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The main goal of this talk  is to argue that QCD, 
being a gapped system, nevertheless exhibits the 
topological long range order, highly sensitive to a 
time-dependent and curved background.      

Furthermore, there is a novel type of energy (see 
definition below). This  energy has “non-dispersive” 
nature, and  can not be expressed in terms of 
conventional propagating degrees of freedom and 
Green’s function (contrast with a scalar field).  

All these novel effects are due to the nontrivial 
topological sectors in the gauge system (no analogy 
with a scalar particle in a curved background).  

The effect is non-local, and can not be expressed in 
terms  of local curvature. It is expressed in terms 
of a non-local characteristic, the holonomy. 
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1. Motivation. Structure of the talk.    



A convenient  way to explain the nature of new type 
of vacuum energy is  to study the topologically 
susceptibility ( it is the key element in the resolution of the so-
called U(1) problem in QCD, Witten, Veneziano, 1979 ). 

!

        does not vanish, though                       . It has 
``wrong sign”, see below. It can  not be related to 
any physical propagating degrees of freedom. 
Furthermore, it has a pole in momentum space 

!

There is a massless pole, but there are no any 
physical massless states in the system. 

2.  Topological susceptibility
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the theory is restored not due to the 2⌅ periodicity of Lagrangian (7). Rather, it is restored as a result of summation
over all branches of the theory when the levels cross at ⇤ = ⌅(mod 2⌅) and one branch replaces another and becomes
the lowest energy state as discussed in [23].

Finally, the dimensional parameter which governs the dynamics of the problem is the Debye correlation length of
the monopole’s gas,

m2
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4⌅

g
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The average number of monopoles in a “Debye volume” is given by
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L3⇥

⇧ 1, (9)

The last inequality holds since the monopole fugacity is exponentially suppressed, ⇥ ⌅ e�1/g2

, and in fact we can view
(9) as a constraint on the validity of the approximation where semiclassical approximation is justified.

B. Topological susceptibility

The topological susceptibility ⇧ which plays a crucial role in resolution of the U(1)A problem [24–29] and is defined
as follows1

⇧(⇤ = 0) =
⌃2Evac(⇤)
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= lim
k⇥0

�
d4xeikx�T{q(x), q(0)} ,

where ⇤ is the ⇤ parameter which enters the Lagrangian (6) along with topological density operator q(x) and Evac(⇤)
is the vacuum energy density determined by (7).

It is important that the topological susceptibility ⇧ does not vanish in spite of the fact that q = ⌃µKµ is total
divergence. Furthermore, any physical state gives a negative contribution to this diagonal correlation function
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where mn is the mass of a physical state, k ⌃ 0 is its momentum, and �0|q|n = cn is its coupling to topological
density operator q(x). At the same time the resolution of the U(1)A problem requires a positive sign for the topological
susceptibility (12), see the original reference [26] for a thorough discussion,

⇧non�dispersive = lim
k⇥0

�
d4xeikx�T{q(x), q(0)} > 0. (12)

Therefore, there must be a contact contribution to ⇧, which is not related to any propagating physical degrees of
freedom, and it must have the “wrong” sign. The “wrong” sign in this paper implies a sign which is opposite to
any contributions related to the physical propagating degrees of freedom (11). In the framework [24] the contact
term with “wrong” sign has been simply postulated, while in refs.[25, 26] the Veneziano ghost had been introduced
into the theory to saturate the required property (12). Furthermore, as we discuss below the contact term has in
fact the structure ⇧ ⌅

⌃
d4x�4(x). The significance of this structure is that the gauge variant correlation function in

momentum space

lim
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k4
(13)

1 We use the Euclidean notations where path integral computations are normally performed.
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To avoid confusion: This is the Wick’s T-product, not Dyson’s       



conventional physical degrees of freedom always 
contribute with sign (-) while one needs sign (+) to 
satisfy WI and resolve the U(1) problem 

Conventional terms (related to propagating degrees 
of freedom) always  produce                      behaviour 
at large distances.   

Witten simply postulated this term, while Veneziano 
assumed the unphysical field, the so-called the 
“Veneziano ghost” to saturate “wrong” sign in     .  

In “deformed QCD” this contact non-dispersive term 
with “wrong” sign (+) can be explicitly computed. It 
is originated from the tunnelings  between the  
degenerate topological sectors of the theory.                      

8

IV. INSIGHTS FROM LATTICE SIMULATIONS AND FROM HOLOGRAPHIC PICTURE OF QCD

In this section we want to get some insights from the lattice results. The Monte Carlo simulations are normally
performed in Euclidean space. Therefore, we reformulate the low energy relations discussed in previous sections II and
III to Euclidean space time in order to make comparison with lattice results.

A. Topological susceptibility

The scalar correlation function in Euclidean space takes the form and it is negative
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⇤
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while the topological susceptibility in the Euclidean space is positive
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The di�erence in signs4 between these two correlation functions can be seen in Minkowski space as well, see eq. (3)
versus (6). The crucial observation here is as follows: any physical state contributes to ⌃Eucl with negative sign

⌃dispersive ⌅ lim
k�0
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 0|q|n⌦ n|q|0⌦
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in drastic contrast with low energy relation (20). It poses no problem for the correlation function (19) when the
physical dilaton saturates the negative sign in eq.(19). At the same time the positive physical mass m2

�0 > 0 for
the ⇤⇥ meson requires the positive sign for the topological susceptibility (20), see the original reference [33] for a
thorough discussion. Therefore, there must be a contact contribution to ⌃, which is not related to any propagating
physical degrees of freedom, and it must have a “wrong sign” (in comparison with (21) representing the conventional
dispersive contribution) to saturate the positive sign for topological susceptibility (20). In di�erent words, it must be a
non-dispersive contribution to ⌃ which is not associated with any asymptotical physical states in conventional dispersion
relations. In the framework [34] the contact term with “wrong sign” has been postulated, while in refs.[32, 33] the
Veneziano ghost had been introduced to saturate the required property (20).

The simplest way to convince yourself in necessity for a non-dispersive contribution to ⌃ with a “wrong sign” is
to compute the topological susceptibility ⌃QCD in QCD rather than in gluodynamics. The topological susceptibility
⌃QCD(mq = 0) = 0 must vanish in the chiral limit as a consequence of the Ward Identities (WI). It is very instructive to
see how it happens. If one models the contact contribution to ⌃ using the Veneziano ghost, the topological susceptibility
in Euclidean space can be represented as follows, see [9, 49] and references therein:

⌃QCD ⇤
⌥

d4x 0|T{q(x), q(0)}|0⌦QCD =
f2
�0m2

�0

4
·
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�0Dc(m�0x)
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(22)

where Dc(m�0x) is the Green’s function of a free massive particle with standard normalization
⇧
d4xm2

�0Dc(m�0x) = 1.
The term proportional �Dc(m�0x) with negative sign in eq. (22) is resulted from the lightest physical ⇤⇥ state of mass
m�0 and it has a negative sign in accordance with (21). At the same time the ⇥4(x) represents the ghost contribution
with “wrong” sign which can not be associated with any physical states. The ghost’s contribution can be also thought
as the Witten’s contact term [34] not related to any propagating degrees of freedom. The topological susceptibility
⌃QCD(mq = 0) = 0 vanishes in the chiral limit as a result of exact cancellation between two terms entering (22) in
complete accordance with WI. The WI can not be satisfied if the contact term is not present in the system. When
mq ⌃= 0 the cancellation is not complete and ⌃QCD ⇧ mq q̄q⌦ in accordance with WI.

In case of “deformed QCD” considered in [40] we could explicitly compute the contact term and see that it is saturated
by the monopoles which in weak coupling regime describe the tunnelling processes between di�erent topological sectors
of the theory. While the topological sectors in case of strongly coupled 4d QCD of course still exist, we do not have

4 A warning signal with the signs: the physical degrees of freedom in Euclidean space (where the lattice computations are performed)
contribute to topological susceptibility �QCD with the negative sign, while the contact term (the Veneziano ghost) contributes with the
positive sign, in contrast with our discussions in Minkowski space, see eqs. (3), (6).
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The topological susceptibility        as a function of r.  Wrong sign for             	

     is well established phenomenon;  it has been tested on the lattice 
(plot above is from C. Bernard et al, LATTICE 2007).  This 
contribution is not related to any physical degrees of freedom, and 
can be interpreted as a contact term.   

�(r)

Contribution from 
physical degrees of 

freedom (negative sign 
with  finite width)

Contact  term  (positive sign +, 
vanishing width in continuum )

�
�(r = 0)



3.Some important features of “non-
dispersive”  contributions to the energy

These contributions can not be described in terms 
of conventional degrees of freedom (wrong sign); 

They are inherently non-local in nature as they 
are related to the tunnelling processes which are 
formulated in terms of the non-local large gauge 
transformation operator and holonomy; 

These terms may exhibit the long range features 
even through QCD has a gap (similar to the CM 
topologically ordered systems); 

The      -dependent portion of energy             (which 
is generated due to the tunnelling transitions) 
has all these unusual features as 

✓ Evac(✓)
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4. Applications to Cosmology
We assume (see next few slides) that the non-
dispersive     -  dependent portion of the vacuum 
energy             shows the linear correction with 
respect to Hubble “H” in the background, i.e.    

We also assume that the relevant (gravitating) 
energy which enters the Friedman’s equation is 
the difference                                      similar to 
computations of the Casimir energy, when the 
difference      is observed. This assumption was, in 
fact, originally formulated by Zeldovich in 1967. 

With these assumptions the Friedman’s equation 
exhibits a solution with the de-Sitter behaviour

EFLRW = c0⇤
4
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QCD +O(H2⇤2
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There are few people (sitting in this room) who 
advocated the idea that the relevant energy 
entering the Einstein equation is  

Ralf Schuetzhold, PRL, 2002;                                    
Michele Maggiore, PRD 2011	


People (not sitting in this room) from different 
fields who also advocated similar idea:                    
James Bjorken, 2001,                                                      
Grisha Volovik, 2008 +many more	


I personally adopted this idea in 2009, few papers in Nucl.phys. 
B, Phys Lett.B 

�E = (EFLRW(H)� EMink)



What is the evidence for the  linear dependence 
on cosmological scale “H” in a gapped system? 
(locality suggests quadratic behaviour as           )  

1. A number of analytical computations in 
simplified models, see few next slides below.  

2a. Lattice numerical simulations. In this case the 
computations of a real part of the energy -
momentum tensor               is a hard problem.  

2b. However, the imaginary (absorptive) portion of 
the energy-momentum tensor            due to particle 
production,  can be computed, see plot below. 

2c. Analyticity suggests that the dependence on H 
must be the same in                and      

ImhTµ⌫i

RehTµ⌫i

RehTµ⌫i ImhTµ⌫i

R ⇠ H2
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The plots from A. Yamamoto, arxiv 1405.6665. 
1. The expansion in Euclidean space-time was 

parametrized by the “imaginary” Hubble constant      
when the lattice action is positively defined;  

2. Red curve         describes the particle production 
rate per unit volume per unit time in the 
background     ; 

3. The linear dependence on     has been computed,  
                          . It strongly supports our arguments. 

HI

Im[hTµ⌫i] ⇠ HI
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This “H”-dependent energy has the same “non-
dispersive” nature, which can not be expressed in 
terms of any local propagating degrees of freedom 
(any local effective matter fields like “inflaton”).  

It should not be interpreted as                 as it is 
formulated in terms of a different characteristic,  
the holonomy (not expressible as local curvature) 

The de Sitter behaviour is the quantum effect 
describing the dynamics of the topological sectors 
of strongly coupled QCD in expanding background.  

With these assumptions the non-dispersive 
contribution to energy (at large                       ) is 

It is amazingly close to the observed values

H ⇠
⇤3
QCD

M2
PL

⇠ 10�33eV, ⇢DE ⇠ H⇤3
QCD ⇠ (10�3eV)4

a(t) ⇠ exp(Ht) ! 1

H ⇠
p
R



5. Holonomy and the linear 
correction in             hyperbolic space 

Normally it is expected that all corrections due to 
the time-dependent (curved) background are 
proportional to the local curvature 

We want to test these ideas  in gauge theories with 
nontrivial holonomy. In this case corrections are 
not reduced to the local observables. Key role of 
the IR regularization in all computations.  

Specifically, we compute the ratio which explicitly 
shows the linear correction  
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The computations are based on KvBLL calorons 
with nontrivial holonomy (Kraan-van Baal-Lee-Lu) 

Normally, nontrivial holonomy (            ) 
generates zero contribution to the partition 
function in thermodynamical limit. However, the 
KvBLL configurations are known to generate IR -
finite contribution to the free energy (in huge 
contrast with instantons). 

The KvBLL configurations can be thought as a 
superposition of “N” different monopoles which 
carry the fractional topological charge 

Confinement can be understood as percolation of 
these fractionally charged monopoles which 
enter the partition function in  sets of “N” .  
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The crucial role in generating this result is zero 
mode determinant. They are drastically different 
in hyperbolic in Euclidean spaces. 

This difference can be observed from asymptotic 
behaviour in these two cases 

   

!

Eventually, this difference translates into the 
difference in fugacities (and vacuum energies) as 
claimed above
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Q:       How a system with a gap could be ever 
sensitive to arbitrary large distances?	


A1: The long range order in gapped QCD is similar 
to Aharonov -Casher effect. If one inserts an 
external charge into superconductor  when 
electric field is screened                  a neutral 
magnetic fluxon will be still sensitive to external 
charge at arbitrary large distances.  

A2: Long range order in the system emerges because 
the large gauge transformation operator         and 
holonomy are non-local operators sensitive to far 
IR-physics, similar to “modular operator” in 
Aharonov -Casher effect. 

exp(�r/�)

T



6. Applications to inflation
We assume a scaled up version of QCD with the 
scale                                                   to avoid 
interference with EW physics.  

The Friedman equation has a de Sitter solution 
after the  phase transition to the confined phase 
when the topological susceptibility is generated 

This non-dispersive type of energy (the contact 
term) is linear in “H” and drives the Universe into 
the de Sitter phase   

The relevant dynamics is governed by some non- 
propagating auxiliary topological fields without 
canonical kinetic term; it can not be expressed in 
terms of any local fields like “inflaton”  
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This regime would be the final destination of our 
Universe if the interaction with SM fields is 
switched off. 

When the coupling is switched back on, the end of 
inflation is triggered precisely by this interaction 
which itself is unambiguously fixed by triangle 
anomaly.  

where        is topological non-propagating field  
and                                          is the coupling at 
inflationary scale 

This interaction with               is known to lead to 
the helical instability when the vacuum releases 
its energy  by producing the real particles

Lb�� =
↵(H0)

8⇡
NQ2 [✓ � b(x)] · Fµ⌫ F̃

µ⌫ ,

↵(H0) ⇠ ↵EW (H0) ⇠ ↵s(H0) ⇠ 0.1
b(x)

ḃ(x) ⇠ µ5
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In QCD context  (           )  the typical time scale for 
development of the helical plasma instability is  

Exact coefficient for particle production rate can 
be computed on the lattice in a time dependent 
background when the production rate is indeed 
linearly proportional to “H”.  

The number of e-folds                               is related 
to the gauge coupling constant (we know and love) 
and not to some ad hoc inflaton potential  

 0

 0.01

 0.02

 0.03

 0.04

 0  0.01  0.02  0.03  0.04

aN
I/(

L
x
L

yL
z) 

  o
r  

 a
4 n

I

aHI

NI
nI

WLPH

⌧
instability

⇠ 1

↵2

sµ5

! ⌧
inflation

⇠ 1

↵2

s(H0

)H
0

! N
e�folds

⇠ ↵2

s(H0

) ⇠ 102

µ5 ⇠ H0

N
e�folds

⇠ ↵2

s(H0

) ⇠ 102



Conclusion  
We speculate that a liner in “H” correction  to the 
energy could be generated as a result of dynamics 
of topological configurations with nontrivial 
holonomy. The idea is tested in “deformed QCD” and 
in the system defined on hyperbolic space    

History repeats itself as the QCD-like dynamics may 
be  responsible for inflation in early times, while 
the QCD dynamics may be  responsible for the dark 
energy now:    

History repeats itself also with technical tools:       
Aharonov -Bohm effect is an explicit realization of 
the system (including systems with a gap) when the 
gauge potential       (rather than     ) is the physical 
observable. Effect is non-local in nature, and can 
not be expressed in terms of                                                 
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When the  Maxwell system is formulated on four-
torus  there will be an extra contribution to the 
Casimir pressure, not related to the physical 
propagating photons with two transverse 
polarizations (4-torus has nontrivial holonomy).	


This setting based on 4-torus topology should be 
contrasted with conventional setting  when the 
Casimir energy  is generated between two 
conducting plates (trivial  holonomy). 

The Maxwell system on the 4-torus shows all signs 
(degeneracy,  etc)  which are normally attributed 
to the topologically ordered systems (AZ, 2014, 2015). 

Proposal: Instead of theoretical speculations I suggest to conduct a 
real tabletop experiment to study this new type of energy:


