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We study the non-perturbative renormalization group flow of the nonlinear O(N) sigma model in two and three
spacetime dimensions using a scheme that combines an effective local Hybrid Monte Carlo update routine,
blockspin transformations and a Monte Carlo demon method. In two dimensions our results verify perturbative
renormalizability. In three dimensions, we determine the flow diagram of the theory for various NV and different
truncations and find a non-trivial fixed point, which indicates non-perturbative renormalizability. It is related
to the well-studied phase transition of the O(N) universality class and characterizes the continuum physics of
the model. We compare the obtained renormalization group flows with recent investigations by means of the

Functional Renormalization Group.

PACS numbers: 11.15.-q, 11.15.Ha, 12.38.Aw

I. INTRODUCTION

The renormalization of coupling parameters due to quantum
fluctuations is a characteristic feature of any quantum field
theory and many different methods have been developed to
study this interesting property. While most of these methods
rely on a perturbative treatment of the theories, the investiga-
tion of strongly coupled or strongly correlated systems with-
out small expansion parameter, like e.g. the theory of strong
interaction, requires a non-perturbative approach. One non-
perturbativeand very flexible method is the Functional Renor-
malization Group (FRG) introduced by K. Wilson [1]. In a
particularly useful implementation of the functional renormal-
ization group, one studies the flow of the effective average
action T';, w.r.t. the momentum scale k, which interpolates
between the bare action at the UV-cutoff A, and the full ef-
fective action inthe IR, T',_,o = T [2]. With the help of this
powerful non-perturbative approach one can explore theories
which are non-renormalizable in perturbation theory, i.e. in
the vicinity of a Gauldian fixed point, but are renormalizable
in anon-perturbative setting. In such asymptotically save the-
oriesthe running of the couplingsin the UV iscontrolled by a
non-trivial fixed point with a finite number of relevant direc-
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running coupling such as the renormalized correlation func-
tions or the Schwinger functional [8]. In an alternative recent
approach one tries to directly integrate out momentum shells
on the lattice by using Fourier Monte Carlo simulation [9].
In the present work we make use of the well-known Monte
Carlo Renormalization Group method (MCRG) [10-13]. It
is based on the idea of blockspin transformations and can be
applied to theorieswith fermionic or gaugefields[14]. By ap-
plying successive blockspin transformations, real-space RG-
transformations are performed and a renormalization trajec-
tory is calculated. However, since every RG step typicaly
reduces the linear extent of the lattice by a factor of b = 2,
exponentially large lattices are needed in order to obtain suf-
ficiently long trajectories that get close enough to the fixed
point regime [15]. Even worse, a standard method to deter-
minethe effective couplingsrelies on the matching of correla-
tion functions on the initial and blocked lattices and requires
expensive scanning runs for the parameters of the bare action
at the largest lattice used [16]. In order to circumvent these
problemswe employ the demon method [17-19] which allows
usto efficiently compute RG trajectories at afixed lattice vol-
ume.

In the present work we apply the MCRG method in combina-
tion with the demon method to calcul ate the alobal flow dia-
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FIG. 8. Theratio of correlation lengths obtained by blocking a 32°
latticedown to 162 using different optimization constants co. A value
of 16 /€32 = 2 isexpected to minimize truncation errorsand we read
off the optimal value ¢ = 3.35 for N = 3.
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FIG. 9. The 3 function for the 1 — 1 truncation in three dimensions
and N = 3 isshown for different values of ¢o.

flow to the disordered phase in the IR which is controlled by
the Gauldian fixed point at go = 0, while systems with bare
coupling go > g¢ flow to the completely ordered phase de-
scribed by go = oo or 1/go = 0. These two fixed points cor-
respond to the expected |ow-temperaturefixed point at infinite
coupling (absolute order) and the expected high-temperature
fixed point at zero coupling (absolute disorder). The critical
hypersurface is reduced to a single point g in this truncation
and the operator S, correspondsto arelevant direction of the
RG flow.

Using the information provided by thermodynamical observ-
ableslike e.g. the susceptibility of the order parameter, we can
determine the critical point g5 where the correlation length
of the system diverges at infinite volume. In general theory
space, it is the point of intersection between the critical hy-
persurface and the line where g; = 0 except go. A lattice
simulation starting at g§ in the UV will flow aong the criti-
cal line into the non-trivial fixed point and observables mea-
sured on this ensemble reflect the macroscopic physicsat this
point. Please note that ¢ need not be identical to g due to
truncation errorsthat affect the value for g. Of course, with-
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out truncation errors the fixed point is located at the critical
surface. We now proceed to discuss higher-order truncations
which take additional operators into account and provide a
more complete picture of the flow of the effective action.

B. Higher-order truncations

In the preceding sections we have seen that near the non-trivial
fixed point the operator S, definesarelevant direction. Inthis
section we include more operators in the effective action in
order to find the total number of relevant directions. Figure
10 (upper panel) shows the global flow diagram for the trun-
cation using two operators S = goNSy + g1 N.S1, both for
ensemble generation as well as in the demon method (2 — 2

truncation).  The blockspin transformation is optimized in
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FIG. 10. The flow diagram using the 2 — 2 truncation in three
dimensions and N = 3 clearly shows a non-Gaufdian fixed point
(NG FP) in the center of the plot in the upper panel. The critica line
(CL) and renormalized trajectory (RT) intersect at the NG FP. The
lower panel shows the vicinity of the NG FP. The RG parameters for
thisflow diagram are co = 3.1 and ¢; = 2.5.

the same way as for the action with a single parameter. Our
choice for the parametersis ¢y = 3.1 and ¢; = 2.5 and it
leads to a correlation length ratio of around 2 in the vicinity
of the fixed point. Note that this choice for the parametersis
not unique if we only tune the correlation length to the de-
sired value. In general we have to consider higher correlation
functions as well. Below we will also discuss other choices
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FIG. 11. Using a shooting technique, the RG trajectories for the
3 — 3 truncation with operators Sy, S1 and S» revea an analogous
structure to the 2 — 2 case. The projection on the go-g1 axisin the
upper panel showsonly asinglerelevant direction at the non-Gauf3ian
fixed point. Thelower panel showsthat the trajectoriesfirst approach
the fixed point regime and afterwards flow along the renormalized
trajectory to the respective IR fixed points.





