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Outline :
 Moving mirrors as analog systems for gravity
 Dynamical Casimir Effect for a mirror in vacuum :

Fluctuations-dissipation relations, Dynamical stability, Inertia
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Relative inertia effects, Inertia of Casimir energy
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 A mirror moving in a thermal field experiences a dissipative force 
→ mean force given by a linear susceptibility

 A mirror at rest in a thermal field 
experiences fluctuations of the 
radiation pressure 
→ noise spectrum 

 Classical fluctuations-dissipation relations (Einstein 1909, 1917) 
→ for a perfectly reflecting mirror in 1-dimensional (1d) space

Friction force proportional to the velocity 

Classical fluctuations-dissipation relations 
for a mirror in a field at
thermal equilibrium

(Fourier Transf. of the correlation function)

Quantum fluctuations-dissipation relations 
for a mirror in vacuum 

Again the simplest model : 
perfect mirror in 1d space

 Dissipative force in vacuum :
linearization of the Fulling-Davies 
force, proportional to the derivative 
of the acceleration 

M. Jaekel & S. Reynaud, Quantum Optics 4 (1992) 39

 A mirror at rest in vacuum also 
experiences radiation pressure 
fluctuations which are related to 
dissipation by quantum relations

S.A. Fulling, P.C.W. Davies, PRS 348 (1976) 393

Instability for a perfect mirror in vacuum
 Fulling-Davies force shows the same dependence as the radiation 

reaction force for an electron in 3d electromagnetic vacuum  
→  same instability problem

This problem is solved below by considering “real mirrors”

 Equation of motion in response to an applied force FA
modified by the reaction of vacuum

 The mechanical admittance Y (inverse of the impedance Z) 
has a pole in the upper half of the complex plane  

→ instability for a perfect mirror at rest in vacuum
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 Model of a local source responding linearly to the local field
(Ω response function for the source, r reflection amplitude) 

“Real mirror” in quantum 
vacuum on the 1d line

“Real mirror” in quantum 
vacuum on the 1d line

 Real mirrors are described 
by a scattering matrix

 The scattering matrix has to depend on frequency 
(causality and transparency at high frequencies)

Q. Wang & W.G. Unruh, Phys. Rev. D89 (2014) 085009

 Asymptotic behaviour deduced 

and then from causality 

 There still remains freedom to change the variation with frequency 
of the reflection amplitude r[ω] by specifying the response function 
Ω[ω] for the source

Unitarity and causality properties
 It follows from unitarity 

M. Jaekel & S. Reynaud, Phys. Lett. A180 (1993) 9

Ω resonant :

Ω constant :

 There is also a correction of the inertial mass.
 Agreement with the results in

 Motional susceptibility deduced from scattering amplitudes
 Fluctuations-dissipation relations still valid 

Motional susceptibility and inertiaMotional susceptibility and inertia

G. Barton & A. Calogeracos, Ann. Phys. 238 (1995) 227
A. Calogeracos & G. Barton, Ann. Phys. 238 (1995) 268

J. Haro & E. Elizalde PRL 97 (2006) 130401
J. Haro & E. Elizalde Phys. Rev. D76 (2007) 065001

 Thanks to high-frequency transparency of mirror, the linear 
susceptibility varies less rapidly at high frequencies  

 This cures the instability problem associated with perfect mirrors 
 When Ω is constant, 

the dissipative part of the susceptibility remains proportional 
to the cube of the frequency at low frequencies

Dissipation at low frequencies

 Fluctuations at low frequencies also remain
the same as for a perfect mirror when

 Otherwise, the force is smaller (higher index in the power law)

 Dominant term for dissipation at low frequencies

 The dissipative force remains null for a mirror with constant velocity 
(no term proportional to ω)

 This is a consequence of Lorentz invariance of vacuum
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 The effective mass varies from 
at low frequencies to          at high frequencies

Mechanical impedance and effective mass

 Equivalent description by an effective mass

 Equation of motion accounting for the reaction of vacuum written 
in terms of a mechanical impedance Z or admittance Y

 The difference is a mass correction corresponding to 
an energy bound to the mirror’s motion

Barton & Calogeracos (1995), Haro & Elizalde (2006-2007)

Stability for a real mirror in vacuum

M. Jaekel & S. Reynaud, Phys. Lett. A167 (1992) 227

 This condition means that the energy radiated in vacuum is positive : 
vacuum damps the mirror’s motion but cannot excite it ;
vacuum cannot sustain runaway solutions !

 Similar radiated energy argument in

 This follows from the “passivity property” 
obeyed by the model of real mirrors

 Stability of motion of a real mirror in vacuum is 
ensured as soon as

J. Haro & E. Elizalde PRL 97 (2006) 130401
J. Haro & E. Elizalde Phys. Rev. D76 (2007) 065001

→ no pole in the upper half of the complex plane → stability

Fluctuations of position of a real mirror in 
vacuum

M. Jaekel & S. Reynaud, J. Physique I-3 (1993) 1

 The ground state of the coupled system is described by 
the already studied functions

 As the instability problem is solved, the question of 
equilibrium fluctuations of position of the mirror 
coupled to vacuum fluctuations makes sense

 This spectrum contains narrow peaks of noise at the 
eigenvalues of the suspension system, corresponding to 
standard quantum fluctuations, above a small and broad 
background induced by vacuum radiation pressure fluctuations

 Disk shape (radius a)
vibrating at frequency ω
 In the geometrical limit 

 In the point-like limit

Mirrors in 3d electromagnetic vacuumMirrors in 3d electromagnetic vacuum
 Fluctuations-dissipation relation still valid for 

mirrors in electromagnetic vacuum (3d space)
 Calculations done for a few geometries

 Sphere (radius a)
vibrating at frequency ω
 In the geometrical limit 

 In the point-like limit

G. Barton, J. Phys. A24 (1991) 991 & 5533
C. Eberlein, J. Phys. A25 (1992) 3015 & 3039 

P.A. Maia Neto & S. Reynaud, Phys. Rev. A47 (1993) 1639
P.A. Maia Neto, J. Phys. A27 (1994) 2167
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 Resonant enhancement when the frequency of motion is 
the sum of two cavity resonance frequencies 
 Opto-mechanical coupling of mirrors to vacuum fields

M. Jaekel & S. Reynaud, J. Physique I-2 (1992) 149 

Two mirrors in vacuumTwo mirrors in vacuum
 Calculation done for two mirrors in vacuum (1d line, distance L) 

 Fluctuations-dissipation relation still hold
 Each mirror influenced by the other mirror

→ presence of crossed effects

 A variety of results in the quasi-static limit 
 Stiffness terms (variation of the static Casimir force)
 No friction forces for uniform velocities
 Inertial forces depending on L for uniform accelerations

 Closed expressions obtained in this particular case 
 Susceptibilities written as sums 

of dissipative and dispersive parts

Simple case with two perfect mirrors

 Dissipative parts are 
similar to the case of one 
perfect mirror

 Dispersive parts much 
richer than for one mirror

 Relative inertia properties 
 Mass corrections for each 

mirror depending on the 
distance of the second mirror 

 Force on one mirror when the 
other one is accelerated

 For a global motion of the cavity “moving as a whole”

M. Jaekel & S. Reynaud, J. Physique I-3 (1993) 1093 

 It matches the expectation from the law of inertia of energy for
accelerated motion of a stressed body (Einstein, 1907)

 Dissipation is the same 
as for one perfect mirror

 Dispersive parts different
from the one-mirror case

 Lowest order in the quasi-static expansion  
is a global mass correction

Inertia of Casimir energyInertia of Casimir energy

L.A.S. Machado & P.A. Maia Neto, Phys. Rev. D65 (2002) 125005 

 Inertial forces have also been calculated for the Casimir configuration : 
two perfectly reflecting plates in electromagnetic vacuum in 3d space

 Results similar to the 1d case
 Stiffness terms (variation of the static Casimir force)
 No friction for uniform velocities
 Relative inertia depending on L for uniform accelerations

 It matches the expectation from the law of inertia of energy for 
accelerated motion of a stressed body (Einstein, 1907)

 For the motion of the cavity as a whole, 
lowest-order term in quasi-static expansion 
is a global mass correction

Cavity in 3d electromagnetic vacuum
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 Dynamic Casimir effect may be interpreted as squeezing of 
vacuum fluctuations due to optomechanical coupling

 Back to the one-mirror case
 For an harmonic motion at frequency ,

optomechanical coupling to fields ω, ω’

Dynamic Casimir effect and experimentsDynamic Casimir effect and experiments

 Analog DCE observed with superconducting microwave circuit 
techniques in Delsing’s group at Chalmers

C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simonen, J. R. Johansson, 
T. Duty, F. Nori, and P. Delsing, Nature 479 (2011) 376 

 Dynamical Casimir effects - force and radiation - enhanced at 
optomechanical resonances of the cavity

A. Lambrecht, M. Jaekel & S. Reynaud, Phys. Rev. Lett. 77 (1996) 615

Resonant enhancement in a cavity

 For an harmonic motion of the two mirrors 
at frequency , optomechanical couplings 
show resonances when

 Enhancement of DCE by the cavity

 Global motion : K odd
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 Specific spectrum of DCE, 
useful for discriminating 
from spurious radiation

A. Lambrecht, 
J. Optics B7 (2005) S3

Special features
 Two kinds of resonances

 Breathing modes : K even

 Ongoing experiment in 
Delsing’s group at Chalmers

 Results expected soon

 The Casimir energy contributes to the inertia of the cavity 
as expected from the law of inertia of energy
(accelerated motion of a stressed body)

 This also means that it obeys the principle of equivalence

ConclusionsConclusions

Thanks for your attention

 Quantum vacuum may be considered 
as defining a natural reference frame for motions

 Physical effects (dissipation, radiation, inertia…) arise 
as consequences of motion of objects with no other 
reference than vacuum fluctuations

 Orders of magnitude of such effects are small
 But experimental confirmation of theoretical predictions 

now begins to come


