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Semiclassical approximation for gravity

Gab = 8π〈Tab〉

• Expansion in h̄: Breaks down if quantum effects are large

• N Identical Fields: Leading order in large N expansion
• Still breaks down for large quantum fluctuations
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Criteria to determine when quantum fluctuations are large

• Ford, 1982; Cuo and Ford, 1993: Criterion relating to
〈Tab(x)Tcd(x ′)〉

• One example

∆(x)≡ 〈T00(x)T00(x)〉−〈T00(x)〉2〉
〈T00(x)T00(x)〉

• Problems include: state dependent divergences, different
results using different renormalization schemes

• Anderson, Molina-Parı̀s, Mottola, 2003: Linear Response
Theory
Has none of the above problems

• Hu, Roura, and Verdaguer, 2004: Stochastic Gravity
Goes beyond the semiclassical approximation
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Linear Response Criterion

• Linear response equations

δGab = 8πδ 〈Tab〉

• Connection with the 2-point correlation function

gab → gab + hab

δ 〈Tab〉=
1
4

Mab
cd(x)hcd(x)

+
i
2

∫
d4x ′θ(t , t ′)

√
−g(x ′)〈[Tab(x),Tcd(x ′)]〉hcd(x ′)

• Mab
cd is the purely local part of the variation



Criterion

• A necessary condition for the validity of the semiclassical
approximation is that no linearized gauge invariant scalar
quantity constructed only from the background metric gab
and solutions to the linear response equations hab (and
their derivatives) should grow without bound

Advantages

• A natural way to take two-point correlation function for
stress tensor into account

• No state dependent divergences
• Entirely within the semiclassical approximation
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Cases Previously Investigated

• Restrict to perturbations of solutions to the semiclassical
equations which do not vary on the Planck scale

• Flat space: Free scalar field with arbitrary mass and
curvature coupling - 2003

• Expanding part of de Sitter space in spatially flat
coordinates: Conformally invariant free fields: Scalar
perturbations - 2009

• Hsiang, Ford, Lee, and Yu : Tensor perturbations for
conformally invariant free fields are stable below the
Planck scale - 2011



Cases Previously Investigated

• Restrict to perturbations of solutions to the semiclassical
equations which do not vary on the Planck scale

• Flat space: Free scalar field with arbitrary mass and
curvature coupling - 2003

• Expanding part of de Sitter space in spatially flat
coordinates: Conformally invariant free fields: Scalar
perturbations - 2009

• Hsiang, Ford, Lee, and Yu : Tensor perturbations for
conformally invariant free fields are stable below the
Planck scale - 2011



Cases Previously Investigated

• Restrict to perturbations of solutions to the semiclassical
equations which do not vary on the Planck scale

• Flat space: Free scalar field with arbitrary mass and
curvature coupling - 2003

• Expanding part of de Sitter space in spatially flat
coordinates: Conformally invariant free fields: Scalar
perturbations - 2009

• Hsiang, Ford, Lee, and Yu : Tensor perturbations for
conformally invariant free fields are stable below the
Planck scale - 2011



Cases Previously Investigated

• Restrict to perturbations of solutions to the semiclassical
equations which do not vary on the Planck scale

• Flat space: Free scalar field with arbitrary mass and
curvature coupling - 2003

• Expanding part of de Sitter space in spatially flat
coordinates: Conformally invariant free fields: Scalar
perturbations - 2009

• Hsiang, Ford, Lee, and Yu : Tensor perturbations for
conformally invariant free fields are stable below the
Planck scale - 2011



Question: Is the semiclassical approximation valid when
quantum effects are large?

Examples:

• Particle production during preheating in chaotic inflation-
due to parametric amplification

• Particle production for a strong electric field - Schwinger
effect

• Particle production in the contracting part of de Sitter
space in spatially closed coordinates

• Universes with future singularities
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Particle production during preheating

• Semiclassical equation: (�−m2−g2〈ψ2〉)φ = 0

• Exponential particle production due to parametric
amplification

• Strong backreaction effects damp inflaton field

• An excellent ‘laboratory’ to study linear response: No
gauge issues and no higher derivative terms
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Specific model

• Classical scalar field φ with mass m

• Coupled to N identical massless quantum fields: g2φ2ψ2

• Full backreaction effects investigated in detail by Kofman,
Linde, and Starobinsky; Khlebnikov and Tkachev; Jin and
Tsujikawa; Anderson, Molina-Parı́s, Evanich, and Cook; ...

• Work in a flat space background
• Assume homogeneity so that φ = φ(t)

• Study backreaction due to particle production, neglecting
scattering effects which are important at late times
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Equations for the model

• After scaling out both N and m one finds the exact set of
equations describing backreaction are

φ̈(t) + (1 + g2〈ψ2〉)φ(t) = 0

with

〈ψ2〉 =
1

2π2

∫
ε

0
dkk 2

(
|fk (t)|2− 1

2k

)
+

1
2π2

∫
∞

ε

dkk 2
(
|fk (t)|2− 1

2k
+

g2φ2

4k 3

)
−g2φ2

8π2

[
1− log

(
2ε

M

)]

f̈k + [k 2 + g2
φ

2(t)]fk = 0



Two Results for g = 10−3: Anderson, Molina-Parı́s, Evanich,
Cook

• Plot on left is for φ(0) = 103. Plot on right is for
φ(0) =

√
10×103

• Rapid damping occurs for g2φ2(0) >∼ 2



General form of linear response equation for preheating

• Perturb the semiclassical equations and find

(�−m2−g2〈ψ2〉)δφ −g2
δ 〈ψ2〉φ = 0

δ 〈ψ2〉= δ 〈ψ2〉SI + δ 〈ψ2〉SD

δ 〈ψ2〉SI =−ig2
∫

d4x ′φ(x ′)δφ(x ′)θ(t− t ′)〈[ψ2(x),ψ2(x ′)]〉

• Note that this is an integro-differential equation



Specific form of linear response equation for preheating

• For our model φ = φ(t) so

δ φ̈ + (1 + g2〈ψ2〉)δφ + g2
δ 〈ψ2〉φ = 0



Easy way to find solutions to linear response equation

• Compute the difference δφe = φ2−φ1 between two
solutions to the semiclassical equations

• Exact equation for δφe

δ φ̈e + (1 + g2〈ψ2〉1)δφe + g2(〈ψ2〉2−〈ψ2〉1)(φ1 + δφe)

• Linear response equation

δ φ̈ + (1 + g2〈ψ2〉1)δφ + g2
δ 〈ψ2〉|φ=φ1 φ1 = 0

• δφe ≈ δφ if the amplitude of φ1 is large compared to δφe
and

δ 〈ψ2〉 ≈ 〈ψ2〉2−〈ψ2〉1
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Part driven by δ 〈ψ2〉 at early times

• Choose starting values so that initially φ̇ = δ φ̇ = 0

• Recall δφe = φ2−φ1

• Define

δφc ≡ δφe− [(φ2(0)−φ1(0))/φ1(0)]φ1

• Then δφc(0) = δ φ̇c(0) = 0 and at early times

δ φ̈c ≈−g2
φ1δ 〈ψ2〉| φ=φ1

δφ=cφ1
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g2φ1(0)2 = 10

• Left plot: Solution to the semiclassical equation
• Right plot: φ2(0)/φ1(0) = 10−5, solid line is δφc , dashed is

δφe = φ2−φ1

• Note that δφc first grows exponentially and then stops
growing when damping of the inflaton field ceases



g2φ1(0)2 = 1

• Left plot: Solution to the semiclassical equation
• Right plot: φ2(0)/φ1(0) = 10−5, solid line is δφc , dashed is

δφe = φ2−φ1

• Note that δφc first grows exponentially and then grows
more slowly when damping of the inflaton field is slow



Comments about the results

• Change in rate of growth of δφc and δφe indicates criterion
should be modified from “grows without bound” to “grows
rapidly for some period of time”

• Growth of δφc seems tied to particle production rate
• Early exponential growth of δφc implies quantum

fluctuations are growing rapidly well before backreaction
effects are large

• Thus the semiclassical approximation breaks down during
the time of parametric amplification
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Implications of the breakdown of the semiclassical
approximation

• Approx. cannot be used to follow in detail the damping of
the inflaton field

• Before backreaction is important QFT on the background
still works - parametric amplification still occurs

• After a lot of particle production, lattice simulations
involving random initial conditions can be used to compute
the backreaction - Khlebnikov and Tkachev, Propec and
Roos, Felder and Tachev

• Qualitative agreement between our semiclassical results
and lattice simulations of Propec and Roos for g2φ(0)2 = 1
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Global de Sitter space

• Metric with closed spatial sections is

ds2 = H−2[−du2 + cosh2u(dχ
2 + sin2

χ dΩ2)]

u = Ht

• Covers the entire manifold
• Has a contracting phase followed by an expanding one



de Sitter space is an exact solution

• to the vacuum Einstein equations with a cosmological
constant

Gab + gabΛ = 0

• to the semiclassical backreaction equations if quantum
fields are in the Bunch-Davies state

Gab + gabΛ = 8π〈Tab〉

• For the Bunch-Davies state

〈Tab〉= gabC

Λeff = Λ−C
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Bunch-Davies state as an attractor state

• Shown for the expanding part of de Sitter space for free
scalar fields with m2 + ξR > 0 in homogeneous and
isotropic states

〈ρ〉 → 〈ρ〉BD

Anderson, Eaker, Habib, Molina-Parı́s, Mottola (2000)

• Similar result for arbitrary correlation functions of
interacting massive scalar fields with large point
separations
Marolf and Morrison (2011), Hollands (2013)

• What happens for the contracting phase of global de Sitter
space?
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Other homogeneous and isotropic vacuum states

• Mode functions for massive conformally coupled scalar
field uk = yk (u)Yk`m`[

d2

du2 + 3tanhu
d
du

+ (k 2−1)sech2u +
m2

H2 + 2
]

yk = 0

• If we denote the BD solution by vk then the general
solution is

yk = Ak vk + Bk v∗k

with normalization

|Ak |2−|Bk |2 = 1



• Energy density for an arbitrary homogeneous and isotropic
vacuum state is

〈ρ〉= 〈ρ〉BD +
1

2π2

∞

∑
k=1

k 2
[
Re(Ak B∗k ε1(u)) + |Bk |2ε2(u)

]
• ε1 and ε2 depend on k , vk , v̇k , a, and ȧ

• Ak B∗k term oscillates in time and has no classical analog.
• |Bk |2 term has same form as classical matter in

nonrelativistic limit and classical radiation in relativistic limit
• To investigate the deviation from 〈ρ〉= 〈ρ〉BD, plot for fixed

values of k the coefficients of Ak B∗k and |Bk |2
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Conformally Invariant Fields

• In any RW spacetime, for conformally invariant fields in
homogeneous and isotropic states other than the
conformal vacuum state

〈ρ〉 ∼ a−4 + vacuumterms

• In contracting de Sitter for inhomogeneous states
〈ρ〉 ∼ a−5
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Backreaction for conformally invariant field

• Assume some other state than the BD state

• In the first approximation ignore the vacuum terms
• Then 〈ρ〉= c/a4, with c = 3c1

8π

• The backreaction equation is(
ȧ
a

)2

=
Λ

3
+

c1

a4

• The solutions are

a2 =
3
Λ

cosh2[
√

Λ/3(t− t0)]−c1 exp[2
√

Λ/3(t− t0)]

• Universe collapses to zero size if c1 >
3

4Λ

• Universe bounces and approaches de Sitter if c1 <
3

4Λ

• Neglected vacuum effects will remain small unless the
Planck scale is reached
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Perturbations

• Perturb by changing the state

a2 =
3
Λ

cosh2[
√

Λ/3(t− t0)]−c1 exp[2
√

Λ/3(t− t0)]

δa =
−δc1 exp[2

√
Λ/3(t− t0)]

3
Λ cosh2[

√
Λ/3(t− t0)]−c1 exp[2

√
Λ/3(t− t0)]

• Numerator grows larger in magnitude for all time
• Denominator grows smaller at early times
• Thus perturbations grow significantly at early times
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Results and Conclusions for Global de Sitter space

• For conformally coupled massive fields and conformally
invariant fields
• For all physically acceptable states the deviation of the

energy density from the BD value is very small at early
enough times

• The deviation grows exponentially with time
• Thus the BD state is unstable to perturbations in the

contracting part of de Sitter space
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Details of the linear response equation for preheating

(�−m2−g2〈ψ2〉)δφ −g2
δ 〈ψ2〉φ = 0

δ φ̈ + (1 + g2〈ψ2〉1)δφ + g2(δ 〈ψ2〉φ1 = 0

δ 〈ψ2〉=
1

2π2

∫
ε

0
dkk2 (fk δ f∗k + f∗k δ fk

)
+

1
2π2

∫
∞

ε

dkk2

(
fk δ f∗k + f∗k δ fk +

g2φ δφ

2k3

)

− g2φ δφ

4π2

[
1− log

(
2ε

M

)]

δ f̈k + (k 2 + g2
φ

2)δ fk + 2g2fk φδφ = 0

δ fk = Ak fk + Bk f∗k + 2g2 i
∫ t

0
dt ′ φ(t ′)δφ(t ′)fk (t ′) [f∗k (t)fk (t ′)− fk (t)f∗k (t ′)]

fk is a solution to the homogeneous equation for δ fk
Ak and Bk result in state dependent perturbations



Details relating to δφc

• Choose starting values so that initially φ̇ = δ φ̇ = 0
• Recall δφe = φ2−φ1

• Define δφe = cφ1 + δφc

c = (φ2(0)−φ1(0))/φ1(0)

δφc(0) = δ φ̇c(0) = 0

• From last slide δ 〈ψ2〉= δ 〈ψ2〉[φ ,δφ ,Ak ,Bk ]

• If δφe is an approx. soln. to the linear response equation
then δφc is an approx. soln. to

δ φ̈c + (1 + g2〈ψ2〉1)δφc + g2
φ1δ 〈ψ2〉[φ = φ1,δφ = δφc ,Ak = 0,Bk = 0]

=−g2
φ1δ 〈ψ2〉[φ = φ1,δφ = cφ1,Ak ,Bk ]



δ φ̈c + (1 + g2〈ψ2〉1)δφc + g2
φ1δ 〈ψ2〉[φ = φ1,δφ = δφc ,Ak = 0,Bk = 0]

=−g2
φ1δ 〈ψ2〉[φ = φ1,δφ = cφ1,Ak ,Bk ]

• Since δφc = δ φ̇c = 0 initially, only the δ φ̈c is nonzero
initially on the LHS. Thus at early times δφc is driven by the
RHS, i.e. by the early time values of δ 〈ψ2〉


