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Asymptotic safety on the lattice: The Nonlinear O(N) Sigma Model
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Daniel Körner† and Andreas Wipf‡
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We study the non-perturbative renormalization group flow of the nonlinear O(N) sigma model in two and three
spacetime dimensions using a scheme that combines an effective local Hybrid Monte Carlo update routine,
blockspin transformations and a Monte Carlo demon method. In two dimensions our results verify perturbative
renormalizability. In three dimensions, we determine the flow diagram of the theory for various N and different
truncations and find a non-trivial fixed point, which indicates non-perturbative renormalizability. It is related
to the well-studied phase transition of the O(N) universality class and characterizes the continuum physics of
the model. We compare the obtained renormalization group flows with recent investigations by means of the
Functional Renormalization Group.

PACS numbers: 11.15.-q, 11.15.Ha, 12.38.Aw

I. INTRODUCTION

The renormalization of coupling parameters due to quantum
fluctuations is a characteristic feature of any quantum field
theory and many different methods have been developed to
study this interesting property. While most of these methods
rely on a perturbative treatment of the theories, the investiga-
tion of strongly coupled or strongly correlated systems with-
out small expansion parameter, like e.g. the theory of strong
interaction, requires a non-perturbative approach. One non-
perturbative and very flexible method is the Functional Renor-
malization Group (FRG) introduced by K. Wilson [1]. In a
particularly useful implementation of the functional renormal-
ization group, one studies the flow of the effective average
action Γk w.r.t. the momentum scale k, which interpolates
between the bare action at the UV-cutoff Λ, and the full ef-
fective action in the IR, Γk→0 = Γ [2]. With the help of this
powerful non-perturbative approach one can explore theories
which are non-renormalizable in perturbation theory, i.e. in
the vicinity of a Gaußian fixed point, but are renormalizable
in a non-perturbative setting. In such asymptotically save the-
ories the running of the couplings in the UV is controlled by a
non-trivial fixed point with a finite number of relevant direc-
tions. The most important theory where this so-called asymp-
totic safety scenario of Weinberg [3, 4] could be realized is
general relativity where at present all results suggest that there
exists a non-trivial UV fixed point [5–7].
Here we employ an alternative and efficient non-perturbative
approach, based on numerical simulations, to study global
flow diagrams of field theories. We apply the technique to
spot non-trivial fixed points and to determine their properties.
In order to extract the renormalization of the couplings from
lattice computations, different methods are used to define the
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running coupling such as the renormalized correlation func-
tions or the Schwinger functional [8]. In an alternative recent
approach one tries to directly integrate out momentum shells
on the lattice by using Fourier Monte Carlo simulation [9].
In the present work we make use of the well-known Monte
Carlo Renormalization Group method (MCRG) [10–13]. It
is based on the idea of blockspin transformations and can be
applied to theories with fermionic or gauge fields [14]. By ap-
plying successive blockspin transformations, real-space RG-
transformations are performed and a renormalization trajec-
tory is calculated. However, since every RG step typically
reduces the linear extent of the lattice by a factor of b = 2,
exponentially large lattices are needed in order to obtain suf-
ficiently long trajectories that get close enough to the fixed
point regime [15]. Even worse, a standard method to deter-
mine the effective couplings relies on the matching of correla-
tion functions on the initial and blocked lattices and requires
expensive scanning runs for the parameters of the bare action
at the largest lattice used [16]. In order to circumvent these
problems we employ the demon method [17–19] which allows
us to efficiently compute RG trajectories at a fixed lattice vol-
ume.
In the present work we apply the MCRG method in combina-
tion with the demon method to calculate the global flow dia-
gram of the ubiquitous nonlinear O(N) sigma models (NLSM)
which are of interest both in condensed matter physics [20]
and in particle physics [21]. Here they serve as toy models to
test and develop RG methods for models of quantum gravity.
Both classes of theories share relevant properties. Whereas in
two dimensions the nonlinear O(N) models are perturbatively
renormalizable and asymptotically free this feature is lost in
higher dimensions. But then the small-ǫ and 1/N -expansions
both point to the the existence of non-trivial fixed points in
these models [22–25]. Their existence is further supported by
FRG calculations based on a one-parameter truncation of the
effective action [26] and higher-order truncations [27] and we
will compare our computations with these more recent results.
The article is structured as follows: In Sec. II we discuss gen-
eral properties of nonlinear O(N) models and in Sec. III we de-
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FIG. 8. The ratio of correlation lengths obtained by blocking a 32
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lattice down to 163 using different optimization constants c0. A value
of ξ16/ξ32 = 2 is expected to minimize truncation errors and we read
off the optimal value copt
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FIG. 9. The β function for the 1 → 1 truncation in three dimensions
and N = 3 is shown for different values of c0.

flow to the disordered phase in the IR which is controlled by
the Gaußian fixed point at g0 = 0, while systems with bare
coupling g0 > g∗

0
flow to the completely ordered phase de-

scribed by g0 = ∞ or 1/g0 = 0. These two fixed points cor-
respond to the expected low-temperature fixed point at infinite
coupling (absolute order) and the expected high-temperature
fixed point at zero coupling (absolute disorder). The critical
hypersurface is reduced to a single point g∗

0
in this truncation

and the operator S0 corresponds to a relevant direction of the
RG flow.
Using the information provided by thermodynamical observ-
ables like e.g. the susceptibility of the order parameter, we can
determine the critical point gc

0
where the correlation length

of the system diverges at infinite volume. In general theory
space, it is the point of intersection between the critical hy-
persurface and the line where gi = 0 except g0. A lattice
simulation starting at gc

0
in the UV will flow along the criti-

cal line into the non-trivial fixed point and observables mea-
sured on this ensemble reflect the macroscopic physics at this
point. Please note that gc

0
need not be identical to g∗

0
due to

truncation errors that affect the value for g∗
0
. Of course, with-

out truncation errors the fixed point is located at the critical
surface. We now proceed to discuss higher-order truncations
which take additional operators into account and provide a
more complete picture of the flow of the effective action.

B. Higher-order truncations

In the preceding sections we have seen that near the non-trivial
fixed point the operator S0 defines a relevant direction. In this
section we include more operators in the effective action in
order to find the total number of relevant directions. Figure
10 (upper panel) shows the global flow diagram for the trun-
cation using two operators S = g0NS0 + g1NS1, both for
ensemble generation as well as in the demon method (2 → 2

truncation). The blockspin transformation is optimized in
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FIG. 10. The flow diagram using the 2 → 2 truncation in three
dimensions and N = 3 clearly shows a non-Gaußian fixed point
(NG FP) in the center of the plot in the upper panel. The critical line
(CL) and renormalized trajectory (RT) intersect at the NG FP. The
lower panel shows the vicinity of the NG FP. The RG parameters for
this flow diagram are c0 = 3.1 and c1 = 2.5.

the same way as for the action with a single parameter. Our
choice for the parameters is c0 = 3.1 and c1 = 2.5 and it
leads to a correlation length ratio of around 2 in the vicinity
of the fixed point. Note that this choice for the parameters is
not unique if we only tune the correlation length to the de-
sired value. In general we have to consider higher correlation
functions as well. Below we will also discuss other choices
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FIG. 11. Using a shooting technique, the RG trajectories for the
3 → 3 truncation with operators S0, S1 and S2 reveal an analogous
structure to the 2 → 2 case. The projection on the g0-g1 axis in the
upper panel shows only a single relevant direction at the non-Gaußian
fixed point. The lower panel shows that the trajectories first approach
the fixed point regime and afterwards flow along the renormalized
trajectory to the respective IR fixed points.

for the parameters and its influence on quantitative features of
the flow diagram as for example the position of the fixed point
or critical exponents. Nevertheless as in the one parameter
case the choice of the parameters does not change the qualita-
tive flow diagram. Again, we detect a high temperature fixed
point (HT FP) at zero coupling in the lower left corner as well
as a low temperature fixed point (LT FP) at infinite coupling.
Also a non-trivial fixed point (NG FP) in the center of the flow
diagram is clearly visible. The values of the couplings at the
fixed point, g0 = 0.119(1), g1 = 0.0164(2), can be deter-
mined from Fig. 10 (lower panel). As expected, the ‘velocity’
along a trajectory gets small in the fixed point regime. Fur-
thermore, we find that the position of the fixed point in this
two parameter truncation is almost independent of the lattice
volume. But, in contrast to the one-parameter truncation, it
depends strongly on the constant c0 and to a lesser degree on
the remaining constants. A change of c0 results in a displace-
ment of the fixed point along the critical line.
The flow diagram is split by a separatrix which defines the
critical line (CL) extending from the lower right to the up-
per left corner. Trajectories that lie above this line will flow
into the low temperature fixed point while trajectories below
this line flow into the high temperature fixed point. This
indicates a relevant direction analogous to the simple one-
parameter truncation of the preceding section. The second
direction though is an irrelevant one and the corresponding

eigenvalue of the stability matrix is negative. The single tra-
jectory that is identical with the critical line will flow into
the non-trivial fixed point, either from below or above. The
critical line is the intersection of the critical hypersurface in
general theory space with the g0-g1 plane that constitutes our
truncation. From the traditional lattice perspective, the criti-
cal line corresponds to a fine-tuned set of bare couplings (g0,
g1) at different UV cutoffs. Starting a simulation on the criti-
cal line results in a measurement of the critical physics at the
non-trivial fixed point and is generically used to take the con-
tinuum limit, since the lattice spacing in units of the correla-
tion length becomes small as the critical point is approached.
There exists another interesting line which connects all three
fixed points and acts as an attractor for the RG trajectories.
It is called the renormalized trajectory (RT) and singles out a
unique trajectory that defines a theory that is both IR and UV
complete, starting at the non-trivial fixed point in the UV and
flowing into the high temperature or low temperature fixed
point in the IR. As expected, the RT does not attract the tra-
jectories in the vicinity of the high temperature fixed point,
where the fixed point behaviour dominates 1.
Starting on the g0 axis, which corresponds to the usual lattice
action of the Heisenberg ferromagnet, and integrating out all
fluctuations, one can only reach either one of the trivial fixed
points or the non-trivial fixed point. In this sense, it is legiti-
mate to consider them as infrared fixed points. From univer-
sality arguments one expects that the non-Gaußian fixed point
corresponds to the well-known Wilson-Fisher fixed point of
the linear sigma model. We find that a similar structure to our
results emerges in this model [35].
But the Heisenberg ferromagnet is an effective theory that is
well defined only for a finite UV cutoff, in contrast to asymp-
totically safe theories that are defined on all scales. Funda-
mental field theories correspond to theories on the renormal-
ized trajectory and the direction of the renormalization group
flow shows that the non-trivial fixed point governs the ultra-
violet physics of these theories. Thus, this non-trivial fixed
point acts as an ultraviolet fixed point of the RG flow.
For the asymptotic safety scenario to hold, the number of rel-
evant directions at the non-Gaußian fixed point must be fi-
nite. Hence we proceed to determine the flow diagram for
the 3 → 3 and 4 → 4 truncation, which include the opera-
tors {S0, S1, S2}, {S0, S1, S3} and {S0, S1, S2, S3} respec-
tively. An overview over the full flow diagram for the oper-
ators {S0, S1, S2} is presented in Figure 11 and it is evident
that only irrelevant directions are added to the truncation. The
global structure of the flow diagram is similar to the 2 → 2

truncation and shows two trivial IR fixed points and one non-
trivial UV fixed point. Figure 12 (upper panel) shows a de-
tailed view of the the fixed point regime. The fixed point
is located at (g0, g1, g2) = (0.13(1), 0.016(1),−0.0015(5)).
In the center panel of Figure 12 the 3 → 3 trunca-

1 For this reason the matching method is not applicable in the vicinity of
the high temperature fixed point since it relies on the assumption that the
trajectories approach the renormalized trajectory within a few RG steps
[34].




