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@ Motivation: neutron EDM

C'P violation: a case for new physics

e baryon asymmetry in the universe requires more C' P
violation than Standard Model (SM) can provide
¢ so far no direct evidence of physics beyond the SM

® two options:
® light new physics is very well hidden (weakly coupled)
* new physics is heavy, with masses well above the
electroweak scale = use EFT framework

e focus here on the second option



@ Motivation: neutron EDM

Electric dipole moments

electric dipole moments (EDMs) are sensitive \T,
probes of C'P violation e B i
SM (CKM) contribution tiny 9 s
current experimental limit for neutron: i“

|dn| < 1.8 x 10713 efm
— nEDM Collaboration, PRL 124 (2020) 081803

n2EDM (PSI) will improve sensitivity by two orders of

mag n |tUde neutron EDM

—e  SM (Seng 2015)
excluded by nEDM (PSI) 2020
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@ Motivation: neutron EDM

Neutron EDM
® non-observation leads to strong constraints on
C P-violating sources
* observation would be a clear signal of physics beyond the
SM or QCD 6-term
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Neutron EDM in LEFT

e contribution schematically given as
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@ Motivation: neutron EDM

Neutron EDM in LEFT

¢ contribution schematically given as

e calculate matrix element in LEFT at a renormalization scale of
w~2...3GeV

e at present, large uncertainties on matrix elements dilute
experimental sensitivity

e aim for 10 — 25% precision to avoid cancellations
— Alarcon et al., arXiv:2203.08103



@ Motivation: neutron EDM

Neutron EDM in LEFT

¢ hadronic EDMs (nEDM) complicated: QCD is
non-perturbative at low energies

e any P-odd, C' P-odd flavor-conserving operator contributes
non-perturbatively to nEDM:

QCD 6-term

¢ dimension-five quark (C)EDM operators

® dimension-six three-gluon operator

¢ dimension-six P/C P-odd four-fermion operators



@ Motivation: neutron EDM

Neutron EDM in LEFT

1.540.7) x 10720 e fm

0.20 £ 0.01)d,, + (0.78 4 0.03)dg + (0.0027 + 0.0016)d,
0.55 & 0.28)ed, — (1.1 £ 0.55)e dg + (??)eds

50 & 40)MeV e dg + (??) four-quark

dy =—

~—~ o~ —~~

+
— Alarcon et al., arXiv:2203.08103
e ideally use lattice QCD to compute matrix elements

e problem with lattice and EFT: dy ~ 37, Li(11) (N|OMS|N~)
MS cannot be implemented on the lattice!

® requires a matching calculation



@ Motivation: neutron EDM

Neutron EDM in the LEFT

energy

lattice QCD
A .
272
AweT SMEFT
T LEFT ]
matching

—~
S Lilw) (NIOSS|)

experimental nEDM constraint



Motivation: neutron EDM

H

Matching to lattice schemes

1o

Evanescent operators in the HV scheme

A

Spurions and symmetry-restoring counterterms

[~

Theta terms and the anomaly

El

Summary



@ Matching to lattice schemes

General procedure

non-perturbative definition of renormalized operators in a
scheme amenable to lattice computations

define non-perturbative subtraction scheme of power
divergences — Maiani, Martinelli, Sachrajda, NPB 368 (1992) 281

compute matrix elements in lattice QCD

for operators without power divergences: calculate relation
between MS and lattice scheme at ju ~ 2...3GeV

use this matching to derive matrix elements of MS operators



@ Matching to lattice schemes

Rl schemes

¢ Regularization-Independent
(Symmetric) MOMentum-subtraction scheme
— Martinelli et al. (1995), Sturm et al. (2010)

e impose renormalization conditions on truncated off-shell
Green’s functions for Euclidean momenta

¢ RI-SMOM: insert momentum into operator to suppress
unwanted IR effects

e calculation in a fixed R, gauge



@ Matching to lattice schemes

Matching MS and RI-SMOM

e dimension 5 electric & chromo-electric dipoles:
— Bhattacharya, Cirigliano, Gupta, Mereghetti, Yoon, PRD 92 (2015) 11, 114026

e dimension-6 three-gluon operator GGG:
— Cirigliano, Mereghetti, Stoffer, JHEP 09 (2020) 094
e complications:

* large set of operators (34 for three-gluon operator), including
unphysical ones

® requires calculation of many matrix elements

* power divergences in lattice spacing difficult to tackle



@ Matching to lattice schemes

A promising scheme: gradient flow

— Luscher, JHEP 08 (2010) 071, JHEP 04 (2013) 123

¢ gradient flow: introduce new artificial dimension:
flow time ¢ (not related to ordinary time)

e boundary condition: ordinary Euclidean QCD at¢t =0
B,(t=0)=G,, x(t=0)=7v
¢ flow equations:
OB, = D,Gy, + a0D,0,B,,
dx = D*x — (0, B,)x

e flow acts as a UV regulator



@ Matching to lattice schemes

Gradient flow: advantages

e “flowed operators” are automatically UV finite, apart from

quark-field (+ coupling & mass) renormalization

non-perturbative Rl renormalization condition for quark fields:
— Makino, Suzuki, PTEP 2014, 063802 (2014)

2N,

O(e:t) @i 00) = ~ e

gauge-invariant results
on the lattice: continuum limit « — 0 for fixed ¢ possible

power divergences no longerin 1/a, butin 1/¢
= disentangled from continuum limit



@ Matching to lattice schemes

Perturbative solution of flow equations

¢ rewrite flow equations in integral form
t
Bulait) = [ 4Py Kyl = 1i)Golw) + [ dsKueo — it = )Ru(0i5)

with the kernel Kw,(p; t) = 5We*tp2
¢ solve perturbatively as an expansion in g

e written as Feynman rules, extending QCD:

1 2
50,00\ QQQQQ 1t 10 = g5 3 — =TI,
p
5,0 QQQQQ i a =0t — )67 56”7,
—>

p27l/7b t pP1,H,Q 0o
= —ifabc/ dt (51/;;(1?2 — pg)M + 25#/32731/ — 25Hyp2p>
0

—>
p3,p,C



@ Matching to lattice schemes
Matching calculations

e perform operator-product expansion at short flow times
OFf(t) ZCH (t, 1) O (1 Z (£, NS (1)

Z gMS )

® O;: physical operators
* N;: nuisance (redundant) operators
® &;: evanescent operators

e determine matching coefficients in perturbation theory by
computing insertions in suitable Green’s functions

* e.g., for dipole:
L e

t —



@ Matching to lattice schemes

Matching calculations

e a priori complicated flow-time integrals simplified by method
of regions: flow-time ¢ is the only hard scale

e (' P-odd flavor-conserving sector:
one-loop effects ~ 30% — 60%

e 0O(40%) relative perturbative uncertainty motivates matching
at two loops

— Harlander, Kluth, Lange, EPJC 78 (2018) 11, 944
— Harlander, Lange, PRD 105 (2022) 7, L071504



@ Matching to lattice schemes

C'P-odd flavor-conserving operators: completed at 1 loop
e quark bilinears:
— Hieda, Suzuki, MPLA 31 (2016) 1650214
e dimension-5 quark (C)EDM:
— Mereghetti, Monahan, Matthew D. Rizik, Shindler, Stoffer, JHEP 04 (2022) 050

e four-quark operators:
— Jona Biihler, Stoffer, arXiv:2304.00985 [hep-lat], to appear in JHEP

e dimension-6 C' P-odd three-gluon operator (GP-3GO):

— Oscar Lara Crosas, Monahan, Rizik, Shindler, Stoffer, to appear

20


https://arxiv.org/abs/2304.00985

@ Matching to lattice schemes

Example: scalar singlet four-quark matching coefficient

—0.2r q

0.25 0.5 1 2 4
t/to

perturbative uncertainty ~ maximum difference between curves

21



Overview

Evanescent operators in the HV scheme
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@ Evanescent operators in the HV scheme

23

Scheme choice

e (' P-odd operators contain ~5 or Levi-Civita symbol:
intrinsically four-dimensional

¢ only dim.reg. scheme that is proven to be consistent to all
orders: original HV scheme

— 't Hooft, Veltman (1972); Breitenlohner, Maison (1977)

guy = g,uu + g#l/, gﬂyguu =4, g#l’gyu = -2,
{’757'7#} =0, [’757'3/}!] =0

¢ in EFT: further scheme dependence due to operator
definition



@ Evanescent operators in the HV scheme

Example: CP-3GO scheme dependence
— Oscar Lara Crosas, Monahan, Rizik, Shindler, Stoffer, to appear

* scheme 1: QCD in D dimensions, €,,, 5, only source of
dimensional splitting — Cirigliano, Mereghetti, Stoffer, JHEP 09 (2020) 094
O&(t) = Tr[Gn(t)G, 5 ()G ()]
Og = Tr[GpuG,3Gxyl
e scheme 2: QCD in D dimensions, higher-dim. physical
operators in 4 dimensions — Luca Naterop, Stoffer, to appear
OZ(t) = Tr[Gun(t) Gz () G3a (1)
Og = Tr[GpsGp3Gial
Eg = Tr[GoGozGigl

24
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@ Evanescent operators in the HV scheme
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@ Evanescent operators in the HV scheme

25

Example: GP-3GO scheme dependence

— Oscar Lara Crosas, Monahan, Rizik, Shindler, Stoffer, to appear

gradient-flow matching:

C 1 24
e scheme1: Cz=1+ @sCa | 3asCa og(8mu’t)
3asCa log(8mp?t)
27
e dependence on MS scheme expected

e scheme 2: C‘é =1+

e what happens if we match (’)g(t) to scheme 27
* intuition: flowed operator UV finite: O%(t) and O%(t) should
give the same matching

e change on flowed side only affects evanescents on MS side
= naively obtain scheme 1 result



@ Evanescent operators in the HV scheme
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Example: CP-3GO scheme dependence

— Oscar Lara Crosas, Monahan, Rizik, Shindler, Stoffer, to appear

solution: need to renormalize evanescent operators

separation of evanescent sector requires (M >|phys =0

— Dugan, Grinstein (1991), Herrlich, Nierste (1995)
— Aebischer, Pesut (2022), Fuentes-Martin, Kénig, Pagées, Thomsen, Wilsch (2023)

fixes finite renormalization Afjo:
SZMS — (513 + A%ﬁ')g]bare + A%@o}aare
method of regions leads to
= tree = tree
<OR( )> hard finite (CilL + A%(i) <O?are>‘ + Cf}zL <5})are>|

Ago exactly corresponds to difference between scheme-1/2
results = (; independent of evanescence in flowed operator



@ Evanescent operators in the HV scheme
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LEFT renormalization including evanescent operators

— Luca Naterop, Stoffer, to appear

finite counterterms can be determined once and for all
define complete LEFT operator basis in HV scheme,
including evanescents (four-fermi: only one-loop generated):

Lierr = LocD+QED + Z L;O; + Z Liedored 4 Z K&
avoid gauge-variant nuisance operators by using
background-field method
keep O;, 0**d in 4-dimensional sub-space

remove Or*d via field redefinitions



@ Evanescent operators in the HV scheme
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Evanescent operators in HV scheme
— Luca Naterop, Stoffer, to appear

two types of evanescent operators up to dimension six

operators explicitly containing summed evanescent Lorentz
indices: appearing at dimension 4, 5, 6

Fierz-evanescent operators at dimension six

note: Fierz relations do not hold in HV scheme:

(Pr7"PL) ® [Pr7uPL] = —(Pr7"PL] ® [Pr7uPL) + EL7V
(PrY"PL) ® [PL7,Pr] = 2(Pr] @ [PL) + B,

(PL6"" Pp) ® [PLo,wPr) = 8(PL] ® [PL) — 4(Pp) ® [P] + EG?)

reason: 7, are not 4 x 4 matrices, Dirac algebra still
oo-dimensional



@ Evanescent operators in the HV scheme

LEFT renormalization including evanescent operators

— Luca Naterop, Stoffer, to appear

¢ double insertions of dim. 5 operators: renormalize
coefficients, not operators

e perform one-loop renormalization up to dimension-six:

co £
Li — TE LT Lgt Lgt — (E n)
HEL () + 1), > A
{=1n=0
co /L 1 ( )
— M T ct ct ln

=1 n=1

29



@ Evanescent operators in the HV scheme

LEFT renormalization including evanescent operators

— Luca Naterop, Stoffer, to appear
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co £
;= nie(rr LSt Lgt (En)
R CICES I D ) De o

=1n=0

co £ 1 ( )
;= niE (KT Kct Kct ln
Ko = )+ K. ZZEW SEE

{=1n=1
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@ Evanescent operators in the HV scheme
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LEFT renormalization including evanescent operators

— Luca Naterop, Stoffer, to appear

tracing over evanescent structures produces factor of ¢

= L(E 6 independent of K;

(1 Y scheme independent, reproduce LEFT RGE
— Jenkins, Manohar, Stoffer, JHEP 01 (2018) 084, JHEP 03 (2018) 016

physical effects of evanescent insertions arise from
one-loop 1/ divergence x g*,

= local, compensated by counterterms L§1’°>
evanescents neither O(¢), nor O(a):
double insertions of dimension-5 evanescents at one loop
= contribution to L(1.0)



Overview

Spurions and symmetry-restoring counterterms
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@ Spurions and symmetry-restoring counterterms

Symmetry breaking by regulator
— Luca Naterop, Stoffer, to appear
e LEFT is vector-like gauge theory: define fermion kinetic
terms in D dimensions: ~
Liin = Pilpy
= fully gauge invariant in D dimensions
¢ put: HV scheme breaks chiral symmetry:
Lin D PrilDyg + Yrivr
¢ only global symmetry = less severe than in chiral gauge
theories — talk by D. Stockinger
e symmetry breaking due to evanescent kinetic term

= stems from local UV divergence, can be restored by finite
counterterms



@ Spurions and symmetry-restoring counterterms

Symmetry breaking by regulator

— Luca Naterop, Stoffer, to appear

e chiral symmetry explicitly broken in LEFT: mass terms,
higher-dim. operators

Lugrr D —PrMyvr — b M vr
¢ disentangle from spurious breaking by regulator by promoting
My, Mzz (and Wilson coeffs.) to spurions, transforming as:

My UgMyUf M — UM U,

(L0 — L0 1 100 "where

7 7,ev X

LE})QO) compensates breaking of spurion chiral symmetry

e perform finite renormalization L

33
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@ Theta terms and the anomaly

Theta terms

— Luca Naterop, Stoffer, to appear

e theta parameters require renormalization in presence of

higher-dim. operators
d 8
M@e = _EMQ Im(Lqgc)
— Jenkins, Manohar, Stoffer, JHEP 01 (2018) 084
e can be calculated perturbatively

— Georgi, Tomaras, Pais, PRD 23 (1981) 469

35



@ Theta terms and the anomaly
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Theta terms

— Luca Naterop, Stoffer, to appear

procedure to extract counterterms: — Georgi, Tomaras, Pais (1981)
e multiply C P-odd sources by ¢ and supplement Lagrangian

OLrerT(C)

Lrerr(¢) = Lrerr(C) + ac

o¢
with scalar dummy field 6¢
e compute counterterms to
2
C g ~AuYy
08en ()0 50— G G

¢ obtain theta counterterms via integration

1
08cn :/0 d¢ 08cp(€)

(for single-operator insertions equivalent to momentum insertion)



@ Theta terms and the anomaly

Chiral anomaly

— Luca Naterop, Stoffer, to appear

e theta parameters shift under (anomalous) axial field
redefinitions

e usually derived using Fujikawa method: path-integral
measure not invariant

e this is not what happens in dim.reg.: determinant always
trivial

37



@ Theta terms and the anomaly

Chiral anomaly
— Luca Naterop, Stoffer, to appear
¢ in dim.reg.: anomalous rotation generates a shift in
evanescent operators
Epp = VrilpYr, 5;2,3 = YpilDr,

¢ insertions of evanescents induce finite shift in theta

parameters j

e spurion transformation
fqcp — Oqep + Z arg det(UgTUz})
=u,d
compensates anomalous shift

e HV scheme correctly produces chiral anomaly
38
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@ Summary

40

Summary

low-energy precision measurements: need to control
non-perturbative hadronic effects

if using lattice QCD for matrix elements
= matching calculation to appropriate scheme

traditional RI-SMOM schemes very challenging

recent progress with gradient flow: dimension-6 matching
completed at one loop for C'P-odd flavor-conserving sector

in some cases, two-loop coefficients would be useful



@ Summary

Summary

e ('P-odd sector: HV scheme natural choice

e general treatment of the entire LEFT in HV scheme at one
loop up to dimension 6:

¢ full classification of operator basis, including HV evanescents

® separation of evanescent sector through finite
renormalizations

* restoration of chiral symmetry through finite
renormalizations:
chiral symmetry maintained in intermediate steps of
calculations (matching, running, matrix elements)

e fully consistent scheme, no tricks as in NDR
e ready to use, e.g., in gradient-flow matching

41
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