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Outline

The Riemann zeta function as a regularization tool.

General scheme for Linear and Quadratic cases.
Truncations.

Spectrum only known Implicitly.
The Chowla-Selberg formula in Number Theory.

The Chowla-Selberg series formula (CS). Nontrivial
Extensions (ECS).

Operator Zeta Functions: (4 for A a DO, Det’s.
Dixmier trace, Wodzicki Residue.
Multiplicative Anomaly or Defect.
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Basic strategies
f.p Jacobi’s identity for the 6—function

Os(z,7) =1+ 23 ¢ cos(2nz), q:=e", 7eC

93(,2 T) = A= et/ ( =1) equivalently:

—(n—l—z)2t \/f Z
n=0

#® Higher dimensions: Poisson summ formula (Riemann)

> f) =Y )

nezp meEZP

a COS (2mnz), z,t€C, Ret >0

n=—oo

f Fourier transform
[Gelbart + Miller, BAMS '03, lwaniec, Morgan, ICM "006]

L’ fruncated sums | asymptotic series
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e [kxample of the ball:

— Operator
(—A +m?*)
on the D-dim ball 3" = {z € R":|x| < R}
with Dirichlet, Neumann or Robin BC -

— The zeta function

= A;°
k

— Eigenvalues implicitly obtained from

” ,+ o . J

— In spherical coordinates:

qﬁ;,m?n(r, Q) — ?"1__ J D 2 (wgm?‘)}/l_i__}g_ (Q)

J [+(D—2)/2 Bessel functions
Y+ p/e hyperspherical harmonics

— Eigenvalues 1, (> () determined through BC
—_— Dirichlet BC




R

((s) = Z Zd:(D)(wm +m?)~*

n=0 [=0

w;, (> 0) is defined as the n-th root of the l-th

equation, d;(D) = (20 + D — 2) 1'4(-5 g)"

P_JH%(wl,nR)+wl,nJl’+-‘?2:§(wlmr) |r=r = 0} for RobinBC

e Procedure:

— Contour integral on the complex plane
— _ 8 6.. -
((8) = Zd:(D)/Qm (k*+m?*) Bk —In @H_o z(k]ji(

(=0

7 runs counterclockw1se and must enclose all the

solutions [Ginzburg,Van Kampen, EE + 1. Brevik|

e Obtained: [with Bordag, Kirsten, Leseduarte,
Vassilievich,...] Y/

— Zeta functions

— Determinants

— Seeley [heat-kernel| coefficients )4



The Chowla-Selberg Formula (CS)

» M. Lerch, Sur quelques formules relatives du nombre des classes, Bull. Sci.
ﬁ Math. 21 (1897) 290-304

® A Selberg and S. Chowla, On Epstein’s Zeta function (), Proc. Nat. Acad.
Sci. 35 (1949) 371-74
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ON EPSTEIN'S ZETA FUNCTION (I)
By S. CHOWLA AND A. SELBERG
INSTITUTE FOR ADVANCED STUDY, PRINCETON, N. J.
Communicated by H. Weyl, May 18, 1049

1. This paper contains a short account of results whose detailed proofs
will be published later.
We define the function Z(s) by

Z(s) = D '(am? + bmn + cn®)~ 1

where s = ¢ + it(o and {, real), ¢ > 1, and the summation is for all integers
m, n (each going from — e to + ®), while the dash indicates that m =
n = 0 is excluded from the summation; further ¢ and ¢ are positive
numbers while b is real and subject to 4ac — b= A> 0.

It is well known that the function Z(s), defined for ¢ > 1 by (1), can be
continued analytically over the whole s-plane, and satisfies a functional
equation similar to the one satisfied by the Riemann Zeta Function.
The function Z(s), thus defined, is a meromorphic function with a simple
pole at s = 1.

Deuring (Math. Ztschr., 37, 403—-413 (1933)) obtained an important
formula for Z(s). Deuring’s work led Heilbronn (Quart. J. Maths.,
Oxford, 5, 150 (1934)) to the proof of the following famous conjecture of
Gauss on the class-number of binary quadratic forms with a negative
fundamental discriminant: let A(— A) denote the number of classes of
binary quadratic forms of negative fundamental discriminant —A =
b? — 4dac, then

h(—A) — = as A— o (2)
Again using the ideas of Heilbronn and Deuring, Siegel proved that
(= 8)> AT [A> Ae)] ®3)

which is a great advance on (2).
Our starting point is the formula:

225@3 -1 \/7_1_

D(s)As '/

Z(s) = 20(2s)a™" + t(@2s — DI — YY) + Q) | (4

where

s B nwh

- - et @ 45— 3/
Ofs) = aM—I/’P(s) L ngl w® * gr—as(n) cos ( - ) Sooé /

2a

an A
exp {— L (¢ + ¢)—1)} de | {4)




The Chowla-Selberg Formula (CS)

» M. Lerch, Sur quelques formules relatives du nombre des classes, Bull. Sci.
ﬁ Math. 21 (1897) 290-304

® A Selberg and S. Chowla, On Epstein’s Zeta function (), Proc. Nat. Acad.
Sci. 35 (1949) 371-74

® S Chowla and A. Selberg, On Epstein’s Zeta function, J. reine angew. Math.
(Crelle’s J.) 227 (1967) 86-110



Journal fiir die reine und
angewandte Mathematik

gegriindet von A. L. Crelle 1826

fortgefithrt von

C. W. Borchardt, K. Weierstrass, L. Kronecker,
L. Fuchs, K. Hensel, L. Schlesinger

gegenwirtig herausgegeben von

Helmut Hasse und Hans Rohrbach

unter Mitwirkung von

W. Brédel, M. Deuring, A. Grothendieck, P. R. Halmos, O. Haupt,
F. Hirzebruch, E. Hopf, M. Kneser, G. Kéthe, K. Prachar, H. Reichardt,
P. Roquette, W. Schmeidler, L. Schmetterer, E. Stiefel

Band 227

7 19

Institut for Reine und Angewandte
tAaihematik
Technische Hochschule Aachen

Walter de Gruyter & Co.

vormals G. J. Goschen'sche Verlagshandlung [ J. Guttentag, Verlags-
buchhandlung /| Georg Reimer [/ Karl J. Tritbner / Veit & Comp.

Berlin 1967



On Epstein’s Zeta-function
By Atle Selberg at Princeton (N. 1.}, and S. Chowla at State College (Pa.)

Introduction

This paper was written in the Spring of 1949, and a resumé appeared in the note:
On Epstein’s zeta Funetion (l), Proceedings of the National Academy of Sciences
(U.S. A, 35 (1949), 371--374.

Meanwhile, the following papers which have reference to the Proceedings paper,
came to our attention:

1. J. B. Rosser, Real roots of real Dirichlet L-series, Jour. Research National
Bureau of Standards, 45 (1950), 505514,

2. E. A, Anferteva, On an identity of Chowla and Selberg (Russian), Izvestija
Vyséik Ucebnyh Zavadenii Mathematika (Kazan), No. 3 (10) (1959), 13—21.

3. P. T. Bateman and E. Grosswald, On Epstein’s zeta Function, Acta Arithmetica,
9 (1964), 365—373.

4. K. Ramachandra, Some applications of Kronecker’s limit formulas, Annals of
Mathematics 80 (1964), 104—148.

We define the function Z(s)} by

1 Z(s) = X (am® + bmn + en®)”¢
) (

where s = o + i! (v and 1, real), ¢ = 1, and the summation is for all integers m, n (cach
going from —oc 1o +oc), while the dash indicates that m = n = 0 is excluded from
the summation; further e and ¢ are positive numbers while # is real and subject 10
bac— b =4 = 0.

It is well-known that the function Z(s), defined for & = 1 hy (1), can be continued
analytically over the whole s-plane. The function Z(s), thus delined, is a meromorphic
function with a simple pole at s = 1.

In 1933, Deuring obtained an important formula for Z(s). Deuring’s work led
Heilbronn to his praof of a famous canjecture of Gauss on the class number of binary
quadratic forms with a negative fundamental diseriminant. 1f fi{—1) is the number of
classes of binary quadratic forms of negative fundamental discriminant —. 1 = 47— 44a¢,

Gauss conjectured that

2 h(—d)=>co as d— oc.
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Transforming this we get

h
» Y wat IT a,
?_f‘glagﬁ(b’f;—y) Bl il mg,,‘ﬁd,,l; _.3_‘“’1/\ 27 Li(L).
- i
Inserting here the value (obtained like (58))
5 12t d \ 2haly + log 27)
(1) = x log I _—
) =TT e = (e (7] w)Td]
ane gets, writing ; —‘1—!] dl s
b
A 1T g [ oo v (E))ee
9 R of )
@ A = marae {m lrar)™
Now let 7 = ti;f{ be a number from the field £(}/d), then from Lemma 3 we get
az) _
4(z) a
where 4; are algebraie numbers. Thus (2) gives
gl o AN
@) am=Z{ I r(f)

where A’ is an algebraic number. Finally we have from (48)

12

A7) = (QK) ’B(n’ck’)‘:i.”(g),

where 4 is an algebraic number. This gives, when inserted in (3)
w

() K:A”’Vﬂ{ﬂf(ml} }—’,

which is the desired expression for K in finite terms.

References (in the order of appearance in the text)

[1] S. Chowls, Quart. J. of Maths. (Oxford) 5 (1934), 304—2307.

[2] 8. Chowla, Acta Arithmetica 1 (1933), 118—114.

[8] Deuring, Math, Ztschr. 87 (1033), 403—413.

[4] Frieke-Klein, Moduliunktionen, Leipzig 1850,

[8] Heilbronn, Quart. J. of Maths, (Oxford) 5 (1934), 150—160.

[6] Heilbronn, Acta Arithmetica 2 (1936), 212—213.
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History

® |erch (1897):

| D

D A h
Z (X) log T (5) = hlog|D| — 3 log(27) — Z log a
A=1 (a,b,c)
2
+5 D log [#1(0]a)6;(0]5)]
D discriminant, 6| ~ n’ (a,b,)

h class number of binary quadratic forms (a, b, ¢)
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History

® |erch (1897):

| D

D A h
Z (X) log T (5) = hlog|D| — 3 log(27) — Z log a
A=1 (a,b,c)
2
+5 D log [#1(0]a)6;(0]5)]
D discriminant, 6| ~ n’ (a,b,)

h class number of binary quadratic forms (a, b, ¢)

® FEta evaluations Dedekind eta function for Im (7) > 0

n(r) = ¢ [Io, (1 —¢"),

It is a 24-th root of the discriminant func A(7) of an elliptic
curve C/L from a lattice L = {ar +b|a,b e Z}

A(r) = (2m)2q [ (1 = M*




Properties & Recent Results

The C-S formula gives the value of a product of eta functions T

— If there is only one form in the class, it yields the value of a single eta
function in terms of gamma functions

—> Long series of improvements:

—> In the last years the C-S formula has been ‘broken’ to isolate the eta
functions:

N Evaluation of the Dedekind eta function,
Can. Math. Bull. (2005)

9 PhD Thesis, 2004 (Macquarie U., Sidney)
9 An analogue of the Chowla-Selberg formula for several
automorphic L-functions, arXiv:math/0606096 (2006)

L.’ The Chowla-Selberg formula and the Colmez conjecture, J
Canad. J. Math. 62 (2010), pp. 456-472



Extended CS Series Formulas (ECS)

f.. Consider the zeta function (Res > p/2, A > 0,Req > 0) T
11 . S / . i
Gz = X |y 0T A0 +a] = Y Q@+ +d
nezpr nezp

point 7 = 0 to be excluded from the sum
(inescapable condition when ¢; =--- =¢, = ¢ =0)

Q(n+¢)+q=Q(n)+ L) +q



Extended CS Series Formulas (ECS)

f.. Consider the zeta function (Res > p/2, A > 0,Req > 0) T
11 . —° / . i
Gz = X |y 0T A0 +a] = Y Q@+ +d
nezpr nezp

point 7 = 0 to be excluded from the sum
(inescapable condition when ¢; =--- =¢, = ¢ =0)

Q (M +¢)+q=Q(R) + L(7i) + q
® Case ¢ #0 (Req > 0)
(2 )PI2qPI25 T(s — p/2)  28/2+P/A+27s0=5/2+p/4
CA,E,q(S) \/m (s) T \/m I(s)
x Y cos(2m - &) (mTAT) T K (2my/2gmT AT
MELY ) [ECS1]

o -




Extended CS Series Formulas (ECS)

f.. Consider the zeta function (Res > p/2, A > 0,Req > 0) T
11 . —° / . i
Gz = X |y 0T A0 +a] = Y Q@+ +d
nezpr nezp

point 7 = 0 to be excluded from the sum
(inescapable condition when ¢; =--- =¢, = ¢ =0)

Q (i +¢)+q=Qm) + L) +q
® Case ¢ #0 (Req > 0)
(27T>p/2qp/2—8 F(S - p/2) 23/2—|—p/4—|—27.‘.8q—3/2—|—p/4
CA,E,q(S) \/m (s) T \/m I(s)
x Y cos(2m - &) (mTAT) T K (2my/2gmT AT

MELY ) [ECS1]
® Pole: s =p/2 Residue:

/
L Res;—;,/2Ca,64(5) = (2mP” (det A)~1/2 J




® Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane
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Only condition on matrix A: corresponds to (non negative) quadratic
form, Q. Vector ¢ arbitrary, while ¢ is (to start) a non-neg constant

K, modified Bessel function of the second kind and the subindex1/2
In me means that only half of the vectors m € ZP participate in the
sum. E.qg., if we take an m € ZP we must then exclude —m

[simple criterion: one may select those vectors in Z?\{0} whose

first non-zero component is positive]



® Gives (analytic cont of) multidimensional zeta function in terms of an
exponentially convergent multiseries, valid in the whole complex plane

f’ Exhibits singularities (simple poles) of the meromorphic continuation T
—with the corresponding residua— explicitly

® Only condition on matrix A: corresponds to (non negative) quadratic
form, Q. Vector ¢ arbitrary, while ¢ is (to start) a non-neg constant

® K, modif ed Bessel function of the second kind and the subindex 1/2
In me means that only half of the vectors m € ZP participate in the
sum. E.qg., if we take an m € ZP we must then exclude —m

[simple criterion: one may select those vectors in Z?\{0} whose

f rst non-zero component is positive]

® Case ¢y = --=c¢, =q =0 [true extens of CS, diag subcase]
a(s) = 2 Z (det A4;)72 [20)%° T (5= ) Cal2s—i) +
Ap I'(s) p—J 9 | Sk

47TSCL§__]-% S: S:/nj/Q—s (mjA 1m3)8/2_j/4Kj/2_8 (27Tn\/ap ]m A J)]

n=1p; €7J [ECS3d]



QFT In s-t with non-commtoroidal part

|7’ D—dim non-commut manifold: M =RY @ TL, D=d+p+ 1T
T, a p—dim non-commutative torus: [z;,z;] = ifo
o, a real, nonsingular, antisymmetric matrix of £1 entries
6 the non-commutative parameter.

® Interest recently, in connection with M —theory & string theory

® Unified treatment: only one zeta function, nature of field
(bosonic, fermionic) as a parameter, together with # of
compact, noncompact, and noncommutative dimensions

VI(s—(d+1)/2) - (d+1)/2 s 2—2a o] (d+1)/2—s
Cals) = (4m) @D/ T () gz:pQ n [1+AG™ 2 Q(i) ]
a = 2bos, a=3ferm, V = Vol (R%*!) of non-compact part

Q(7) = X%, a;n? adiag quadratic form, R; = a;/? compactif ¢ radii

Jj=1 J J



® After some calculations,

s+1—ﬁ) d+1

ﬁa( s) = (47) (d—H)/QZ 1T (s (—Ag=2) CQOO(SJFO‘Z_T)T

for all radii equal to R, with I(it) =Y "_, n?,
4 ~L(s +1— 4 2—20] d+1
Cals) = (47T>(d+1)/2Rd+1—232 [T (s) (—AG™) Cp(stal- 9 )

[=0

where we use the notation (z(s) := (;5,(s)
e.g., the Epstein zeta function for the standard quadratic form

® Rich pole structure: pole of Epstein zf at
s=p/2—ak+(d+1)/2 = D/2 — ak, combined with
poles of T', yields a rich pattern of singul for (,(s)

® C(Classify the different possible cases according to the
\_ values of dand D = d + p + 1. We obtain, at s = 0: J
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For d = 2k

[ if D 2Za==(,(0)=0if D=

2 ==>(,(0) = finite

For d =2k —1 X«

\

\

if D +£2q 4

\

‘

if D= 2al |

\

0,

pole,

finite,

)
finite, for I < k

for [ > k

for | <k

for [ > k

\

/

\

/

=

==> ((0) = finite

—> (,(0) = pole

— Pole structure of the zeta function (,(s), at s = 0, according to the

different possible values of d and D (% means

— Explicit analytic continuation of (,(s), a
& specific pole structure

2,3,

of 2a)

-



I S G Y o et (et V1) BNNURIEAE < S
Cal8) = (27T)(d+1)/2f(3)§_:l! ['(s+al—(d+ 1)/2)(_2 Ao )lg(demj)
=

« [Wg/z ;s] al+(d+j+1) /2 T(s+al — (d+j+1)/2)Cr(2s + 20l — d —

stal—(d+1)/2 —(s+al)/2—(d4+j5+1)/4 d+j+1)/2—s—al
4+ A ()/p] S‘S‘n(J)/

n=1m;ez

1 o\ (stal)/2—(d+5+1) /4
X (mz-Aj 1mj) K(g4j4+1)/2—s—al <27Tn\/ap ]m A )]




I S G Y o et (et V1) BNNURIEAE < S
Cals) = (27T)(d+1)/2f(3)§_:l! [(s+ ol —(d+ 1)/2)(_2 Ao )l;}(demj)
T

« [,,Ty/2 a " IR (s pal — (d 4+ 1)/2)CR(25 + 20l —d — j

stal—(d+1)/2 —(s+al)/2—(d+j5+1)/4 d+j+1)/2—s—al
4+ A ()/p] S‘S‘n(y)/

n=1m,ecZI

1 o\ (stal)/2—(d+5+1) /4
X (mz-Aj 1mj) K(atj+1)/2—s—al (27Tn\/ap ]mtA )]

p\D even odd

odd (1a) pole/fnite (I > 1y) (2a) pole/ pole
even (1b) double pole / pole (I > 11,15) | (2b) pole / double pole (I > I5)

— General pole structure of (,(s), for the possible values of D and p
being odd or even. Magenta, type of behavior corresponding to
ower values of [; behavior in blue corresponds to larger values of | J



Pseudodifferential Operator (VDO)

f.ﬁ A DO of order m M., manifold T

® Symbol of A: a(z, &) € S™(R™ x R™) C C* functions such that
for any pair of multi-indices «, 3 there exists a constant C,, g so
that

9¢0%a(x, )| < Ca g+ )1



Pseudodifferential Operator (VDO)

f.ﬁ A DO of order m M., manifold T

® Symbol of A: a(x,£) € S™(R™ x R™) € C* functions such that
for any pair of multi-indices «, 3 there exists a constant C,, g so
that

9¢0%a(x, )| < Cap(+ )1

Definition of A (in the distribution sense)

Af(x) = 2m)" / e (2, €) F(€) de

® fis a smooth function
fe8={feC®R"); sup,|z’0°f(z)| < co, Vo, € N"}

® S’ space of tempered distributions

LJ fis the Fourier transform of f J

E Elizalde. MSQSA Benasqaue. Julv 11. 2012 — p. 13/



UDOs are useful tools
The symbol of a ¥DO has the form:
f a(:lf,f):am(x,€)+am_1(x,€)+---+am_j(x,£)+--- T
being ay.(z,§) = by(x) *
a(x, £) is said to be elliptic if it is invertible for large |£| and if there exists a

constant C such that |a(z, &)Y < C(1 + |€])~™, for |£| > C
— An elliptic ¥DO is one with an elliptic symbol



UDOs are useful tools

The symbol of a ¥DO has the form:
f a(ﬂfaf):am(ﬂf,f)+am_1(x,€)—|—..._|_am_j(x7€)_|_... T
being ay(z, &) = by(z) &"

a(x, £) is said to be elliptic if it is invertible for large |£| and if there exists a
constant C such that |a(z, &)Y < C(1 + |€])~™, for |£| > C
— An elliptic ¥DO is one with an elliptic symbol

—— WDOs are basic tools both in Mathematics & in Physics ——
1. Proof of uniqueness of Cauchy problem
2. Proof of the Atiyah-Singer index formula

3. In QFT they appear in any analytical continuation process —as complex
powers of differential operators, like the Laplacian

4. Basic starting point of any rigorous formulation of QFT & gravitational
interactions through plocalization (the most important step towards the
Lunderstanding of linear PDEs since the invention of distributions) J



Existence of(4 for A a VDO

1. A a positive-definite elliptic DO of positive order m € R* T

2. A acts on the space of smooth sections of
3. F/, n-dim vector bundle over

4. M closed n-dim manifold
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Existence of(4 for A a VDO

1. A a positive-definite elliptic DO of positive order m € R* T

2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over
4. M closed n-dim manifold

(a) The zeta function is defined as:
Ca(s)=trA™2 =5 A", Res> I :=sg
{\;} ordered spect of A, so = dim M /ord A abscissa of converg of (a(s)

(b) Ca(s) has a meromorphic continuation to the whole complex plane C
(regular at s = 0), provided the principal symbol of A, a,,(x, &), admits a
spectral cut: Lo ={\ € C;Arg\ =0,0, <0 < 0y}, SpecANLy=10
(the Agmon-Nirenberg condition)

o -



Existence of(4 for A a VDO

1. A a positive-definite elliptic DO of positive order m € R* T

2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over
4. M closed n-dim manifold

(a) The zeta function is defined as:
Ca(s)=trA=2 =5 A", Res> I :=sg
{\;} ordered spect of A, so = dim M /ord A abscissa of converg of (a(s)
(b) Ca(s) has a meromorphic continuation to the whole complex plane C
(regular at s = 0), provided the principal symbol of A, a,,(x, &), admits a
spectral cut: Ly ={\ € C;ArgA =0,0, <0 < 0y}, SpecANLy=10
(the Agmon-Nirenberg condition)

(c) The definition of (4(s) depends on the position of the cut Ly

o -



Existence of(4 for A a VDO

1. A a positive-definite elliptic DO of positive order m € R* T

2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over
4. M closed n-dim manifold

(a) The zeta function is defined as:
Ca(s)=trA™2 =5 A", Res> I :=sg
{\;} ordered spect of A, so = dim M /ord A abscissa of converg of (a(s)

(b) Ca(s) has a meromorphic continuation to the whole complex plane C
(regular at s = 0), provided the principal symbol of A, a,,(x, &), admits a
spectral cut: Ly ={\ € C;ArgA =0,0, <0 < 0y}, SpecANLy=10
(the Agmon-Nirenberg condition)

(c) The definition of (4(s) depends on the position of the cut Ly

(d) The only possible singularities of (A(s) are poles at J
s;=(n-—yj)/m, i=0,1,2,....n—1,n+1,...
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Definition of Determinant
f H WDO operator {w;, \;} spectral decomposition T

Hie] Ai 7 In Hie[ Ai = Z@'e[ In A;

oo

Riemann zeta func: ((s) =) -, n"° Res>1 (& analytic cont)

Def nition: zeta function of H Cr(s) =i AP =tr H=*

As Mellin transform: (g (s) [odt 57 Hr e Res > s

_ _1
—T(s)
Derivative: (7, (0) = = >,/ In\;

Determinant:. Ray & Singer, '67 /
dets H = exp [—(y(0)]
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Definition of Determinant
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Hie[ Ai 7 In Hie[ Ai = Z@'e[ In A;

oo
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Determinant:
dets H = exp [—(y(0)]
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until series ) ,_;In \; converges —> non-local counterterms !!
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Definition of Determinant
f H WDO operator {w;, \;} spectral decomposition T

Hie] Ai 7 In Hie[ Ai = nge[ In A;

oo

Riemann zeta func: ((s) =) -, n"° Res>1 (& analytic cont)
Def nition: zeta function of H Cr(s) =i AP =tr H=*

As Mellin transform: (g (s) = ﬁ [odt 57 Hr e Res > s

Derivative: (7, (0) = = >,/ In\;

Determinant:. Ray & Singer, '67 /
dets H = exp [—(y(0)]

Welerstrass def. subtract leading behavior of \; in 7, as i — oo,
until series ) ,_;In \; converges —> non-local counterterms !!

LSouIé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,...J



Properties

® The definition of the determinant det: A only depends on the

v homotopy class of the cut T

® A zeta function (and corresponding determinant) with the same
meromorphic structure in the complex s-plane and extending the

ordinary definition to operators ofcomplex order m € C\Z (they do not
admit spectral cuts), has been obtained

® Asymptotic expansion for the heat kernel:
tre 4 =3 eqmac ™
~ an(A) + 3,50 (A% + 351 Be(A)tFInt, ¢ 10
an(A) =¢a(0), a;(A) =T(s;) Ress—s; Ca(s), s; € —N

o;(A) = SE (PP Ca(—k) + 9h(k + 1) Rese— 1 Ca(s)]
S = —k, ke N

Br(A) = ED " Res,__ Ca(s), ke N\{0}

L PP ¢ := lim,_., | ¢(s) — NeSe=p(s) J

S§—p




The Dixmier Trace

In order to write down an action in operator language one needs a
functional that replaces integration T

For the Yang-Mills theory this is the Dixmier trace

It is the unique extension of the usual trace to the ideal £(1:>°) of the
compact operators 7' such that the partial sums of its spectrum
diverge logarithmically as the number of terms in the sum:

on(T) = Z;'\[:_Ol p; = O(log N), po = p1 = -

Definition of the Dixmier trace of T:
Dtr T' = th_wo @O‘N(T)

provided that the Cesaro means M (o )(NV) of the sequence in N are
convergentas N — oo [remember: M(f)(\) = =~ ff flu)2® ]

The Hardy-Littlewood theorem can be stated in a way that connects
the Dixmier trace with the residue of the zeta function of the operator

—1 -
T ats=1 Dtr 7' = limg_, 1+ (s — 1){7-1(s)



e o o o

The Wodzicki Residue

The Wodzicki (or noncommutative) residue is the only extension of the
Dixmier trace to ¥DOs which are notin £(1:>) T

Only trace one can define in the algebra of Y'DOs (up to multipl const)
Definition: res A =2 Res;_otr(AA™*), A Laplacian
Satisfies the trace condition: res (AB) =res (BA)

Important!: it can be expressed as an integral (local form)
res A= [o., tra_n(z,§) d§
with S* M C T* M the co-sphere bundle on M (some authors put a

coefficient in front of the integral: Adler-Manin residue)

If dim M =n = —ord A (M compact Riemann, A elliptic, n € N)
it coincides with the Dixmier trace, and Res;_1(4(s) = % res A1

The Wodzicki residue makes sense for $DOs of arbitrary order.
Even if the symbols a,(z,£), j < m, are not coordinate invariant, J
the integral is, and defines a trace



Singularities of (4

» A complete determination of the meromorphic structure of some zeta
v functions in the complex plane can be also obtained by means of the T
Dixmier trace and the Wodzicki residue

® Missing for full descript of the singularities: residua of all poles

® As for the regular part of the analytic continuation: specific methods
have to be used (see later)

® Proposition. Under the conditions of existence of the zeta function of
A, given above, and being the symbol a(x,&) of the operator A
analyticin ¢t at ¢! =0:

Ress:skCA(S) = % res A Sk — fS M _Sk: x f) d™— 15

® Proof. The homog component of degree —n of the corresp power of
the principal symbol of A is obtained by the appropriate derivative of
a power of the symbol with respectto ¢~'at ¢! =0

- 0.6 = (5r) [ Fat iz g)| e -

1—

&~ =0



Multipl or N-Comm Anomaly, or Defect

~ ® Given A, B, and AB ¢DOs, even if (4, (5, and (45 exist,
it turns out that, in general,

detc(AB) 7& detcA detcB



2
dety (AB) = At A ditB
[o’ o(d; = 'ti,/o; ) O’(‘t; s ek"{’



Multipl or N-Comm Anomaly, or Defect

~ ® Given A, B, and AB ¢DOs, even if (4, (5, and (45 exist,
it turns out that, in general,

detc(AB) 7& detcA detcB

#® The multiplicative (or noncommutative) anomaly (defect)
Is defined as

detg(AB)
detc A detc B

5(A, B) = In [ ] = —up(0) + C4(0) + Ch(0)



Multipl or N-Comm Anomaly, or Defect

.

Given A, B, and AB ¢DOs, even if (4, (5, and C4p exist, T
it turns out that, in general,

detc(AB) 7& detcA detcB

The multiplicative (or noncommutative) anomaly (defect)
Is def ned as

detC(AB)
detc A detc B

5(A, B) = In [ ] = —up(0) + C4(0) + Ch(0)

Wodzicki formula
res {[Ino(A, B)]*}
2 ord A ord B (ord A + ord B)

5(A, B) =

where  o(A, B) = A°rdBp-ord4 -



Consequences of the Multipl Anomaly

f.. In the path integral formulation

/[dé[)] exp{—/de [@T(x)( )@(x)+...i|}

Gaussian integration: — det( )i

A A, A

—
As Ay B
det(AB) or det A - detB 7

® |n a situation where a superselection rule exists, AB has no
sense (much less its determinant): — det A - det B

® But if diagonal form obtained after change of basis (diag.
L process), the preserved quantity is: = det(AB)

=

-
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