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FP method

Yang-Mills action[(1954)]

1
SYM(A) = _ZFﬁyFQHZ/’

Ff, = 0,A% — 0,A% + f* AL AL
Gauge invariance

6Sym =0, O0AL =D, Db =570, + f*PA;
Non-unitariry of S-matrix[Feynman (1963)]
Faddeev-Popov action[(1967)]

Spp(®) = Syar + Syp + Sgn = Syam(A) + x*B® + C*K®C?
PA = (AZ7BG,CQ,C_'CL), €(<I>A) —ey

a

Kab _ 6X ch

5Az ®
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FP method

For more popular gauges in Yang-Mills theories the functions x¢ are
chosen as

Landau gauge
= 8“AZ
R¢ gauge
S
= 8“AZ + §B“
The FP-operator

auDab 5ab6u8 + facba,u Ac
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FP method

BRST symmetry

[Becchi,Rouet,Stora (1974), Tyutin (1975)]
dBSrp(®) =0
dpAj(z) = Dszb(m)u
550(r) = S CH@)C
55C%(x) = B(x)n
opB(z) = 0

p is a constant Grassmann parameter, 2 = 0. Due to the Noether
theorem there exists conserved charge, the BRST charge 5.
(;orresponding BRST operator, QB, defines the physical space states,
QBlphys >= 0.
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FP method

Let P4 = 5®4 4. Then
Nilpotency of the BRST transformations

§2A = 3DPC" =0
§C*=5B" =0
$2B*=0

§20a _ §%fabccbcc _ O

It leads to very important property of the BRST operator QB to be
nilpotent, QZB = 0. In its turn this property allows effectively to analyze
the unitarity problem with the help of KO-quartet mechanism [Kugo,
Ojima (1979)].
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FP method

Generating functionals of Green's functions and connected Green's
functions

2(J) = / Do exp{%(SFP(CI)) ra0t)} = exp{%W(J)}

Ja(z) are external sources to fields ®4(x), e(®4) = e 4.

Generating functional of vertex functions (effective action)

D(®) = W(J) — J404
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FP method

Vacuum functional Z(0) = Z,, constructing for a given gauge x* =0 is

Zy = /D@ exp{%SFP((I))}.

Consider the gauge x* + dx® = 0 and corresponding vacuum functional

Zy+6y- Use the change of the variables of integration in the form of BRST
transformations with

i
= — Oy
p=—5C"0x

Gauge independence of vacuum functional

Dytox = L

Recently this result has been extended on the level of arbitrary finite
change of gauge [PML, Lechtenfeld (2013)]
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FP method

The effective action I' = T'(®) is the main object and depends on gauges.
Consider an infinitesimal variation of gauge function x* — x® + dx®. The
equation describing the gauge dependence of effective action I' under
variation of gauge has the form [PML, Tyutin (1981)]

or

or = — F4

doA

with functionals F depending on dx®.

The main feature is that the effective action does not depend on gauge on
its extremals

Gauge independence of I' on its extremals

oT
51 =0, o, =0.
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FRG approach

The main idea of the FRG is to use instead of I' an average effective
action, I'y, with a momentum-shell parameter k, such that

limT, =T.
k—0

For the Yang-Mills theories it was suggested to modify the Faddeev-Popov
action with the help of the specially designed regulator action Sy,

~ 1 a, a v ~a a
Sk(4,C,C) = 5 A™(Rp )i A" + C*(Rign)C".
Regulator functions Ry 4 and Ry 4, obey the properties

X ab ab __
(R =0, (R = 0

lim
k—0

BRST non-invariance

55 Sk(A,C,C) # 0.
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FRG approach

The generating functionals of Green's functions, Zj, and connected
Green's functions, Wi(J) is constructed in the form of the functional
integral

Z(J) = /Di’exp{;[SFP(‘P)~I—Sk(<1>)~|—.]<1>]} =

eXP{%Wk(J)}

where, for the sake of uniformity, we used notation Si(®) instead
Si(A, C,C), despite S;, does not depend on fields B®
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FRG approach

The generating functional of vertex functions in the presence of regulators

(the average effective action), I'y = I'y(®), satisfies the functional
integro-differential equation

exp{%Fk(CI))} = /D(p exp{%[SFp(q)—i—(p)—i—Sk(@—i-tp) —

il

The tree-level (zero-loop) approximation corresponds to

rO(®) = Spp(®) + Su().
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FRG approach

The FRG flow equation for I'y, (¢t = Ink)

. 1 a "_ a v a _1\a
aTx = 0,y + ih {iat(Rk,A)lf; () 4 (R gn)® ()}
In the condensed notations
The Wetterich equation

BT, = m{% Te [0 (T + Bia) ] -

—Tr [@(Rk,gh) (T + Rk’gh)_l]c} ‘

where ', = T';, — S, and we took into account the anticommuting nature
of the ghost fields C* and defined

Tr [at(Rk,gh) (ngl)] - 81‘/(Rk7gh)ab (inl)ab ’

C
T[T )], = AR ().
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Vacuum functional

The vacuum functional, corresponding to a given gauge function x® in the
FP action reads

Zin = Z4(0) = /ch exp{%(sFP@) + sk(q)))} .

By construction, the regulator functions in the FRG approach do not
depend on gauge x“ and therefore the action Si is gauge independent.
Let us consider an infinitesimal variation of gauge x — x + dx and
construct the vacuum functional corresponding to this gauge

Zisi / D& exp {1 (Sp(®) + 54(®) +

55)(“

+C* —=
SAS

DL + 5;(’3@) } .
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Vacuum functional

In the last functional integral we make a change of variables in the form of
the BRST transformations but considering the constant Grassmann-odd
parameter u as a functional A = A(®). The Faddeev-Popov action, Srp,
is invariant under such change of variables but S} is not invariant, with

the variation given by
5S), = AW (Ry, A)ab Drhecep 4 - Ca( oh) fred CeCdp —
—B*(Ry, gn)™ C°A.
Choosing A in a natural way, A = ih~! C%*§x?, then
Tty = /ch exp {%(SFP + S+ 05k) }

then, for any value k # 0, one has

Gauge dependence of vacuum functional

Zk,x+5x # Zk7x~
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Gauge dependence of [';

Let us explore the gauge dependence of the generating functionals Z; and
I' for Yang-Mills theory in the framework of the FRG approach. The
derivation of this dependence is based on a variation of the gauge-fixing
function, x* — x® 4+ dx®, which leads to the variation of the FP action
Srp and consequently of the generating functionals Zj, = Z;(J),

Wi = Wi(J), Tk = Tx(P).

In terms of the average effective action[PML,Shapiro (2013)]

0l

ol = S

Fk; + Gk ,
where F = FA(®), G = Gy(®) are definite functionals disappearing
when dx* come to zero,

hka =0, lim Gy=0.
ox—0 dx—0
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Gauge dependence of [';

We see that

Gauge dependence of I';, on its extremals

ST
s3A= 00 0Tk,

0P

£0

This result shows that the gauge dependence represents a serious problem
for the FRG approach in the standard conventional formulation.
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New approach

Our approach is based on an idea of the composite fields [Cornwell,
Jackiw, Tomboulis, (1974)] to formulate the FRG framework for gauge
theories. The idea is to use such fields to implement regulator functions.
Consider the regulator functions

1
Liw) = 5 A%(@)(Rra)im(@)A™ (@), (Rea)u = (Rl
Li(x) = C%x)(Rpgn)™(@)C"(), (Ri,gh)™ = —(Rign)™
Now we introduce external scalar sources X1 (z) and ¥3(z) and construct

the generating functional of Green's functions for Yang-Mills theories with
composite fields

Zu(J,%) :/ch exp {% [Spp(®)+ T B+, LL ()] } = exp {%Wk(J, 2)}

where 3;LL (@) = [ dz[S1(z) L} () + So(x) L2 ().
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New approach

Using the explicit structure of the regulator Lagrangians and the
definitions Zi, Wy we deduce the relations

52y h 8%Zp .,
= — ¢ —1 €B
oY, 2i 5JB(5JA( K )ap(=1)°7,

or,

A Wy, N i Wk SW
0%, 2 |8JgdJa  hdJg 6J4

(L") aB(=1)%.

(Li")ap = aLi(®) 9, i=1,2, 4= —t

are constant supermatrices.
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New approach

The effective action I'y, = 'y (®; F') is introduced with the help of double
Legendre transformations

DU(®:F) = WilJ:D) — Jab* — 5 [Lj(@) + D7),
where
oW h . W oW

A k P k i k _

¢ = 84 2F 8% Lk( 5J ) 1,2
oTy, SL:(®) oTy, h
S R A T
sod — JAT RiTspn SFi 91
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New approach

Let us introduce the full sets of fields FA and sources J 4 according to
FA = (o4 hF), Ta = (Ja, %)
From the condition of solvability of equations

SFC(T) 1 Ta(F)

= 8.
5T SFC A

One can express J4 as a function of the fields in the form

Ta = (_ 6Ly, 25Fk 5LZ((I)) _25Fk)
A= 6BA T RhoF 6BA O ROFi

and, therefore,

ATolF) _ —(Gy).as

SFB(T "
L ( ):—(G 1yAB.

0T A
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New approach

Now we can present the new relation on the level of average effective
action in a closed form

—iF' = WHB(Li") pa(—1)%4 = sTeW{C (LY )¢, J
where
1 2 y — Z <_ _1
Wit = _<(Pk)AB = 7 Thi(Li")an = (8 AT 0) (T (T 5 0 B)> '
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New approach

It is very important to discuss the structure of supermatrices (L};”)AB
which itself have no maximal rank but for any combination

‘ S1(Rp, 4)50 0 0
Si(Ly")aB = 0 0 3o (R, gn)™
0 So(Ry, gn)™ 0

there exists the inverse supermatrix

”_1\AB (RI;’IA)ZZ ! (1)
Ly )" = 0 (1) (Rk gh)ba )
0 (R b )ab 0

where

(Bi, a)jia (B )& = 03675 (B, gn)™ (R gp) b = 03
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New approach

We obtain an useful relation
215;}5”1 0 0

i) ac(Ly ™) = 0 0 0
0 0 X6y
The gauge dependence of I' is described by the equation

ol ol

Iy, = :
oA R T G
where H4 = HA(®, F), G' = G*(®, F) obey the properties

lim H4 =0, lim G'=0.
ox—0 dx—0

0Ty = Ty aH* + TG, Tha=

Gauge independence

oL, =0
Ik, 4a=0,I ;=0
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Loop expansion

Qur starting point in loop expansion is the equation for the effective action
Lp(@; F) = T(P; F) — Spp(P)

exp {%fk(q);F)} = exp{ — %ElFl} X
< [ Doexn {5 [5 ¢ ((Shp(@)an+ i (L an )" -

— (Ty(%; F)<5A) o + Sine(2, ‘P)} }

where

Sint(®,0) = Spp(®+ ) — Spp(®) — (Spp(®) D 4)p™ —

1
D) (PA(S%'P((I)))AB(PBa
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Loop expansion

We assume the effective action in the form

Tu(®; F) = hiTU(®; F) 4 Tyo(®; F) .

Here I‘,(gl)@; F) is the one-loop effective action for the set of fields &4
taking into account composite fields F*. The term I'yo(®; F') includes all
the two-particle irreducible vacuum graphs in a theory with vertices
determined by S, (®, ) and propagators set equal to F. Note that
[12(®; F) by itself is of order h2.
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Loop expansion

To calculate the one-loop contribution F,(Cl)(i),F) we have to omit in
functional integral all terms of order more than 2. Then we have

exp {iF,(:)(q); F)} = exp{ - %E,FZ} X

X /Dso exp {217.1 wA((Sﬁép(q’))AB + % (LZ")AB><PB}

D(@; F) — T F = 2 sTr In ((Shp(®))an — 200 (LE)as)

{((Stp@)an — 0L a) (L4 pa h(-1)71 = ~iF
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Loop expansion

O am = =i (F) " (L am + 5(Sp(®))an

= Trole, mng = —2Trdb.

vra’

Z~ . 1 "_
T = —gmalFP) ™ 4 g sTr (Sp(@))ac (B )P,

where in the first term there is no summation over index j and
ny =mi,ng = —2m2.

1 " .
rV@ F) = %sTr(S}ép(q)))Ac(Lk =1E8 jag
)

+5 sTr In (in (7)™ (L") as)
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A simple example

Now we illustrate the problem of gauge dependence using a simple
example. To this end we consider the effective action T'y(®; F') up to first
order in £,

Tw(®; F) = i (®; F)

Note that in consistent gauge theories the effective action does not depend
on gauge on its extremals. First, we check the gauge dependence of
effective action I'y(®; F'). Consider the quantum equations of motion

r(@F) =0
i L . 1
—5”1‘(F]> I(Li@AB + i(SZ“P((I)))AB =0,

i o 1 -
—gmi(F) 7+ g sTr (SRR (®)ac(Ly )P =0
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A simple example

rY(@; F) = %sTr In S p(®) .

In this approximation the average effective action coincides with the
one-loop answer for effective action in a given Yang-Mills theory. It is
well-known fact that it does not depend on the gauge when the fields &4
satisfy the quantum equations of motion.

The average effective action, F,(Cl)(Q), in the standard FRG approach reads
(@) = %sTr In (Spp(®) + S7(®))
This action depends on gauge even on its extremals. To illustrate this

feature explicitly, we restrict ourselves to the case of electromagnetic field
in the flat space-time.
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A simple example

The classical action of the model is
1
So(A) = ~1 /d4:z: F F" Fu =0,A, —0,A,,.

We choose the gauge fixing function in the form

1
V1I+A

Integrating over field B yields the gauge fixing action

X(A,B) = 0“Ay + B

1 (0%
—M/d‘lx (0%A4)?.

The action for ghosts reads

ng (4) =

Sgh(C) 80‘8 )C

W/d4
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A simple example

The effective action of the model is

[(®) = S(®) +ihiTW(N),  S(®) = Sp(A) + Syr(A) + Syn(0),
d=(4,,0C0),

where

ron) = %Tr In <Dég — 1iAa aﬁ> — Tr ln<

1
aj.
ol
Dependence of effective action I'(®) on gauge parameter A is described by
the relation

_ (@) )5@ h&F(l)(A)

oT(2) e oA

oA
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A simple example

Using the quantum equations of motion

ST(®)

— -9
5 ’

we see that all dependence on A comes from T (X). In turn

1 A 0% 1
(1) — 1@ - o N 9N 4
') r (0)+2Trln<6ﬁ T D> In f—i—)\Trl
1 1 0%0, 1
— 1@ - B _ — 17
T (0)+21n1+)\Tr 5 n ﬁ_i_)\Trl (o)
oT(® -
( )%70 0

The same result is valid for the average effective action in the new FRG
approach.
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A simple example

Calculation of the one-loop average effective action of the model within
the standard FRG method gives

T(®) = S(®) + Si(®) +ih TV (),

where the regulator action, Si(®), is
1 4 « B Lye
Sk(q)) = 5 d*z A (Rk,A)aﬁA + d*zC Rk,gh C,

and the one-loop contribution, F,(Cl)(A), reads

1 A
(0 = S (09 5000 () -
1
—Trl O+ R
n <m ’”">
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A simple example

As in previous case using the quantum equations of motion we again find
that the gauge dependence of average effective action I'y(®) on its

extremals comes essentially from F,(cl)()\) which can be presented in the
form

Vo) = F()(A)—|- Trin (1 - GS(\) (Rea)}) —

Ry gn
—Trl 14 A2 ),
rn< + D)

rM(\) = 1M (0) does not depend on A, and GS(N) is the Green's
function

A 970,
1+2)\ 2

1)
o _ e} a B
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A simple example

The last two terms explicitly depend on the gauge fixing parameter .
Using the following property of cutoff functions Ry (p) — 0 when k& — 0,
we can approximate the trace of logarithm by linear term

1 (R, 4)% X 0%0y(Ri a)}
F,&”(A)zr<1>(o)+2ﬂ< = 5_1+2)\ = 5)

Ry gn
L+ ATr( —=2=).
+ A r< & )

or!! >( A)

It is clear that

£0,

and one meets the gauge dependence of average effective action within the
standard FRG approach even on its extremals.
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Conclusion

@ The study of gauge dependence of Green's functions within the FRG
approach was given.

@ It was shown the gauge dependence of average effective action even
on its extremals. In particular, vacuum expectation values of gauge
invariant operators such as Fyj, F** do depend on gauge.

@ A new FRG approach being free of the gauge dependence problem
has been proposed.

@ Loop expansion of effective action with composite fields in new FRG
approach has been formulated. Explicit form of effective action at the
leading order in A has been found.

@ Gauge dependence of effective actions constructed within FP method,
FRG and new FRG approaches have been illustrated using a simple
example of Abelian vector field.
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Thank you
for attention!
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