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the general idea: modify GR in the infrared 
using non-local terms 

   non-locality emerges from fundamental local theories 
in many situations 

•   classically, when separating long and short wavelength and 
integrating out the short wave-length  
    (e.g cosmological perturbation theory) 

•   in QFT, when computing the effective action that includes the 
effect of radiative corrections of massless or light particles.  



•  a natural way of modifying GR in the IR is by introducing a 
mass scale (e.g. massive gravity, bigravity,...) 

     we will introduce a mass scale as the coefficient of a non-
local term 

•  phenomenological approach. Identify a non-local 
modification of GR that works well 

•  attempt at a more fundamental understanding 
IR running and dimensional transmutation in R2 theories? 



                  some sources of inspiration: 

•  massive photon  
    can be described replacing 

                                                                                                         (Dvali 2006) 

•  for gravity, a first guess for a massive deformation of GR could 
be 

    however this is not correct since  
   we lose energy-momentum conservation.  

(Arkani-Hamed, Dimopoulos, Dvali and Gabadadze 2002) 
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•   to preserve energy-momentum conservation: 

     however, instabilities in the cosmological evolution 

•     

              stable cosmological evolution! 

•  a related model: 

Gµ⌫ �m2(⇤�1Gµ⌫)
T = 8⇡GTµ⌫

(Jaccard,MM, 
 Mitsou, 2013) 

(Foffa,MM, 
Mitsou,  2013) 

Gµ⌫ �m2(gµ⌫⇤�1R)T = 8⇡GTµ⌫ (MM 2013) 
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Absence of vDVZ discontinuity and of  
a strong coupling regime 

•  write the eqs of motion of the non-local theory in spherical 
symmetry: 

•  for mr <<1: low-mass expansion 

•  for r>>rS: Newtonian limit  (perturbation over Minowski) 

•  match the solutions for rS<< r << m-1 (this fixes all coefficients) 

A. Kehagias and MM 2014 

ds2 = �A(r)dt2 +B(r)dr2 + r2(d✓2 + sin2 ✓ d�2)



•  result: for r>>rs 

     the limit                is smooth ! 

By comparison,  in massive gravity the same computation gives 
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vDVZ discontinuity breakdown of linearity below 
rV=(rs/m^4)1/5 

for rs<<r<< m-1: 



Cosmological consequences.  

•   consider  

     define 

     NB: auxiliary non-dynamical fields! U=0 if R=0. It is not the 
same as a scalar-tensor theory 

•  in FRW we have 3 variables:  H(t),   U(t),   W(t)=H^2(t)S(t).   

     define     x=ln a(t),          h(x)=H(x)/H0 , 
                   γ=(m/3H0)2         ζ(x)=h'(x)/h(x) 

U = �⇤�1R , S = �⇤�1U
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•  there is an effective DE term, with 

•  define wDE from 

•   the model has the same number of parameters as ΛCDM, with   
ΩΛ ↔ γ. 
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•  results:  

•  Fixing γ = 0.0089.. (m=0.28 H0) we reproduce  ΩDE=0.68 
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•  having fixed γ we get a pure prediction for the EOS: 

 on the phantom side !  general consequence of 

 together with ρ>0 and  dρ/dt>0 

The RT model 

gives  w0= -1.04,   wa=-0.02 
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fit  w(a)=w0+(1-a) wa  

 in the region 0< z <1.6 

w0= -1.14,   wa=0.08  

warning. This is not wCDM !!! 

Gµ⌫ �m2(gµ⌫⇤�1R)T = 8⇡GTµ⌫



Cosmological perturbations 

•  well-behaved?  
   this step is already non-trivial: see eg  DGP, (massive gravity),  bigravity 

•  consistent with data? 
         this step rules out eg the Deser-Woodard non-local model 

•  comparison with  ΛCDM    
             implement the perturbations in a Boltzmann code 
             compute likelihood,  χ2,   perform parameter estimation   

Dirian, Foffa, Khosravi, Kunz, MM 
                                       JCAP 2014 

Dirian, Foffa, Kunz, MM, Pettorino,  
                                          JCAP 2015 



•  the perturbations are well-behaved and differ from ΛCDM at a 
few percent level 

 = [1 + µ(a; k)] GR

 � � = [1 + ⌃(a; k)]( � �)GR
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•  deviations at z=0.5 of order 4% 

•  consistent with data: CFHTLenS gives ΔΨ/Ψ=0.05±0.25 
                                                                               (Simpson et al 1212.3339) 
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•  linear power spectrum 
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•  CMB data from the Planck 2013 data release,  type-Ia 
supernovae  from JLA and BAO data from BOSS 

•   we modified the CLASS code and use Montepython MCMC 

•  we vary 
    In ΛCDM, ΩΛ is a derived parameter, fixed by the flatness 

condition. Similarly, in our model the mass parameter m2 is a 
derived parameter, fixed again from Ωtot=1 

     we have the same number of free parameters as in ΛCDM 

Dirian, Foffa, Kunz, MM, Pettorino, JCAP 2015 
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•  Results 
Param ⇤CDM gµ⌫⇤�1R R⇤�2R

100 !b 2.201+0.028
�0.029 2.204+0.028

�0.03 2.207+0.029
�0.029

!c 0.1194+0.0027
�0.0026 0.1195+0.0026

�0.0028 0.1191+0.0027
�0.0028

H0 67.56+1.2
�1.3 68.95+1.3

�1.3 71.67+1.5
�1.5

10

9As 2.193+0.052
�0.06 2.194+0.048

�0.062 2.198+0.053
�0.059

ns 0.9625+0.0072
�0.0074 0.9622+0.007

�0.0081 0.9628+0.0074
�0.0073

zre 11.1+1.1
�1.1 11.1+1.1

�1.2 11.16+1.2
�1.1

�2
min 9801.7 9801.3 9800.1

Table 1: Planck CMB data only.

Param ⇤CDM gµ⌫⇤�1R R⇤�2R

100 !b 2.215+0.025
�0.025 2.207+0.024

�0.025 2.197+0.024
�0.025

!c 0.1175+0.0015
�0.0014 0.1188+0.0014

�0.0014 0.1204+0.0014
�0.0013

H0 68.43+0.61
�0.69 69.3+0.68

�0.66 70.94+0.74
�0.7

109As 2.199+0.055
�0.062 2.196+0.052

�0.065 2.192+0.051
�0.061

ns 0.9668+0.0055
�0.0054 0.9636+0.0052

�0.0055 0.9599+0.0052
�0.0051

zre 11.33+1.1
�1.1 11.18+1.1

�1.2 11.00+1.1
�1.2

�2
min 10485.5 10485.0 10488.7

Planck+JLA+BAO 



The RT model works perfectly well 

(visually similar plot for ΛCDM) 

The RboxR model has a slight 
 (2σ) tension between CMB and SN  



excellent agreement with  
local H0 measurements.  

Latest revised value after correcting 
for star formation bias 
H0 =70.6 ± 2.6 
(Rigault et al 1412.6501) 

using Planck+JLA+BAO 



Conclusion: at the phenomenological level, these 
two non-local models work very well 

–  solar system tests OK 
–   generates dynamically a dark energy   
–   cosmological perturbations work well  
–   passes tests of structure formation  
–   comparison with CMB,SNe,BAO with modified Boltzmann 

code ok 
–   higher value of H0 

They are the only existing models, with the same number of 
parameters as ΛCDM, which are competitive with ΛCDM 
from the point of view of fitting the data 



•   loop corrections involving massless or light particles give non- 
local terms 

      e.g. in QED  

•   in R2 gravity 
–  loops of scalar, spinor and vector field in a fixed curved 

background 

–  graviton loops                
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Barvinsky-Vilkovisky 1985,1987, [.....] 
decoupling: Gorbar-Shapiro  2003 

Fradkin-Tseytlin 1982 
Avramidi-Barvinski 1985 

Part 2: where such non-locality comes from? 



    IR running of coupling constants and dimensional 
transmutation in R2 gravity? 

•  we consider the model with  
–  a1>0       stability of tensor perurbations 
–  a2>0        for matching with the sign in 

–   define      a1=1/f2 ,     a2=1/g2 

MM  1506.06217 
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•  to one-loop:        (neglecting the GB term) 

   f2 and g2 are asymptotically free in the UV  

–  effect of the log terms in  cosmology              Donoghue-El-Menoufi 2015 
     only relevant near the Planck scale   

–   we are rather interested in the deep IR region, for dark energy          
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•  in the IR g2 and f2 grow large and the theory becomes strongly 
coupled! 

•  a mass scale is generated by dimensional transmutation, 
analogous to ΛQCD 

•  in the IR the form factors  g2(☐) and f2(☐) will be non-trivial 
functions of ☐/ΛRR  

    Can we get 1/g2(☐)=(ΛRR/ ☐)2   ? 

•  generally speaking, power-like behavior can emerge from 
resummation of leading logs 
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•  a more stringent argument? 
4D-quantum gravity in the IR is dominated by the conformal mode 

 in the classical theory it is a constrained variable. At the quantum 
 level it acquires dynamics because of the conformal anomaly 

–  in D=2: Polyakov action 
    (which becomes local 
      in terms of σ) 

–  in D=4: covariant non-local anomaly-induced action  
(again local in terms of σ) 
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 fluctuations in σ become large in the IR 

1.  the IR dynamics is dominated by σ 
2.   we expect the generation of a mass scale through dimensional 

transmutation 
       How this will be reflected on the conformal mode? 

Natural expectation: dynamical generation of a mass term for σ 

 compare with:  
•  generation of a mass gap in QCD or 2-dim confining theories 
•   BKT transition in d=2 (which also triggered by a logarithmic growth 

of fluctuations) 
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•  however, we do not want to spoil diff invariance. 
    no local term starts with m2σ2 

     However, setting e.g. 

     our non-local term is just a mass-term for σ, plus non-linear 
completion that make it diff-invariant !  
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     final comment: a new perspective on the naturalness problem 
for the cosmological constant: 

    the scale ΛRR emerges from dimensional transmutation, 
similarly to ΛQCD. There is no issue of naturalness for such a 
quantity, which is determined by the logarithmic running of a 
dimensionless coupling constant 



Thank you! 



a locality / gauge-invariance duality  for massive gauge 
fields 

•  Proca theory for massive photons 

•  non-local formulation      (Dvali 2006) 

    Stueckelberg trick: 

   we add one field and we gain a gauge symmetry 
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If we choose the unitary gauge  φ=0 we get back to the original 
formulation of Proca theory (and loose the gauge sym because of 
gauge fixing). 

Instead, keep the gauge sym explicit and integrate out φ using its 
own equation of motion: 

'(x) = �m�⇤�1(@µAµ)



  we have explicit gauge invariance for the massive theory, 
   at the price non-locality 

•  a sort of duality between explicit gauge-invariance and 
explicit locality 

•  we can fix the gauge                        and the non-local term 
disappears (and we are back to Proca eqs.)   

•  with hindsight, the Stueckelberg trick was not needed 

Substituting in the eq of motion for  Aν :   
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•  sufficiently close to ΛCDM to be consistent with existing data, 
    but distinctive prediction that can be clearly tested in the near 

future 

–   phantom DE eq of state: w(0)= - 1.14 (RboxR)  (or -1.04 RT)  +  a 
full prediction for w(z) 

•  DES           Δw=0.03 
•  EUCLID    Δw=0.01 

–    linear structure formation 

•  Forecast for EUCLID, Δµ=0.01 

–   non-linear structure formation: 10% more massive halos 

–   lensing: deviations at a few % 

µ(a) = µsas ! µs = 0.09, s = 2

Barreira, Li, Hellwing, Baugh, Pascoli 2014 



LCDM and RT model almost indistinguishable 
RboxR (blue dot-dashed) lower at low multipoles 



       An aside: the Deser-Woodard non-local model 
  with phenomenological motivations similar to ours, has been 

proposed a model of the form 

      much activity on ``reconstruction" of f(R): 

•   not predictive at the background level: chosen to mimic ΛCDM 
•  by comparison, our model is 
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   after fixing the background evolution in this way, one can 
compute cosmological perturbations in the Deser-Woodard 
model, and compare with data 

Deser-Woodard model  
ruled out at the 8σ level 
 by structure formation 

Dodelson and Park 2013 
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