PARTICLE PRODUCTION, BACKREACTION, AND THE VALIDITY OF THE SEMICLASSICAL APPROXIMATION

Paul R. Anderson
Wake Forest University

Collaborators

- Carmen Molina-París, University of Leeds
- Emil Mottola, Los Alamos National Laboratory
- Dillon Sanders, North Carolina State University

Topics

- Brief review of original validity criterion and its application to flat space and expanding de Sitter space: Anderson, Molina-París and Mottola
- Validity during the preheating phase of chaotic inflation: Anderson, Molina-París and Sanders
- Validity during the contracting phase of de Sitter space: Anderson and Mottola

Semiclassical approximation for gravity

$$
G_{a b}=8 \pi\left\langle T_{a b}\right\rangle
$$

Semiclassical approximation for gravity

$$
G_{a b}=8 \pi\left\langle T_{a b}\right\rangle
$$

- Expansion in \hbar : Breaks down if quantum effects are large

Semiclassical approximation for gravity

$$
G_{a b}=8 \pi\left\langle T_{a b}\right\rangle
$$

- Expansion in \hbar : Breaks down if quantum effects are large
- N Identical Fields: Leading order in large N expansion

Semiclassical approximation for gravity

$$
G_{a b}=8 \pi\left\langle T_{a b}\right\rangle
$$

- Expansion in \hbar : Breaks down if quantum effects are large
- N Identical Fields: Leading order in large N expansion
- Still breaks down for large quantum fluctuations

Criteria to determine when quantum fluctuations are large

- Ford, 1982; Cuo and Ford, 1993: Criterion relating to $\left\langle T_{a b}(x) T_{c d}\left(x^{\prime}\right)\right\rangle$

Criteria to determine when quantum fluctuations are large

- Ford, 1982; Cuo and Ford, 1993: Criterion relating to $\left\langle T_{a b}(x) T_{c d}\left(x^{\prime}\right)\right\rangle$
- One example

$$
\Delta(x) \equiv\left|\frac{\left.\left\langle T_{00}(x) T_{00}(x)\right\rangle-\left\langle T_{00}(x)\right\rangle^{2}\right\rangle}{\left\langle T_{00}(x) T_{00}(x)\right\rangle}\right|
$$

Criteria to determine when quantum fluctuations are large

- Ford, 1982; Cuo and Ford, 1993: Criterion relating to $\left\langle T_{a b}(x) T_{c d}\left(x^{\prime}\right)\right\rangle$
- One example

$$
\Delta(x) \equiv\left|\frac{\left.\left\langle T_{00}(x) T_{00}(x)\right\rangle-\left\langle T_{00}(x)\right\rangle^{2}\right\rangle}{\left\langle T_{00}(x) T_{00}(x)\right\rangle}\right|
$$

- Problems include: state dependent divergences, different results using different renormalization schemes

Criteria to determine when quantum fluctuations are large

- Ford, 1982; Cuo and Ford, 1993: Criterion relating to $\left\langle T_{a b}(x) T_{c d}\left(x^{\prime}\right)\right\rangle$
- One example

$$
\Delta(x) \equiv\left|\frac{\left.\left\langle T_{00}(x) T_{00}(x)\right\rangle-\left\langle T_{00}(x)\right\rangle^{2}\right\rangle}{\left\langle T_{00}(x) T_{00}(x)\right\rangle}\right|
$$

- Problems include: state dependent divergences, different results using different renormalization schemes
- Anderson, Molina-Parìs, Mottola, 2003: Linear Response Theory Has none of the above problems

Criteria to determine when quantum fluctuations are large

- Ford, 1982; Cuo and Ford, 1993: Criterion relating to $\left\langle T_{a b}(x) T_{c d}\left(x^{\prime}\right)\right\rangle$
- One example

$$
\Delta(x) \equiv\left|\frac{\left.\left\langle T_{00}(x) T_{00}(x)\right\rangle-\left\langle T_{00}(x)\right\rangle^{2}\right\rangle}{\left\langle T_{00}(x) T_{00}(x)\right\rangle}\right|
$$

- Problems include: state dependent divergences, different results using different renormalization schemes
- Anderson, Molina-Parìs, Mottola, 2003: Linear Response Theory Has none of the above problems
- Hu, Roura, and Verdaguer, 2004: Stochastic Gravity Goes beyond the semiclassical approximation

Linear Response Criterion

- Linear response equations

$$
\delta G_{a b}=8 \pi \delta\left\langle T_{a b}\right\rangle
$$

- Connection with the 2-point correlation function

$$
g_{a b} \rightarrow g_{a b}+h_{a b}
$$

$$
\begin{aligned}
& \delta\left\langle T_{a b}\right\rangle=\frac{1}{4} M_{a b}{ }^{c d}(x) h_{c d}(x) \\
& +\frac{i}{2} \int d^{4} x^{\prime} \theta\left(t, t^{\prime}\right) \sqrt{-g\left(x^{\prime}\right)}\left\langle\left[T_{a b}(x), T^{c d}\left(x^{\prime}\right)\right]\right\rangle h_{c d}\left(x^{\prime}\right)
\end{aligned}
$$

- $M_{a b}{ }^{c d}$ is the purely local part of the variation

Criterion

- A necessary condition for the validity of the semiclassical approximation is that no linearized gauge invariant scalar quantity constructed only from the background metric $g_{a b}$ and solutions to the linear response equations $h_{a b}$ (and their derivatives) should grow without bound

Criterion

- A necessary condition for the validity of the semiclassical approximation is that no linearized gauge invariant scalar quantity constructed only from the background metric $g_{a b}$ and solutions to the linear response equations $h_{a b}$ (and their derivatives) should grow without bound

Advantages

Criterion

- A necessary condition for the validity of the semiclassical approximation is that no linearized gauge invariant scalar quantity constructed only from the background metric $g_{a b}$ and solutions to the linear response equations $h_{a b}$ (and their derivatives) should grow without bound

Advantages

- A natural way to take two-point correlation function for stress tensor into account

Criterion

- A necessary condition for the validity of the semiclassical approximation is that no linearized gauge invariant scalar quantity constructed only from the background metric $g_{a b}$ and solutions to the linear response equations $h_{a b}$ (and their derivatives) should grow without bound

Advantages

- A natural way to take two-point correlation function for stress tensor into account
- No state dependent divergences

Criterion

- A necessary condition for the validity of the semiclassical approximation is that no linearized gauge invariant scalar quantity constructed only from the background metric $g_{a b}$ and solutions to the linear response equations $h_{a b}$ (and their derivatives) should grow without bound

Advantages

- A natural way to take two-point correlation function for stress tensor into account
- No state dependent divergences
- Entirely within the semiclassical approximation

Cases Previously Investigated

- Restrict to perturbations of solutions to the semiclassical equations which do not vary on the Planck scale

Cases Previously Investigated

- Restrict to perturbations of solutions to the semiclassical equations which do not vary on the Planck scale
- Flat space: Free scalar field with arbitrary mass and curvature coupling - 2003

Cases Previously Investigated

- Restrict to perturbations of solutions to the semiclassical equations which do not vary on the Planck scale
- Flat space: Free scalar field with arbitrary mass and curvature coupling - 2003
- Expanding part of de Sitter space in spatially flat coordinates: Conformally invariant free fields: Scalar perturbations - 2009

Cases Previously Investigated

- Restrict to perturbations of solutions to the semiclassical equations which do not vary on the Planck scale
- Flat space: Free scalar field with arbitrary mass and curvature coupling - 2003
- Expanding part of de Sitter space in spatially flat coordinates: Conformally invariant free fields: Scalar perturbations - 2009
- Hsiang, Ford, Lee, and Yu : Tensor perturbations for conformally invariant free fields are stable below the Planck scale - 2011

Question: Is the semiclassical approximation valid when quantum effects are large?

Examples:

- Particle production during preheating in chaotic inflationdue to parametric amplification

Question: Is the semiclassical approximation valid when quantum effects are large?

Examples:

- Particle production during preheating in chaotic inflationdue to parametric amplification
- Particle production for a strong electric field - Schwinger effect

Question: Is the semiclassical approximation valid when quantum effects are large?

Examples:

- Particle production during preheating in chaotic inflationdue to parametric amplification
- Particle production for a strong electric field - Schwinger effect
- Particle production in the contracting part of de Sitter space in spatially closed coordinates

Question: Is the semiclassical approximation valid when quantum effects are large?

Examples:

- Particle production during preheating in chaotic inflationdue to parametric amplification
- Particle production for a strong electric field - Schwinger effect
- Particle production in the contracting part of de Sitter space in spatially closed coordinates
- Universes with future singularities

Particle production during preheating

- Semiclassical equation: $\left(\square-m^{2}-g^{2}\left\langle\psi^{2}\right\rangle\right) \phi=0$

Particle production during preheating

- Semiclassical equation: $\left(\square-m^{2}-g^{2}\left\langle\psi^{2}\right\rangle\right) \phi=0$
- Exponential particle production due to parametric amplification

Particle production during preheating

- Semiclassical equation: $\left(\square-m^{2}-g^{2}\left\langle\psi^{2}\right\rangle\right) \phi=0$
- Exponential particle production due to parametric amplification
- Strong backreaction effects damp inflaton field

Particle production during preheating

- Semiclassical equation: $\left(\square-m^{2}-g^{2}\left\langle\psi^{2}\right\rangle\right) \phi=0$
- Exponential particle production due to parametric amplification
- Strong backreaction effects damp inflaton field
- An excellent ‘laboratory’ to study linear response: No gauge issues and no higher derivative terms

Specific model

- Classical scalar field ϕ with mass m

Specific model

- Classical scalar field ϕ with mass m
- Coupled to N identical massless quantum fields: $g^{2} \phi^{2} \psi^{2}$

Specific model

- Classical scalar field ϕ with mass m
- Coupled to N identical massless quantum fields: $g^{2} \phi^{2} \psi^{2}$
- Full backreaction effects investigated in detail by Kofman, Linde, and Starobinsky; Khlebnikov and Tkachev; Jin and Tsujikawa; Anderson, Molina-París, Evanich, and Cook; ...

Specific model

- Classical scalar field ϕ with mass m
- Coupled to N identical massless quantum fields: $g^{2} \phi^{2} \psi^{2}$
- Full backreaction effects investigated in detail by Kofman, Linde, and Starobinsky; Khlebnikov and Tkachev; Jin and Tsujikawa; Anderson, Molina-París, Evanich, and Cook; ...
- Work in a flat space background

Specific model

- Classical scalar field ϕ with mass m
- Coupled to N identical massless quantum fields: $g^{2} \phi^{2} \psi^{2}$
- Full backreaction effects investigated in detail by Kofman, Linde, and Starobinsky; Khlebnikov and Tkachev; Jin and Tsujikawa; Anderson, Molina-París, Evanich, and Cook; ...
- Work in a flat space background
- Assume homogeneity so that $\phi=\phi(t)$

Specific model

- Classical scalar field ϕ with mass m
- Coupled to N identical massless quantum fields: $g^{2} \phi^{2} \psi^{2}$
- Full backreaction effects investigated in detail by Kofman, Linde, and Starobinsky; Khlebnikov and Tkachev; Jin and Tsujikawa; Anderson, Molina-París, Evanich, and Cook; ...
- Work in a flat space background
- Assume homogeneity so that $\phi=\phi(t)$
- Study backreaction due to particle production, neglecting scattering effects which are important at late times

Equations for the model

- After scaling out both N and m one finds the exact set of equations describing backreaction are

$$
\ddot{\phi}(t)+\left(1+g^{2}\left\langle\psi^{2}\right\rangle\right) \phi(t)=0
$$

with

$$
\begin{aligned}
\left\langle\psi^{2}\right\rangle= & \frac{1}{2 \pi^{2}} \int_{0}^{\varepsilon} d k k^{2}\left(\left|f_{k}(t)\right|^{2}-\frac{1}{2 k}\right) \\
& +\frac{1}{2 \pi^{2}} \int_{\varepsilon}^{\infty} d k k^{2}\left(\left|f_{k}(t)\right|^{2}-\frac{1}{2 k}+\frac{g^{2} \phi^{2}}{4 k^{3}}\right) \\
& -\frac{g^{2} \phi^{2}}{8 \pi^{2}}\left[1-\log \left(\frac{2 \varepsilon}{M}\right)\right] \\
& \ddot{f}_{k}+\left[k^{2}+g^{2} \phi^{2}(t)\right] f_{k}=0
\end{aligned}
$$

Two Results for $g=10^{-3}$: Anderson, Molina-París, Evanich, Cook

- Plot on left is for $\phi(0)=10^{3}$. Plot on right is for $\phi(0)=\sqrt{10} \times 10^{3}$
- Rapid damping occurs for $g^{2} \phi^{2}(0) \gtrsim 2$

General form of linear response equation for preheating

- Perturb the semiclassical equations and find

$$
\begin{gathered}
\left(\square-m^{2}-g^{2}\left\langle\psi^{2}\right\rangle\right) \delta \phi-g^{2} \delta\left\langle\psi^{2}\right\rangle \phi=0 \\
\delta\left\langle\psi^{2}\right\rangle=\delta\left\langle\psi^{2}\right\rangle_{\mathrm{SI}}+\delta\left\langle\psi^{2}\right\rangle_{\mathrm{SD}} \\
\delta\left\langle\psi^{2}\right\rangle_{\mathrm{SI}}=-i g^{2} \int d^{4} x^{\prime} \phi\left(x^{\prime}\right) \delta \phi\left(x^{\prime}\right) \theta\left(t-t^{\prime}\right)\left\langle\left[\psi^{2}(x), \psi^{2}\left(x^{\prime}\right)\right]\right\rangle
\end{gathered}
$$

- Note that this is an integro-differential equation

Specific form of linear response equation for preheating

- For our model $\phi=\phi(t)$ so

$$
\delta \ddot{\phi}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle\right) \delta \phi+g^{2} \delta\left\langle\psi^{2}\right\rangle \phi=0
$$

Easy way to find solutions to linear response equation

- Compute the difference $\delta \phi_{e}=\phi_{2}-\phi_{1}$ between two solutions to the semiclassical equations

Easy way to find solutions to linear response equation

- Compute the difference $\delta \phi_{e}=\phi_{2}-\phi_{1}$ between two solutions to the semiclassical equations
- Exact equation for $\delta \phi_{e}$

$$
\delta \ddot{\phi}_{e}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi_{e}+g^{2}\left(\left\langle\psi^{2}\right\rangle_{2}-\left\langle\psi^{2}\right\rangle_{1}\right)\left(\phi_{1}+\delta \phi_{e}\right)
$$

Easy way to find solutions to linear response equation

- Compute the difference $\delta \phi_{e}=\phi_{2}-\phi_{1}$ between two solutions to the semiclassical equations
- Exact equation for $\delta \phi_{e}$

$$
\delta \ddot{\phi}_{e}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi_{e}+g^{2}\left(\left\langle\psi^{2}\right\rangle_{2}-\left\langle\psi^{2}\right\rangle_{1}\right)\left(\phi_{1}+\delta \phi_{e}\right)
$$

- Linear response equation

$$
\delta \ddot{\phi}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi+\left.g^{2} \delta\left\langle\psi^{2}\right\rangle\right|_{\phi=\phi_{1}} \phi_{1}=0
$$

Easy way to find solutions to linear response equation

- Compute the difference $\delta \phi_{e}=\phi_{2}-\phi_{1}$ between two solutions to the semiclassical equations
- Exact equation for $\delta \phi_{e}$

$$
\delta \ddot{\phi}_{e}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi_{e}+g^{2}\left(\left\langle\psi^{2}\right\rangle_{2}-\left\langle\psi^{2}\right\rangle_{1}\right)\left(\phi_{1}+\delta \phi_{e}\right)
$$

- Linear response equation

$$
\delta \ddot{\phi}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi+\left.g^{2} \delta\left\langle\psi^{2}\right\rangle\right|_{\phi=\phi_{1}} \phi_{1}=0
$$

- $\delta \phi_{e} \approx \delta \phi$ if the amplitude of ϕ_{1} is large compared to $\delta \phi_{e}$ and

$$
\delta\left\langle\psi^{2}\right\rangle \approx\left\langle\psi^{2}\right\rangle_{2}-\left\langle\psi^{2}\right\rangle_{1}
$$

Part driven by $\delta\left\langle\psi^{2}\right\rangle$ at early times

- Choose starting values so that initially $\dot{\phi}=\delta \dot{\phi}=0$

Part driven by $\delta\left\langle\psi^{2}\right\rangle$ at early times

- Choose starting values so that initially $\dot{\phi}=\delta \dot{\phi}=0$
- Recall $\delta \phi_{e}=\phi_{2}-\phi_{1}$

Part driven by $\delta\left\langle\psi^{2}\right\rangle$ at early times

- Choose starting values so that initially $\dot{\phi}=\delta \dot{\phi}=0$
- Recall $\delta \phi_{e}=\phi_{2}-\phi_{1}$
- Define

$$
\delta \phi_{c} \equiv \delta \phi_{e}-\left[\left(\phi_{2}(0)-\phi_{1}(0)\right) / \phi_{1}(0)\right] \phi_{1}
$$

Part driven by $\delta\left\langle\psi^{2}\right\rangle$ at early times

- Choose starting values so that initially $\dot{\phi}=\delta \dot{\phi}=0$
- Recall $\delta \phi_{e}=\phi_{2}-\phi_{1}$
- Define

$$
\delta \phi_{c} \equiv \delta \phi_{e}-\left[\left(\phi_{2}(0)-\phi_{1}(0)\right) / \phi_{1}(0)\right] \phi_{1}
$$

- Then $\delta \phi_{c}(0)=\delta \dot{\phi}_{c}(0)=0$ and at early times

$$
\delta \ddot{\phi}_{c} \approx-\left.g^{2} \phi_{1} \delta\left\langle\psi^{2}\right\rangle\right|_{\substack{\phi=\phi_{1} \\ \delta \phi=c \phi_{1}}}
$$

$$
g^{2} \phi_{1}(0)^{2}=10
$$

- Left plot: Solution to the semiclassical equation
- Right plot: $\phi_{2}(0) / \phi_{1}(0)=10^{-5}$, solid line is $\delta \phi_{c}$, dashed is $\delta \phi_{e}=\phi_{2}-\phi_{1}$
- Note that $\delta \phi_{c}$ first grows exponentially and then stops growing when damping of the inflaton field ceases

$$
g^{2} \phi_{1}(0)^{2}=1
$$

- Left plot: Solution to the semiclassical equation
- Right plot: $\phi_{2}(0) / \phi_{1}(0)=10^{-5}$, solid line is $\delta \phi_{c}$, dashed is $\delta \phi_{e}=\phi_{2}-\phi_{1}$
- Note that $\delta \phi_{c}$ first grows exponentially and then grows more slowly when damping of the inflaton field is slow

Comments about the results

- Change in rate of growth of $\delta \phi_{c}$ and $\delta \phi_{e}$ indicates criterion should be modified from "grows without bound" to "grows rapidly for some period of time"

Comments about the results

- Change in rate of growth of $\delta \phi_{c}$ and $\delta \phi_{e}$ indicates criterion should be modified from "grows without bound" to "grows rapidly for some period of time"
- Growth of $\delta \phi_{c}$ seems tied to particle production rate

Comments about the results

- Change in rate of growth of $\delta \phi_{c}$ and $\delta \phi_{e}$ indicates criterion should be modified from "grows without bound" to "grows rapidly for some period of time"
- Growth of $\delta \phi_{c}$ seems tied to particle production rate
- Early exponential growth of $\delta \phi_{c}$ implies quantum fluctuations are growing rapidly well before backreaction effects are large

Comments about the results

- Change in rate of growth of $\delta \phi_{c}$ and $\delta \phi_{e}$ indicates criterion should be modified from "grows without bound" to "grows rapidly for some period of time"
- Growth of $\delta \phi_{c}$ seems tied to particle production rate
- Early exponential growth of $\delta \phi_{c}$ implies quantum fluctuations are growing rapidly well before backreaction effects are large
- Thus the semiclassical approximation breaks down during the time of parametric amplification

Implications of the breakdown of the semiclassical approximation

- Approx. cannot be used to follow in detail the damping of the inflaton field

Implications of the breakdown of the semiclassical approximation

- Approx. cannot be used to follow in detail the damping of the inflaton field
- Before backreaction is important QFT on the background still works - parametric amplification still occurs

Implications of the breakdown of the semiclassical approximation

- Approx. cannot be used to follow in detail the damping of the inflaton field
- Before backreaction is important QFT on the background still works - parametric amplification still occurs
- After a lot of particle production, lattice simulations involving random initial conditions can be used to compute the backreaction - Khlebnikov and Tkachev, Propec and Roos, Felder and Tachev

Implications of the breakdown of the semiclassical approximation

- Approx. cannot be used to follow in detail the damping of the inflaton field
- Before backreaction is important QFT on the background still works - parametric amplification still occurs
- After a lot of particle production, lattice simulations involving random initial conditions can be used to compute the backreaction - Khlebnikov and Tkachev, Propec and Roos, Felder and Tachev
- Qualitative agreement between our semiclassical results and lattice simulations of Propec and Roos for $g^{2} \phi(0)^{2}=1$

Global de Sitter space

- Metric with closed spatial sections is

$$
d s^{2}=H^{-2}\left[-d u^{2}+\cosh ^{2} u\left(d \chi^{2}+\sin ^{2} \chi d \Omega^{2}\right)\right]
$$

$$
u=H t
$$

- Covers the entire manifold
- Has a contracting phase followed by an expanding one

de Sitter space is an exact solution

- to the vacuum Einstein equations with a cosmological constant

$$
G_{a b}+g_{a b} \Lambda=0
$$

de Sitter space is an exact solution

- to the vacuum Einstein equations with a cosmological constant

$$
G_{a b}+g_{a b} \Lambda=0
$$

- to the semiclassical backreaction equations if quantum fields are in the Bunch-Davies state

$$
G_{a b}+g_{a b} \Lambda=8 \pi\left\langle T_{a b}\right\rangle
$$

de Sitter space is an exact solution

- to the vacuum Einstein equations with a cosmological constant

$$
G_{a b}+g_{a b} \Lambda=0
$$

- to the semiclassical backreaction equations if quantum fields are in the Bunch-Davies state

$$
G_{a b}+g_{a b} \Lambda=8 \pi\left\langle T_{a b}\right\rangle
$$

- For the Bunch-Davies state

$$
\begin{gathered}
\left\langle T_{a b}\right\rangle=g_{a b} C \\
\Lambda_{\mathrm{eff}}=\Lambda-C
\end{gathered}
$$

Bunch-Davies state as an attractor state

- Shown for the expanding part of de Sitter space for free scalar fields with $m^{2}+\xi R>0$ in homogeneous and isotropic states

$$
\langle\rho\rangle \rightarrow\langle\rho\rangle_{\mathrm{BD}}
$$

Anderson, Eaker, Habib, Molina-París, Mottola (2000)

Bunch-Davies state as an attractor state

- Shown for the expanding part of de Sitter space for free scalar fields with $m^{2}+\xi R>0$ in homogeneous and isotropic states

$$
\langle\rho\rangle \rightarrow\langle\rho\rangle_{\mathrm{BD}}
$$

Anderson, Eaker, Habib, Molina-París, Mottola (2000)

- Similar result for arbitrary correlation functions of interacting massive scalar fields with large point separations
Marolf and Morrison (2011), Hollands (2013)

Bunch-Davies state as an attractor state

- Shown for the expanding part of de Sitter space for free scalar fields with $m^{2}+\xi R>0$ in homogeneous and isotropic states

$$
\langle\rho\rangle \rightarrow\langle\rho\rangle_{\mathrm{BD}}
$$

Anderson, Eaker, Habib, Molina-París, Mottola (2000)

- Similar result for arbitrary correlation functions of interacting massive scalar fields with large point separations Marolf and Morrison (2011), Hollands (2013)
- What happens for the contracting phase of global de Sitter space?

Other homogeneous and isotropic vacuum states

- Mode functions for massive conformally coupled scalar field $u_{\mathbf{k}}=y_{k}(u) Y_{k \ell m_{\ell}}$

$$
\left[\frac{d^{2}}{d u^{2}}+3 \tanh u \frac{d}{d u}+\left(k^{2}-1\right) \operatorname{sech}^{2} u+\frac{m^{2}}{H^{2}}+2\right] y_{k}=0
$$

- If we denote the BD solution by v_{k} then the general solution is

$$
y_{k}=A_{k} v_{k}+B_{k} v_{k}^{*}
$$

with normalization

$$
\left|A_{k}\right|^{2}-\left|B_{k}\right|^{2}=1
$$

- Energy density for an arbitrary homogeneous and isotropic vacuum state is

$$
\langle\rho\rangle=\langle\rho\rangle_{\mathrm{BD}}+\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k^{2}\left[\operatorname{Re}\left(A_{k} B_{k}^{*} \varepsilon_{1}(u)\right)+\left|B_{k}\right|^{2} \varepsilon_{2}(u)\right]
$$

- ε_{1} and ε_{2} depend on k, v_{k}, \dot{v}_{k}, a, and \dot{a}
- Energy density for an arbitrary homogeneous and isotropic vacuum state is

$$
\langle\rho\rangle=\langle\rho\rangle_{\mathrm{BD}}+\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k^{2}\left[\operatorname{Re}\left(A_{k} B_{k}^{*} \varepsilon_{1}(u)\right)+\left|B_{k}\right|^{2} \varepsilon_{2}(u)\right]
$$

- ε_{1} and ε_{2} depend on k, v_{k}, \dot{v}_{k}, a, and \dot{a}
- $A_{k} B_{k}^{*}$ term oscillates in time and has no classical analog.
- Energy density for an arbitrary homogeneous and isotropic vacuum state is

$$
\langle\rho\rangle=\langle\rho\rangle_{\mathrm{BD}}+\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k^{2}\left[\operatorname{Re}\left(A_{k} B_{k}^{*} \varepsilon_{1}(u)\right)+\left|B_{k}\right|^{2} \varepsilon_{2}(u)\right]
$$

- ε_{1} and ε_{2} depend on k, v_{k}, \dot{v}_{k}, a, and \dot{a}
- $A_{k} B_{k}^{*}$ term oscillates in time and has no classical analog.
- $\left|B_{k}\right|^{2}$ term has same form as classical matter in nonrelativistic limit and classical radiation in relativistic limit
- Energy density for an arbitrary homogeneous and isotropic vacuum state is

$$
\langle\rho\rangle=\langle\rho\rangle_{\mathrm{BD}}+\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} k^{2}\left[\operatorname{Re}\left(A_{k} B_{k}^{*} \varepsilon_{1}(u)\right)+\left|B_{k}\right|^{2} \varepsilon_{2}(u)\right]
$$

- ε_{1} and ε_{2} depend on k, v_{k}, \dot{v}_{k}, a, and \dot{a}
- $A_{k} B_{k}^{*}$ term oscillates in time and has no classical analog.
- $\left|B_{k}\right|^{2}$ term has same form as classical matter in nonrelativistic limit and classical radiation in relativistic limit
- To investigate the deviation from $\langle\rho\rangle=\langle\rho\rangle_{\mathrm{BD}}$, plot for fixed values of k the coefficients of $A_{k} B_{k}^{*}$ and $\left|B_{k}\right|^{2}$
$a^{3} \times$ Coefficient of $\operatorname{Re} A_{k} B_{k}^{*}$ for $m=H, k=10$

$$
a^{3} \times \text { Coefficient of } \operatorname{Re}\left|B_{k}\right|^{2} \text { for } m=H, k=10
$$

$$
a^{4} \times \text { Coefficient of } \operatorname{Re}\left|B_{k}\right|^{2} \text { for } m=H, k=10
$$

Conformally Invariant Fields

- In any RW spacetime, for conformally invariant fields in homogeneous and isotropic states other than the conformal vacuum state

$$
\langle\rho\rangle \sim a^{-4}+\text { vacuumterms }
$$

Conformally Invariant Fields

- In any RW spacetime, for conformally invariant fields in homogeneous and isotropic states other than the conformal vacuum state

$$
\langle\rho\rangle \sim a^{-4}+\text { vacuumterms }
$$

- In contracting de Sitter for inhomogeneous states $\langle\rho\rangle \sim a^{-5}$

Backreaction for conformally invariant field

- Assume some other state than the BD state

Backreaction for conformally invariant field

- Assume some other state than the BD state
- In the first approximation ignore the vacuum terms

Backreaction for conformally invariant field

- Assume some other state than the BD state
- In the first approximation ignore the vacuum terms
- Then $\langle\rho\rangle=c / a^{4}$, with $c=\frac{3 c_{1}}{8 \pi}$

Backreaction for conformally invariant field

- Assume some other state than the BD state
- In the first approximation ignore the vacuum terms
- Then $\langle\rho\rangle=c / a^{4}$, with $c=\frac{3 c_{1}}{8 \pi}$
- The backreaction equation is

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\Lambda}{3}+\frac{c_{1}}{a^{4}}
$$

Backreaction for conformally invariant field

- Assume some other state than the BD state
- In the first approximation ignore the vacuum terms
- Then $\langle\rho\rangle=c / a^{4}$, with $c=\frac{3 c_{1}}{8 \pi}$
- The backreaction equation is

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\Lambda}{3}+\frac{c_{1}}{a^{4}}
$$

- The solutions are

$$
a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]
$$

Backreaction for conformally invariant field

- Assume some other state than the BD state
- In the first approximation ignore the vacuum terms
- Then $\langle\rho\rangle=c / a^{4}$, with $c=\frac{3 c_{1}}{8 \pi}$
- The backreaction equation is

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\Lambda}{3}+\frac{c_{1}}{a^{4}}
$$

- The solutions are

$$
a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]
$$

- Universe collapses to zero size if $c_{1}>\frac{3}{4 \Lambda}$

Backreaction for conformally invariant field

- Assume some other state than the BD state
- In the first approximation ignore the vacuum terms
- Then $\langle\rho\rangle=c / a^{4}$, with $c=\frac{3 c_{1}}{8 \pi}$
- The backreaction equation is

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\Lambda}{3}+\frac{c_{1}}{a^{4}}
$$

- The solutions are

$$
a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]
$$

- Universe collapses to zero size if $c_{1}>\frac{3}{4 \Lambda}$
- Universe bounces and approaches de Sitter if $c_{1}<\frac{3}{4 \Lambda}$

Backreaction for conformally invariant field

- Assume some other state than the BD state
- In the first approximation ignore the vacuum terms
- Then $\langle\rho\rangle=c / a^{4}$, with $c=\frac{3 c_{1}}{8 \pi}$
- The backreaction equation is

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{\Lambda}{3}+\frac{c_{1}}{a^{4}}
$$

- The solutions are

$$
a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]
$$

- Universe collapses to zero size if $c_{1}>\frac{3}{4 \Lambda}$
- Universe bounces and approaches de Sitter if $c_{1}<\frac{3}{4 \Lambda}$
- Neglected vacuum effects will remain small unless the Planck scale is reached

Perturbations

- Perturb by changing the state

$$
\begin{aligned}
& a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right] \\
& \delta a=\frac{-\delta c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}{\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}
\end{aligned}
$$

Perturbations

- Perturb by changing the state

$$
\begin{aligned}
& a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right] \\
& \delta a=\frac{-\delta c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}{\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}
\end{aligned}
$$

- Numerator grows larger in magnitude for all time

Perturbations

- Perturb by changing the state

$$
\begin{aligned}
& a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right] \\
& \delta a=\frac{-\delta c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}{\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}
\end{aligned}
$$

- Numerator grows larger in magnitude for all time
- Denominator grows smaller at early times

Perturbations

- Perturb by changing the state

$$
\begin{aligned}
& a^{2}=\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right] \\
& \delta a=\frac{-\delta c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}{\frac{3}{\Lambda} \cosh ^{2}\left[\sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]-c_{1} \exp \left[2 \sqrt{\Lambda / 3}\left(t-t_{0}\right)\right]}
\end{aligned}
$$

- Numerator grows larger in magnitude for all time
- Denominator grows smaller at early times
- Thus perturbations grow significantly at early times

Results and Conclusions for Global de Sitter space

- For conformally coupled massive fields and conformally invariant fields
- For all physically acceptable states the deviation of the energy density from the BD value is very small at early enough times

Results and Conclusions for Global de Sitter space

- For conformally coupled massive fields and conformally invariant fields
- For all physically acceptable states the deviation of the energy density from the BD value is very small at early enough times
- The deviation grows exponentially with time

Results and Conclusions for Global de Sitter space

- For conformally coupled massive fields and conformally invariant fields
- For all physically acceptable states the deviation of the energy density from the BD value is very small at early enough times
- The deviation grows exponentially with time
- Thus the BD state is unstable to perturbations in the contracting part of de Sitter space

Details of the linear response equation for preheating

$$
\begin{gathered}
\left(\square-m^{2}-g^{2}\left\langle\psi^{2}\right\rangle\right) \delta \phi-g^{2} \delta\left\langle\psi^{2}\right\rangle \phi=0 \\
\delta \ddot{\phi}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi+g^{2}\left(\delta\left\langle\psi^{2}\right\rangle \phi_{1}=0\right. \\
\delta\left\langle\psi^{2}\right\rangle=\frac{1}{2 \pi^{2}} \int_{0}^{\varepsilon} d k k^{2}\left(f_{k} \delta \delta_{k}^{t}+t_{k}^{*} \delta f_{k}\right)+\frac{1}{2 \pi^{2}} \int_{\varepsilon}^{\infty} d k k^{2}\left(f_{k} \delta \delta_{k}^{*}+t_{k}^{*} \delta f_{k}+\frac{g^{2} \phi \delta \phi}{2 k^{3}}\right) \\
-\frac{g^{2} \phi \delta \phi}{4 \pi^{2}}\left[1-\log \left(\frac{2 \varepsilon}{M}\right)\right] \\
\delta \ddot{f}_{k}+\left(k^{2}+g^{2} \phi^{2}\right) \delta f_{k}+2 g^{2} f_{k} \phi \delta \phi=0 \\
\delta t_{k}=A_{k} f_{k}+B_{k} f_{k}^{*}+2 g^{2} i \int_{0}^{t} d t^{\prime} \phi\left(t^{\prime}\right) \delta \phi\left(t^{\prime}\right)_{k}\left(t^{\prime}\right)\left[f_{k}^{*}(t) f_{k}\left(t^{\prime}\right)-f_{k}(t) f_{k}^{*}\left(t^{\prime}\right)\right]
\end{gathered}
$$

f_{k} is a solution to the homogeneous equation for δf_{k}
A_{k} and B_{k} result in state dependent perturbations

Details relating to $\delta \phi_{c}$

- Choose starting values so that initially $\dot{\phi}=\delta \dot{\phi}=0$
- Recall $\delta \phi_{e}=\phi_{2}-\phi_{1}$
- Define $\delta \phi_{e}=c \phi_{1}+\delta \phi_{c}$

$$
\begin{gathered}
c=\left(\phi_{2}(0)-\phi_{1}(0)\right) / \phi_{1}(0) \\
\delta \phi_{c}(0)=\delta \dot{\phi}_{c}(0)=0
\end{gathered}
$$

- From last slide $\delta\left\langle\psi^{2}\right\rangle=\delta\left\langle\psi^{2}\right\rangle\left[\phi, \delta \phi, A_{k}, B_{k}\right]$
- If $\delta \phi_{e}$ is an approx. soln. to the linear response equation then $\delta \phi_{c}$ is an approx. soln. to

$$
\begin{aligned}
& \delta \ddot{\phi}_{c}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi_{c}+g^{2} \phi_{1} \delta\left\langle\psi^{2}\right\rangle\left[\phi=\phi_{1}, \delta \phi=\delta \phi_{c}, A_{k}=0\right. \\
& \quad=-g^{2} \phi_{1} \delta\left\langle\psi^{2}\right\rangle\left[\phi=\phi_{1}, \delta \phi=c \phi_{1}, A_{k}, B_{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \delta \ddot{\phi}_{c}+\left(1+g^{2}\left\langle\psi^{2}\right\rangle_{1}\right) \delta \phi_{c}+g^{2} \phi_{1} \delta\left\langle\psi^{2}\right\rangle\left[\phi=\phi_{1}, \delta \phi=\delta \phi_{c}, A_{k}=0, B_{k}=\right. \\
& =-g^{2} \phi_{1} \delta\left\langle\psi^{2}\right\rangle\left[\phi=\phi_{1}, \delta \phi=c \phi_{1}, A_{k}, B_{k}\right]
\end{aligned}
$$

- Since $\delta \phi_{c}=\delta \dot{\phi}_{c}=0$ initially, only the $\delta \ddot{\phi}_{c}$ is nonzero initially on the LHS. Thus at early times $\delta \phi_{c}$ is driven by the RHS, i.e. by the early time values of $\delta\left\langle\psi^{2}\right\rangle$

