mu$	5.2	$pp ightarrow \mu \mu$
$\mathcal{C}_{\ell d}^{[3333]}$	-	-	0.2	1.	1.	$pp \to \tau\tau$	1.	$pp \to \tau\tau$
$\mathcal{C}_{\ell d}^{[ii33]}$	-	-	0.3	1.5	1.5	$pp ightarrow \mu \mu$	1.5	$pp ightarrow \mu \mu$
$\mathcal{C}_{\ell d}^{[i33i]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{\ell d}^{[iijj]}$	-	-	0.5	4.7	4.7	$pp ightarrow \mu \mu$	4.7	$pp ightarrow \mu \mu$
$\mathcal{C}_{eq}^{[3333]}$	-	0.3	1.2	1.	1.3	$R_{ au}$	1.2	$R_{ au}$
$\mathcal{C}_{eq}^{[ii33]}$	0.6	6.7	2.1	1.5	2.2	$\sigma_{ m had}$	6.7	$B_s ightarrow \mu \mu$
$\mathcal{C}_{eq}^{[i33i]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{eq}^{[iijj]}$	-	-	0.4	6.	6.	$pp ightarrow \mu \mu$	6.	$pp ightarrow \mu \mu$
$\mathcal{C}_{qu}^{(1)[3333]}$	0.3	1.8	1.2	0.6	1.3	Γ_Z	1.7	$B_s ightarrow \mu \mu$
$\mathcal{C}_{qu}^{(1)[ii33]}$	0.3	1.8	0.7	1.6	1.6	4Q	2.1	$B_s ightarrow \mu \mu$
$\mathcal{C}_{qu}^{(1)[i33i]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{qu}^{(1)[iimm]}$	-	0.6	0.2	-	0.2	$R_{ au}$	0.6	$ C_{Bd} $
$\mathcal{C}_{qu}^{(8)[3333]}$	0.2	0.7	0.1	0.4	0.4	4Q	0.7	$ C_{Bs} $
$\mathcal{C}_{qu}^{(8)[ii33]}$	0.3	0.7	0.2	1.2	1.2	4Q	1.2	4Q
$\mathcal{C}_{qu}^{(8)[i33i]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{qu}^{(8)[iimm]}$	-	0.1	-	-	-	$R_{ au}$	0.1	$C_9^{ m U}$
$\mathcal{C}_{qd}^{(1)[3333]}$	0.2	0.3	0.4	0.3	0.3	R_b	0.3	R_b
$\mathcal{C}_{qd}^{(1)[ii33]}$	-	0.3	0.1	-	0.1	$R_{ au}$	0.3	$B_s ightarrow \mu \mu$
$\mathcal{C}_{qd}^{(1)[i33i]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{qd}^{(1)[iimm]}$	-	0.4	0.2	-	0.2	$R_{ au}$	0.4	$B_s ightarrow \mu \mu$
$\mathcal{C}_{qd}^{(8)[3333]}$	-	-	-	0.2	0.2	4Q	0.2	4Q
$\mathcal{C}_{qd}^{(8)[ii33]}$	0.1	-	-	-	0.1	$B \to X_s \gamma$	-	$B \to X_s \gamma$
$\mathcal{C}_{qd}^{(8)[i33i]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{ad}^{(8)[iimm]}$	-	-	-	-	-	$R_{ au}$	-	$ C_{Bs} $

Bosonic operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
\mathcal{C}_{H}	-	-	-	-	-	-	-	-
$\mathcal{C}_{H\square}$	0.2	0.2	0.6	0.1	0.6	$A_b^{ m FB}$	0.6	$A_b^{ m FB}$
\mathcal{C}_{HD}	0.4	0.4	5.1	-	5.	$A_b^{ m FB}$	5.	$A_b^{ m FB}$
\mathcal{C}_{HG}	0.9	0.9	-	-	0.9	$B \to X_s \gamma$	0.9	$B \to X_s \gamma$
\mathcal{C}_{HB}	0.5	0.5	0.9	-	0.9	$A_b^{ m FB}$	0.9	$A_b^{ m FB}$
\mathcal{C}_{HW}	0.7	0.7	0.9	-	1.	$A_b^{ m FB}$	1.	$A_b^{ m FB}$
\mathcal{C}_{HWB}	1.	1.	9.	-	9.	$A_b^{ m FB}$	9.	$A_b^{ m FB}$
$\mathcal{C}_{H ilde{G}}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{H ilde{B}}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{H ilde{W}}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{H ilde{W}B}$	-	-	-	-	-	-	-	-
\mathcal{C}_G	1.1	1.1	0.1	-	1.1	$B \to X_s \gamma$	1.1	$B \to X_s \gamma$
$\mathcal{C}_{ ilde{G}}$	-	-	-	-	-	-	-	-
\mathcal{C}_W	0.3	0.3	0.9	-	0.9	$A_b^{ m FB}$	0.9	$A_b^{ m FB}$
$\mathcal{C}_{ ilde{W}}$	-	-	-	-	-	-	-	-

Anomalies in $b \rightarrow c$ semi-leptonics: R_D and R_{D^*}

- Theoretically clean. Measurements by Babar, Belle, LHCb in good agreement.
- Enhancement of ~ 10% over SM due to excess in tau mode: $B \to D^{(*)} \tau \bar{\nu}_{\tau}$.
- Combined, 3.2σ tension w.r.t SM. Measurement of $R_{\Lambda_c}/R_{\Lambda_c}^{SM} = 0.73 \pm 0.23$ reduces tension slightly. [LHCb, <u>2201.03497</u>]