Dimensional regularization schemes and Application of BMHV scheme for γ_5 to chiral gauge theories

Dominik Stöckinger

TU Dresden

30 August 2023, Mainz EFT Workshop

Part 1: general remarks, see e.g. review "To d, or not to d" [1705.0182]

Part 2: current long-term project, review: [2303.09120]

with: Bélusca-Maïto, Ilakovac, Kühler, Mađor-Božinović, Weisswange

Outline

- Preliminary remarks on dimensional schemes
- 2 BMHV treatment of γ_5 : Overview, illustrations
- Explicit computation of symmetry-restoring counterterms

Outline

- 1 Preliminary remarks on dimensional schemes
 - Issue 1: Unitarity, Causality, Equivalence of schemes
 - Issue 2: Consistent definition, representation independence
 - Issue 3: Quantum action principle
 - Issue 4: Symmetries and symmetry violation
- 2 BMHV treatment of γ_5 : Overview, illustrations
- 3 Explicit computation of symmetry-restoring counterterms

Motivation

Regularization necessary to define QFT at the quantum level

cutoff-scale
$$\Lambda$$

$$\int_{|p|<\Lambda} d^4p$$

DREG

$$\mu^{4-D} \int d^D p$$

Entertaining history: puzzles, problems

- DREG breaks SUSY
- "DRED is mathematically inconsistent [Siegel '80]"
- "DRED has IR factorization problem [van Neerven, Smith, et al '88 and '05][Zerwas et al]"
- "No DRED IR factorization problem found [Kunszt, Signer, Trocsanyi '94; Catani et al '97]"
- "DRED violates unitarity ['t Hooft, van Damme '84]"
- "Some published results therefore wrong [Harlander, Kant, Mihaila, Steinhauser '06; Kilgore '11]"

4S: ordinary 4-dimensional Minkowski space metric $\bar{g}^{\mu \nu}$

QDS: [Wilson'73],[Collins] := ∞ -dimensional space with D-dim characteristics: metric $g^{\mu\nu}\equiv g^{\mu\nu}_{(D)}$

4S: ordinary 4-dimensional Minkowski space metric $\bar{g}^{\mu\nu}$

QDS: [Wilson'73],[Collins] := ∞ -dimensional space with D-dim characteristics: metric $g^{\mu\nu}\equiv g^{\mu\nu}_{(D)}$

explicit construction of integrals, $g_{\mu\nu}$, γ^{μ} etc \Rightarrow no contradictions possible

4S: ordinary 4-dimensional Minkowski space metric $\bar{g}^{\mu\nu}$

QDS: [Wilson'73],[Collins] := ∞ -dimensional space with D-dim characteristics: metric $g^{\mu\nu}\equiv g^{\mu\nu}_{(D)}$

necessarily 4S ⊂ QDS

$$g^{\mu
u}_{(D)}=ar{g}^{\mu
u}+\hat{g}^{\mu
u}$$

4S: ordinary 4-dimensional Minkowski space metric $\bar{g}^{\mu \nu}$

QDS: [Wilson'73],[Collins] := ∞ -dimensional space with D-dim characteristics: metric $g^{\mu\nu}\equiv g^{\mu\nu}_{(D)}$

For dimensional reduction/FDH scheme:

 $rac{\mathbb{Q}2\epsilon \mathsf{S}:}{}$ " 2ϵ -dimensional space" analogous metric $g^{\mu
u}_{(2\epsilon)}$

4S: ordinary 4-dimensional Minkowski space metric $\bar{g}^{\mu\nu}$

QDS: [Wilson'73],[Collins] := ∞ -dimensional space with D-dim characteristics: metric $g^{\mu
u} \equiv g^{\mu
u}_{(D)}$

For dimensional reduction/FDH scheme:

 $\Omega 2 \in S$: " $2 \in A$ -dimensional space" analogous

metric $g^{\mu
u}_{(2\epsilon)}$

 $\overline{\text{Q4S:}}$ "quasi-4-dimensional space" $\overline{\text{Q4S:}} = \overline{\text{QDS}} \oplus \overline{\text{Q2}} \epsilon \overline{\text{S}}$

metric $g^{\mu
u}_{ extstyle Q4S} = g^{\mu
u}_{(D)} + g^{\mu
u}_{2\epsilon}$

Common formulation of FDH (Bern, Dixon, Freitas; Kilgore, ...): " $4 < D < N_s$, internal gluons are N_s -dim.; at the end $N_s = 4$ "

 unitarity determines imaginary terms, causality determines nonlocal terms uniquely ("causal perturbation theory" [Bogoliubov et al, Epstein, Glaser])

Basic requirement:

any correct regularization must satisfy at the (n + 1)-loop level:

- it may differ from BPHZ only by real, local terms
- any two correct regularizations may differ only by real, local terms

 unitarity determines imaginary terms, causality determines nonlocal terms uniquely ("causal perturbation theory" [Bogoliubov et al, Epstein, Glaser])

Basic requirement:

any correct regularization must satisfy at the (n + 1)-loop level:

- it may differ from BPHZ only by real, local terms
- any two correct regularizations may differ only by real, local terms

Counter example: set all divergent integrals = 0 — yields finite theory that violates causality and unitarity

 unitarity determines imaginary terms, causality determines nonlocal terms uniquely ("causal perturbation theory" [Bogoliubov et al, Epstein, Glaser])

Basic requirement:

any correct regularization must satisfy at the (n + 1)-loop level:

- it may differ from BPHZ only by real, local terms
- any two correct regularizations may differ only by real, local terms

Counter example 2: DREG with anticommuting γ_5 treated consequently — some loops will be incorrectly set to zero!!

In practice, check correctness of your calculation!

e.g. 2-loop muon decay [Freitas, Hollik, Walter, Weiglein '02], 2-loop g-2 [Heinemeyer, DS, Weiglein '04]

 unitarity determines imaginary terms, causality determines nonlocal terms uniquely ("causal perturbation theory" [Bogoliubov et al, Epstein, Glaser])

Basic requirement:

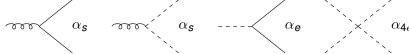
any correct regularization must satisfy at the (n + 1)-loop level:

- it may differ from BPHZ only by real, local terms
- any two correct regularizations may differ only by real, local terms

Counter example 3: DRED/FDH "treated naively, without ϵ -scalar coupling renormalization" violates unitarity (see next slide)

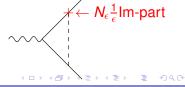
't Hooft, van Damme-problem: unitarity violation in DRED

ullet ϵ -scalars not "protected" by gauge invariance



- Different couplings α_s , α_e , $\alpha_{4\epsilon}$, especially $\delta \alpha_s \neq \delta \alpha_e$, $\beta^s \neq \beta^e$, ...
- Distinction required, otherwise divergent/non-unitary results

[Jack, Jones, Roberts '94][Harlander, Kant, Mihaila, Steinhauser '06][Kilgore '11]



Issue 2: Mathematical consistency

Basic requirement:

Mathematical consistency is required for any scheme

- ullet Math. inconsistency means: possible to derive e.g. 0=1
- In other words: one initial expression leads to different results, depending on the order of calculational steps

Issue 2: Mathematical consistency

Basic requirement:

Mathematical consistency is required for any scheme

- ullet Math. inconsistency means: possible to derive e.g. 0=1
- In other words: one initial expression leads to different results, depending on the order of calculational steps

Counter examples:

- $\bullet \ \ \mbox{Siegel's inconsistency of DRED} -- \mbox{identify 4S} = \mbox{Q4S (next slide)}$
- inconsistent γ_5 , e.g. in

$$\operatorname{Tr}(\gamma^{\mu}\gamma_{5}\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}\gamma^{\delta}\gamma_{\mu}) \propto \left\{ egin{array}{ll} \operatorname{either} & D\epsilon^{lpha\beta\gamma\delta} \\ \operatorname{or} & (8-D)\epsilon^{lpha\beta\gamma\delta} \end{array}
ight.$$

How does Q4S avoid Siegel's inconsistency?

Siegel: "With

$$\epsilon^{(4)}_{\mu_1\mu_2\mu_3\mu_4}\epsilon^{(4)}_{
u_1
u_2
u_3
u_4} \propto \det((g^{(4)}_{\mu_i
u_j}))$$

calculate

$$\epsilon^{(D)\mu\nu\rho\sigma} \epsilon^{(\epsilon)}{}_{\alpha\beta\gamma\delta} \epsilon^{(D)}{}_{\mu\nu\rho\sigma} \epsilon^{(\epsilon)\alpha\beta\gamma\delta}$$

in two different ways

$$\Rightarrow 0 = D(D-1)^2(D-2)^2(D-3)^2(D-4)$$

different calculational steps lead to different results,

mathematical inconsistency!!!"

[Siegel'80]

Solution: Don't allow explicit index counting (step one) any more, because $g^{(4)}_{\mu\nu} \in \text{quasi-}4\text{-dim space}!$

Issue 3: Regularized quantum action principle

Basic statement:

Naive result from symmetry variation in path integral:

$$\langle (\delta\phi_1)\phi_2\ldots\rangle + \langle \phi_1(\delta\phi_2)\ldots\rangle + \ldots = -i\langle \phi_1\phi_2\ldots(\int\delta\mathcal{L})\rangle$$

- property of regularization scheme, does not necessarily hold (no fundamental QFT requirement)
- if it holds, it is very useful! ⇔ "P.I. measure is invariant"

Issue 3: Regularized quantum action principle

Basic statement:

Naive result from symmetry variation in path integral:

$$\langle (\delta\phi_1)\phi_2\ldots\rangle + \langle \phi_1(\delta\phi_2)\ldots\rangle + \ldots = -i\langle \phi_1\phi_2\ldots(\int\delta\mathcal{L})\rangle$$

- property of regularization scheme, does not necessarily hold (no fundamental QFT requirement)
- if it holds, it is very useful! ⇔ "P.I. measure is invariant"

holds on the regularized level in DREG Breitenlohner/Maison '77 and DRED DS '05

Idea of proof: compare all Wick contractions on both sides [review 2303.09120]

Quantum action principle in DREG/DRED vs. other schemes

Intuition of statement: relation loop diagrams \leftrightarrow Lagrangian $\mathcal{L}^{(D)}$

essential point in proof, valid in DREG/DRED:

ullet D-dim propagator Feynman rule = inverse of diff.-op. in $\mathcal{L}^{(D)}$

Quantum action principle in DREG/DRED vs. other schemes

Intuition of statement: relation loop diagrams \leftrightarrow Lagrangian $\mathcal{L}^{(D)}$

essential point in proof, valid in DREG/DRED:

• D-dim propagator Feynman rule = inverse of diff.-op. in $\mathcal{L}^{(D)}$

example for opposite: purely 4-dim numerators!

• *D*-dim Dirac propagator = $\frac{p_{\mu}\bar{\gamma}^{\mu}+m}{p^2-m^2}$

while such a scheme might be (?) consistent, checking symmetries might be difficult

Issue 4: Symmetry properties (from $\mathcal{L}^{(D)}$ and quantum action principle)

- DREG and DRED manifestly preserve gauge invariance in QED and QCD
- \bullet DREG (BMHV) breaks gauge invariance in EWSM because of non-anticommuting $\gamma_{\rm 5}$ $_{\rm main\ topic\ of\ this\ talk}$
- DREG breaks SUSY
- DRED preserves SUSY to large extent but not completely

breaking via Fierz-evanescent operator which would vanish if Q4S=4S but which does not vanish in consistent DRED [Avdeev, Chochia, Vladimirov '81][DS '05]...[DS, Unger '18] \rightsquigarrow relation to γ_5 problem at 3-loop

Summary

- Issue 1: Unitarity, Causality, Equivalence of schemes
 - ightharpoonup counter examples: DRED: 't Hooft/v. D.-problem, DREG: γ_5 problem
- Issue 2: Consistent definition, representation independence
 - ightharpoonup counter examples: DRED: Siegel's inconsistency, DREG: γ_5 problem
- Issue 3: Quantum action principle $\langle (\delta \phi_1) \phi_2 \dots \rangle + \dots = -i \langle \phi_1 \phi_2 \dots (\int \delta \mathcal{L}) \rangle$
 - counter example: purely 4-dim numerators
- Issue 4: Symmetries and symmetry violation

Outline

- Preliminary remarks on dimensional schemes
- 2 BMHV treatment of γ_5 : Overview, illustrations
 - γ_5 problem of DREG
 - BMHV breaks chiral gauge invariance
 - gauge-invariance restoring counterterm
- 3 Explicit computation of symmetry-restoring counterterms

Outline

- Preliminary remarks on dimensional schemes
- 2 BMHV treatment of γ_5 : Overview, illustrations
- Explicit computation of symmetry-restoring counterterms