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A

How can we understand renormalization in a
nonperturbative manner?

A

ff Study very simple models:

H = —B—QVQ — gd(x) (1)

2m
in two dimensions.

f This problem has a scaling symmetry, hence
if we have one bound state, we have infinitely
many!

< H is not bounded from below!
e Making hamiltonian bounded from below (re-
quirement of stability) via renormalization we

break this symmetry (Berezin and Fadeev).

This is an effective theory, there is no real delta
function, if we have large momenta the potential



will look different, altough we do not know its
details and we are not interested in (the energy
scales we work with are below this cut-off).

#f renormalization will introduce a scale into the
problem. Since the original one has no scale,
there is no natural way to deduce energy values!

& the hamiltonian is symmetric but not self-
adjoint, finding a self-adjoint extension of our
Hamiltonian will make it bounded from below.



e Recall that, in momentum cut-off scheme, we
choose

(2)

oI = [ [PH

kl<A R2 12 2
where —/ﬂ corresponds to the bound state en-
egy!

f Now we may take the limit A — oo, the results
become finite!

Define Rg(z,y|E) =< z|(Hg — E)~ 1|y >, where

2
Hp = _27'L_mv2.
m vV —2mFE
Ro(z,y) = —HLQKo( = z—y|) (3)

e \We can actually compute the Greens function:

R(z,y|E) = Ro(z,y|E) (4)

Th2 1
Ro(xz,O|F
7

Ro(0,y|E).




If we know the Greens function we can find the
total scattering cross-section:

ggfﬁE)
64T X* 1
V2mE N2 (E/u?) 4+ m2

from dimensional analysis

N\

o(FE) = (5)

([c(E)] =~ L in two dimensions)

e Experimentally, we would say Geff decreases
with energy!

We can compute the bound state wave function:

2

m vV 2m
V() = p KO —/J|$| b = —,u2.
nh2 h
(6)
©.@)
Ko(z) = /O dte—Tcosht
Ko(z) ~ — In(g) z — 0
Ko(z) = et 2 oo

2x



Note that

/d2w|¢y(:c)|2 —1 (7)
Yet,
5 k2[d%k]
< u|P?/2ml|¢y > / (ﬁ;ﬁf +,2)2 =oo (8)

Alternatively, we could choose,

i — 1 2 1
g(N\) gr(M) T /|k|</\[d k]%kQ Y (9)

where M is an arbitrary mass parameter!
We could solve for p in terms of gp and M.

M is arbitrary, so if the theory has physical pre-
dictions the choice of M should not matter:
Renormalization group invariance,

o 2
oM gR(M)+/[d k](TLQ




e For the multi center case, we may use the
same approach. We may choose the coupling
constants as

1 5 1
= d°k : 11
gi(N\) /|k|</\[ ]%/# + 12 ()

We find a matrix equation,

®;i(—v?)P(a;) =0 (12)

L2y = T .
Csz( ) WTLQ{ K (\/—I/|CLZ—CL]'|) 1#3(13)



# (B. Altunkaynak and F. Erman) Abstract set-
ting:

H=H0—Z|fz' >< fil, (14)

1
Find the Greens function which is an operator
family (H — 2)~ 1 for z € C.

#f a self-adjoint extension problem, there is a for-
mula due to M. G. Krein.

1/2

e Think of |f; >=g.'"(e)|f! >,

(H—2)"t=(Hog—2)""!

+(Ho — 2) "1 Y21 > @57 (2) < fjl(Ho — =)™,
¥

(15)
we have here
g7 M @)= < fll(Ho—2)7Yfl > i=j

Piyl#) = { <Fil(Ho==2)7Hfj> i
(16)



e [ his allows us to formulate the problem inde-
pendent of the momentum regularization!

& VWe need an independent approach for curves
in R31111

e Choose |f/ > to be Gaussian bump functions

centered around some points a;, approaching
delta functions.

# A natural choice fge(:p) = Kc(a;,x).

& Incidentally, this approach works for particles
living on surfaces!

Laplace-Beltrami operator:

Ve = —\/igai(gij\/ﬁaj), (17)

Introduce the Heat kernel,

t s B2
Ki(z,y) =< zle 5lam 29|y > (18)



Solves the Heat equation (Euclidean Schrodinger
Ean).

A Ki(z,y) = Ki(y,z) :
t\ T, T 2 / —
lim Ki(x,y) = d4(x,y),
t—0T

/./\/l dgm Ktl (33, Z)KtQ(Z, y) — Kt1—|—t2(x7 y)

On a compact manifold, we have
Ki(z,y) = Y e Mfi(z)Ar(y) (19)
A

although we will use this expression in some
cases for non-compact manifolds as well. Here,

Ang A
0 )\1 S)\2§>\3§ ..... — OO

IA

For stochastically complete manifolds(for exam-
ple compact manifolds):

/M dgr Ki(z,y) = 1 (20)



This means that the total heat content [ dgy h(y)
IS preserved.

° . Given a geodesically complete man-
ifold assume that for some point x we have
00 d
/ O — o, (21)
R InV(x,r)

then the stochastic completeness holds.

e (Yau) A geodesically complete manifold with
bounded below Ricci curvature is stochastically
complete.

On a product manifold M1 x Mo,

Ki(z,y) = KD (21, y) K (20, 92)  (22)

Decay of the heat kernel, M noncompact:
Ki(xz,y) - 0 as t — oo (23)

M compact:

Ki(x,y) — V(.l/\/l) as t — oo. (24)




e Free Greens function for Re(z) < 0,

(Ho—2)"' =2 / E8eDg (25)

should be continued analytically to its largest set
in the entire complex plane.

In general, it is possible to write for a positive
operator Hp a heat kernel,

_ 1 ooz
(il (Ho =) |ag) = = [~ €7 Ki(as,ap) dt
(26)



®Si(2) =
9; (&) = [ dgdgyK o (aj, x) Ro(x, yl2) K o(y, ai)
— [ dgzdgyK, 5(a;, ) Ro(z,yl2) K, /2 (y, a;)

Let us look at the diagonal term,

_ o0 dt
g; 1(6) — / /dgiﬂdgy
6/2(a7,733)Kt(x7y)KG/Q(yaai)e

Reproducing property gives us

tz/h

_ oo dt
6 1@ = | T Kipelaiap)e¥ " (27)

Shift of integration variable shows that

67— [ T Kilaa)elt =T (28)



e Remark: In general, on a manifold, as t — 0T,
we have the asymptotic expansion,

Ki(x,x) ~ (47r2h—;>_1 i u(x,x) (271:) :
k=0 (20)

e The coefficients uy(x,z) are universal polyno-
mials in the curvature tensor and its covariant
derivatives. e.q.

ug(x,x) = %
uy(x,x) = ER
1 y .
wy(z,z) = 3602 W R+ 2R RIF + 5R?
—12AgR)
Choose,

_1 .
(eop) == [T Kiaa)de.  (30)



e As a result we find,

( 2

— W

TLfO Ki(a;, a;) {e i —eﬁ] dt i =17

®;i(z) =
2t .
| —7 [§° e Ki(aj,a;) dt i # j
(31)
4 In case of R2, this gives us
IN[¥=] i=j
P;i(z) = WTLQ (32)
? Ko(Y 2 — )

777’12

R(z,ylz) = Ro(=,ylz)
N

+ > Ro(w,a42) @' (2)Rolay, yl2) -
1,7=1



e et us go back to the multi-center case. Bound
states are simple poles of R(x,y|z):

determines bound state energies!

e All the information contained in the resolvent:
How do we find the bound states?

i For bound states:

1

Y (x)Yn(y) = Syl S dzR(z,y|z) (34)



l\.)ll—‘

Yn(z) = {/ dtte_’/tZKt(az, J)A*(Vn)A (Vn)

]

o w2 N
X / e_T Z Ai(un)Kt(ai,a:)% : (35)

 how do we know that the spectrum is bounded
from below? Resolvent!



General observation:

14
CDZ'Z'(—I/Q) ~ In—, asS v — 00,

2%
O|d;; (—1v2)| 2u [0 (V2
Zz@y = 22 /g tK¢(a;, a;)e & )dt > 0
and
|¢z'j(—V2)| ~ e Vdaia)) 55 1 5 o
0P, (—v2)]

2u [0 (vt
£y _— _ﬁ/O tdth(ai,aj)e ) < 0.

As we increase v the inequality will be satisfied
for some value! Thus Eg > —(v*)?, energy is
bounded from below!



e H? Case: Upper half-plane model, defined by
the metric

d 12
cosh W&¥) _y 4 lz=yl® (36)
2o Yo
\/' _LQ£
2 e 2mR
(4 [szQ} t)
_r22mR?1
o0 re 4 h t
R \/cosh r — cosh T’y
my/2 1 1 =z 1 1 u?
P;i(2) = Y =+, = Y| z+.\-+F
1% > F2 (2 J 4 M%) 2 4 '“%i
(37)
—%7‘ 1—3—5
m 00 e R
®ij(2) = onR2 /@ —= dr,
R \/cosh r — cosh #
d 2 .
— V2 2@ (cosh (ai aj))
ATR243 °1/2,/1-42/u3—1/2 R



e a comparison theorem.Instead of — 12 use E!

wm(E) = (A™(E), P(E)A™(E)). (38)
By the Feynman-Helmann theorem,

Owm (E) Ob(E)

OF
o0P;;(E)

oF
the integral is finite in two and three dimensions
due to the short time behaviour of the heat ker-
nel.

Owm (E)
OF

(A™(E), AT(E))

©.@)
= _/O dtth(ai,aj)eEt

o0
— _/O dt teEtZKt(ai,aj)A?I*(E)A;n(E)
1,]
o0
o —/ dt tGEt
0]

x [ dyel 3 Ky aas, ) A2 < .



ff uniqueness of the ground state: The rigorous
proof of non-degeneracy and positivity of the
ground state in standard quantum mechanics is
nontrivial (see for example Reed and Simon ).

Perron - Frobenius theorem: If M € My and
if we suppose that all Mij < 0, and M;; > 0, then
let wg be the smallest eigenvalue of M;

(1) There is an = € C¥ with all z; > 0 and
Mija?jzwoxi;

(2) wg is an algebraically (and hence geometri-
cally) simple eigenvalue of M;

f ®;; obeys this condition!

Ground state corresponds to wg(E) = 0, Egr =
—v2, the smallest eigenvalue of ®;;. Because of
the flow of the eigenvalues,

Owy(E)
——= < 0. 39

Y (39)
This means that the positive eigenvector A; cor-
responds to the ground state energy so we prove
that the eigenvector A; is strictly positive.



(e (CU) —

*2

(Y 400 [ Kanae T 4,0
,J=1

o [ %A(u ) Ki(az,z) > 0,
0 ﬁ t v

>O 1=1 >O >O

Hence, we prove that despite the singular char-
acter of the interaction, the ground state is still
non-degenerate and unique.

e Remark:A general bound for the ground state
energy for the multi-delta functions could be
proved using the upper and lower bounds given
above (Erman and Turgut 2010).



& what is the symmetry of this problem?

e Consider metric rescalings

g(.) = v 2%9(,.) (40)
Then

Vg — nyVg dg(z,a) — 7259(:1:, a) (41)

So a similar argument leads to infinite bound
state energies! To save the hamiltonian the
symmetry is broken.

#f Alternative renormalization:
1 1 o _ e—M>t
= — t
AE(M)  X(e) /e A7t
where M is the arbitrary renormalization scale.

> ;'s refer to the relative strengths of delta inter-
actions in this renormalization scheme: CDfl(—M%) =
0, hence X7 = 0. Choose X;(u;) such that
dH(—p?) = 0 can be satisfied.



1

PIUE) = S5~ T
—M?t
o0 €
o, Ko )t — =)
PiL(E) = _/o dt Ki(a;, aj; g)et” i # j.

The renormalization condition is given by

A (M, Ap(M), E; g)

M 0 (43)
dM
or equivalently,
M2+ BOR) LR, AR(M), E; ) = 0
aM R 8>\R ’I,] Y R Y 1g -
(44)
where
OAR
Ap) = M——— 45
BOR) =M (45)
we can find B8 function exactly
)\2
B(r) =—E<0. (46)
27

The heat kernel scales as,

Ki(z,y;9) =7 PK —2,(z,y:7 %9) (47)



Under metric and energy rescalings:

(M AR(M),v°E; v 2%g) = &/ (7_1M Ar(M),E; g) .

(48)
Let us see this:
1
PR(V2E; v 2g) = -3,
7V E v %g) e (M) i 2
M2t
o0 2 (&
| dt(Ki(ai, ai v 2g)e )
-~ Ar(M) ' )
— M3t
>0 2 . -2 2 N\ th?E €
- P K o0 P =)
— 3.
AR(M) ’ o
— M=~y <t
o0 e
— dt(K¢(a;, a;; et
| dt(Ki(as, a 9) )

Hence we have
—[cb (M, Ap(M),v2E; v 29)

~ ol (y7IM, Ag(M), E; 9)] = 0.



This leads to the renormalization group equa-
tion for ch(M Ap(M),~2E; v 29)
d R 2, -2
0

M—®R(M Np(M),~2E; v 29) =0
+8M( r(M), v E;,~v “g)

or

[v——ﬁ(AR)—] (M, AR(M),v*E; v 2g) =0.
OAR
(49)
If we postulate the following functional form for
the principal matrix

S M, Ag(M), v E; v~ 2g) = f(7)PL(M, Ag(vM), E; g)

(50)
we obtain an ordinary differential equation for
the function f

df(v)
d’v
This gives the solution f(v) = 1 using the initial
condition at v = 1. Therefore, we get

—0. (51)

SE(M,Ap(M),v?E; 7y 2g) = ®jH (M, A\p(vM), E; g)
(52)



which means that there is no anamolous scaling.
After integrating

.
pOg) = m2RED AR

between M = M to M = vM we can find the

flow equation for the coupling constant
AR(M)

1+ 2 AR(M)In~y

One can explicitly check the above scaling rela-

tion if the coupling constant evolves accordingly.
Recall that heat kernel scales as,

(53)

Ar(YM) = (54)

Ki(x,y,9) = OfDKV—zt(:B,y; SIN) (55)
PE(M, A\g(YM), E; g) = ! -I-ilrw
Ap(M)
oo — M2t
_/o dt (Kt(aiaai; ) . ) — X
1 -I—
AR(M) ) o
— M=t — M~y <t
— dt Ki(a;, a;; el € €
/O t( e g) 47t T 47t
e—M27_2t) .
A7t ¢
1




—M?~72¢
00 8

— dt ( K¢(a;, a;; et

/O ( t(aj, ai; g) Art )

and then using the scaling property of heat ker-
nel we get

e

1
— 3.
)\R(M) Z 2,2
— M4y~ 4t
0 .y 2 NJE € !
_4) dt(7 Kv_Qt(aZ’az’V g)e” - 4t )

~ (M) i

00 - 2p e—MQS
— [ ds (Ka(ag a5y 29)eF = S —)

B 5 5 41s

Off diagonal term can be directly checked using
just the scaling property of heat kernel.



e An interesting extension is possible Curves!
h

A / /
—%V?]w(aﬁ) — Z/I_dgs5g(:£,”y(8))/l_dgs Y(y(s"))

= Ey(x) (56)

e \We introduce a family of functions supported
ONn Ccurves,

Mi2) = [ dgsKp(@i(s) . (57)

Note that as ¢ — 0T we get a delta function
supported on the curve.

We can rewrite a regularized Schrodinger equa-
tion for this family,

(Ho — B)lw) = S ZHrOrlw)  (58)

1 1

e As done before. we find the resolvent,



(H-E) '=Hy-E)?

+ (Ho — B) Hr§) (S| (Ho — E)
LiL;
(59)
where CD,L-]- refers to the principal operator,
o % %<r€|<Ho E)~1re) (60)
" A5l (Ho — B)H )
1 1
D (E) = d3z d3y dgsdgs’
(£) )x(e) L JMxM g% % rxr 7779
o0 dt
x ePPK o (y(s), ) Ki(z, y)
0 TL
X K2 (y,7(s))
(61)
1 dt 2
So(E) = — dd’/— u2t/h _ _Ft/h
Rr(E) L Jrsr 197997 Jq h[e e

X Ki(v(s),7(s)).  (62)



satisfies the following eigenvalue equation for
the kth eigenvalue w(*)(E),

o, (B) AR = w® (B)AR (63)

A(K) peing the kth eigenvector, and there is a
summation over the repeated index 5. The deriva-
tive of the principal operator with respect to the
enerqgy FE, after which we rewrite in a convenient
form, reads

k 00
ow M (E) / dt t L e/
OF
1 | (k)
Zé: \/L_’l,/rz dsKi (7vi(s),z) A, < 0.
(64)

It is obvious that the expression above is strictly

negative. T herefore, all eigenvalues are decreas-

ing functions of energy. This tells that the ground
state energy must correspond to the zero of the

lowest eigenvalue of the principal operator.



If we look at the ground state wave function,
we see that each term in it is positive,

>0
1 1 oo dt
br@) = L3 [ B
N’i L;J/Jo h
>0 A

< [ s K, @ 7N AL . (65)

The ground state is, hence, proven to be posi-
tive, and as a result unique.



eAn extension is possible, the semi-relativistic
version (joint work with C. Dogan):

He = Ho + H!
where

Hy = /dgw  3(2)(=V2 + m?)e(x) :

N
il = -3 76 (@)e ) (a)

1=1
ab
o @) = Y fe(a)
wg = 2+ m?

¢{t)(x) is the Hermitian conjugate.



we will use the orthofermion algebra technique
developed by Rajeev. Introduce fictitous opera-
tors x; and X;.r named angels. These operators
commute with the bosonic creation and annihi-
lation operators and satisfy the relations given
below.

XiX; = 95110

Xix; =0
> xixi =M (66)
i

Mg and [1; are projection operators onto the
spaces with no angels and with one angel re-
spectively. The physical space will be the direct
product of the space of angels and the bosonic
one.

The new operator in matrix form is as follows
G — Ellg =

(Ho — E)MNg SN | [dgrKe(a;, )¢ ) (@) x; )

Zé'\le fdgyKe(aj,y)fbH)(y)X} Z]kvzl ggl(e)X};Xk

with the resolvent or the Green’s function de-
fined as

o gt
(G — EMNg)~! = ( p 55 ) (68)



The projection of this Green’'s function matrix
on to the no angel subspace can be written in
two alternative ways:

(a —bld 1)1 =(H - E)1
a1+ a 1ol 1pg~1 (69)

«

T he characteristic matrix & is given by
®=d—ba 1ol (70)

e [ he first relation for «, by the properties of
the angel operators, shows that the projection
of the resolvent of the new operator onto the no
angel subspace reproduces the Green’s function
of the original Hamiltonian.

N
1
P = 3 - LY [ dgrKeja(ai2) fo (o)
i=19; ij O
X;[Xj

N 1
X /dgyKe/Q(aj;y)fa(y)wa . (HO — E—I—wg)

f(@)a]
_ %/dga:Ke/Q(aj,x))% A\/Z_}\CLA

X:jrxj fo(y)ac

(Ho — E + wo + wy) /dgyKe/Q(ai’ y) N



#f Subordination:

—sA _ 5 [ _2/(4u)—uA? du
e Qﬁ/C) e 32 (71)




We find for the principal operator:

P = Z QXIX’L Z/ —

1=1 1
X /dgaf;/dgyKe/Q(ai,aﬁ)KG/Q(CL]‘,y)Ku(%y)

Ku—l—e(a’i7a’j)

50 5 1 — esE\/ﬂ
fy dsse [ (—B) | MY
N
1 1 o0
Do = Y [H— [T ases?A

2
></ du eSEVH g—um Ku(az',ai)}X:;in
e
cut—off

—i Z /Oods 6_52/4/oodue8E u
Vv G50 0
(i%J)
9
X e U Ku(aq;,aj)xl-LXj

1
im [ due®BVE g—um? Ku(a;,a;) ~ —Eln(e)

e—0
(72)



g; (/LZ',E)

2
S —Uum
/ du Hi/u e Ku(ai, CL,L').
a Mmass scale

1 N 00 o0
b = —Z/ dse_82/4/ due_quKU(aiaa'i)
VT =]
>< [e\/a/izs — \/_ES:| X’L X'L
i Z /OO d86_82/4 /OO due_um2
VT G50 0

(i#9)
X Ku(aj, aj)eﬁESXl-LXj



After e — 01, we have

b= (a)x] (73)

J

o™t +a o a1 (J0 > @ W (1) >p)
« [14 a7 tbio71E] (Jo > @ [W'(1) >5)
« (j0>@W'(1) >p)
N
+a 1T~ (Z cilxi > X |0 >B)

=1

N

o~ L(E) (Z cilxi > ) |0 >B) — 00 (74)

i=1
defines the energy eigenvalue E* < m.

P (E)x;]1 7Y = X[ [ Y (E)lijx;  (75)

Thus what matters is the solution to

P(E);R;j(E) = w(E)R;(E) (76)
for w(E*) = 0!



N 00 5
Yp«(x) = r1/4 > RZ(E*)/ ds e 514
i=1 0
/OOO du e_queSE*\/aKu(ai, x)
<[ SR (EDRL(EY) [ ds e/
ik 0

o0 * —1/2
></O du/u e~ um? s ﬁKu(ak,aj)} /

e on R2 we have,

1 —F
T\ =
—1 roo d
(Dz] = 2—/ i exp [—dw (m 82 + 1 — ES)]
T



Many body theory of bosons(OTT and F. Er-
man, J.Phys A 2013)

H = Hy+ Hy, (77)
where
Hy = s d7z ¢l (z) V7 pg(a) ,
g\m M
H = =5 [ diedie’ ¢} o))

x0g(x,2) pg(x) pg(a’)  (78)
Regularized version:

A(e)

H® = Hgy — 5 /M5 dgajldg:c’ldgazgdgmédgy

XQb;(CE]_)QS;(ZCQ)KE(:E]_, Y, g)KE(x27 Y, g)
x Ke(2,y; 9) Ke(x5,y; 9)pg(2]) pg(x5).

Using very similar ideas and employing again an
orthofermion algebra(proposed by Rajeev for the
flat case)



552 (a, y)Mo,
X5 () x5 (),

Xg(2)x} ()
xg(x)xg(y) =0

where

M= [ diexf@xe(@), Mo=1-n1 (79)

are the projection operators onto the 1-angel
and no-angel states, respectively.



2

O (E) =/M2d§xd§ ;(x)/ dt[47T/ 62(z,z')
—1K5<x 25 g)e  Ho=E) ]y ()
5 d2 d2:U Xg(:r;)

/ d2x1 A2z, a2z d24%
<@ (@h) @h(ah) [ dt Kuwr, i 9) Ki(wz,aig)
<Ky (2!, 2h; g) Ki(a!, ah; g) e MO~ B gy (21) dg(a0)
+4 /M2 dZzq d2zo @) (1)
< |7 dt Ku(wo,; 9) Kula' 2 9) Ki(a', 01 )
xe MHO=E) g (25) | xg(a’) . (80)

e renormalization is much more complicated, re-
quires a careful study of the singular structure!
Above operator is well-defined!

f How do we know that we define a bound state
system? The variational principle for the first
eigenvalue wo(FE) of ®(F) in the two-boson sec-



tor. On a compact manifold we choose the or-

thofermion wave function as constant, 1
V(M)

W) = >z x'(2)|0) . (81)
\/v< ) a9
Since ®(F) is normal ordered, all the parts which
contain bosonic creation and annihilation oper-
ators will vanish. The only term which survives
sets an upper bound for wg(E). Hence,

wo(E) < <W”C”°I<D(E)I\U”“7°>
00 —H 2t
< / dt [e
dg:c Koi(x,x; g)e
V(M) I Mm
Compactness of the manifold implies that it is
complete as a Riemannian manifold and it has
a Ricci tensor bounded from below which we
formally write Rc > k. AS a result of the theorem

proven by J. Cheeger and S.-T. Yau, the heat
kernel has the following lower bound

Ki(z,y;9) =2 Ki'(dg(z,y)) , (82)

where K is the heat kernel of the simply con-
nected complete two dimensional manifold of

—|E\t}.



constant sectional curvature k. In particular,
we choose Kf(dg(x,y)) as the heat kernel of
the two dimensional Hyperbolic manifold H? for

k= —1/R?, where R is the corresponding length
scale.
2 p2
R\/2 00 —s“R</8t
Koi(x, ) > V2 e_t/QRQ/ ds =5 :
(87t)3/2 0 vcoshs — 1

We can then show by a careful estimate of the
integral,

(83)
2\
2T+

s MQ

2
wo(E) < ;m(lEH 2>+ S

For large values of Mz there always exists a unique
E« < 0O such that

1 (B + B 11
|n< * 5 2):— n2 - (84)
3 L 2T | By | + &
As we will emphasize below, one has,
owq
— < 0, 85
5E (85)

thus to get the true zero Eg(n@ of wo(E), we must
further decrease E (or increase |E|) so that we
will have a well-defined expression of u2 in terms
of two-particle binding energy ng,%) < Fy <O



# Mean field approach: ®(FE)’'s lowest eigenfunc-
tion may be approximated by a product form for
large number of bosons, that is,

uo(z1, -, xp—2) = ug(x1) - uo(rp—2) (86)

with the normalization

luol® = [ d5e luo(a)? =1

95T lbo@)P =1 (87)

# Why lowest eigenvalue? Again, using Feynmann-
Helmann, after some estimates, similar to delta-
function case but harder, we prove that

Owy,(E)
o))
Hence, lowest eigenvalue of ®(FE) cuts the E-
axis first, as they flow with E and that solution
gives the ground state energy.

< 0. (88)

e If we assume that Eyr =~ f(n) >> 1, then there
iIs a simplification, the true ground state be-
comes, in terms of the eigenvector ug(yq, ...yp—2)
of ®(F),



1

[Wo) = —= dgy1 - doyn
1 X o —t|Eg .

X U0 (Yo (3): " "+ Yo (n) )P0 (Yo (2))

o B —1/2
>< (— “ol >|Egr> 1 yn)

It is important to notice that |Wg) is not in the
domain of Hgp. The solution takes a kind of
convolution of the wave functions in the domain
of Hp with the bound state wave function which
IS outside of this domain. We use




(Uo|P(Egr)|tg) =0 . (89)

e In the spirit of mean-field we assume Egr >> 1
as n >> 1, hence we may use an asymptotic
expansion. The kinetic term becomes, in the
limit |Egr| — oo

00 —tp
/ dt [e
0 87t
d2 ( )2 —t|Egr|
T |¢o )| -
—t|Egr|
_/ dt —e }
87Tt 87t
8—|”(|Eg7“|//$2)

We can rewrite the " potential part” by making
a change of variable t =t'/|E4r| as

2

(&

([, 952" luo(=)I%)"]

N g; T |uo<m>|2wo<w>\2e—t’
X {(1—| gHK[uo])'Eg"”']
+2n /O - | ;j‘ 02z u(@)do(a)| e "
x (= K[ Eol] (90)

| Egr|



where

Kluol = [ d3e [Vguo(a)|?. (91)

Moreover, we can think of terms in the square
brackets as an exponential when |Egr| — oo SO
that

o 2 L Klu
2/ E |/Md§$ Iuo(:c)|2¢0(g;)‘ e |Eg7a| [uo]
qgr
| o _at * 2 Ln Klu
2n/(') | Eqr| @dﬁwuo(x)wo(m e |E 7K lwol
qgr

set the normalized wave function of the angel
to saturate the Cauchy-Schwartz inequality:

lug(z)|? |
(S 92z [ug(z)|4)1/?

Yo(z) = (92)

Sobolev Inequality in 2-dimensions(Aubin):

(], d2als@P?)"? < 40 [ a2z if@)

+K(2,1) || d3w [Vyf(a)
get

(1 + B2)
0422

|Egr| IN(|Egr|/11?) ~ n?A%(0) (93)



where o = 1/|Eg4r|, B = 2K(2,1)/A(0)y/n and

z = y/nKlug].

Klug] = /M 2|V gup|?. (94)
Maximize with respect to z and find,
Eyr & _M2€4K2(2 1)n (95)

& Contrast this approach with the 1-dimensional
boson model. In that case the answer is known
exactly, which agrees to the leading order with
the mean-field result:

A2 5

Er~——n>. 06
gT ag"” (96)

If we use the same approach we have for two
dimensions—and do not use the fact that 1-dimension
is flat and the heat equation is known, we find

1 1

A 2\/2|Egr|

2
n
dz |ug(z)|?
i oty /10
T (97)

Egor nK[ug]y’
| g|(1+ |Egr?)



Sobolev inequality in 1-dimension gives

/d:c|u0|4

<57 4(/da: duO )1/2(/dx|uo|2)3/2
_ 1 a0
= \@K [ o], (98)

Keeping the leading order term on both sides,
we obtain

2 1/2
L N St L) (99)
AT 2V3|Eg| (1 _|_n|f§[u|o])

Let us define the variables z = nK[ug] and a =
1/|Egr|, and then find the upper bound to the
right hand side. This occurs at z = 1/a so we
get

)\2
Egr > —2n”, (100)



e Renormalization group!

We define Ar(M) in terms of the bare coupling
constant A(e)

—M?t

1 1 oo e

— —/ dt | (101)
Ap(M)  A(e) € 8t

where M is the renormalization scale. For the

d operator, we then demand,

d (M, A\r(M), B g) _

M 0 (102)
dM
or
M2 4 8O -LYSRM, AR(M), E; g) = 0
oM R oxs AR E d) =
(103)
where
O\p
Ap) = M—— 104
BOR) = M7 (104)
we can find B function exactly
)\2
B(\p) = —“£ < 0. (105)
4

This result is exactly the same as the one in flat
spaces given in (Bergmann), so our problem is
asymptotically free, too.



The scaling transformation of the metric g —
7—29, there is a unitary operator, such that the
creation and annihilation operators transform like

U(7)pg(x)UT (%)
U(y)xg()UT ()

Y b2, ()
7 x,-24(2)  (106)

UT () E(M, AR (M), E; v 29) U(y)
= oy M, A\r(M), E; g).  (107)

we get
UTw)ch(%, AR(M),v2E; v 29)U ()
= &M, \g(YM), E; g) , (108)
which means that there is no anamolous scaling.

We have the flow equation for the coupling con-
stant,

Ar(M)
1+ 2 Ar(M)Iny

)\R(’}/M) — (109)

This would allow us to check the above renor-
malization group relation exactly. It holds, non-
perturbatively!



eBEC in a nontrivial geometry. (Joint work with
L. Akant, E. Ertugrul, and F. Tapramaz)

e Let (S,g) be a d dimensional Riemannian man-
ifold with metric g and nonnegative Ricci curva-
ture

Ricg > 0. (110)

Let M be a connected open submanifold of S
with compact closure and smooth convex bound-
ary oM.

t {fo} (6 =0,1,2,...) be a complete orthonor-
mal set of real (standing wave) square-integrable
eigenfunctions of —A on M, obeying the Neu-
mann boundary conditions

—Afo-zeo'fo', ﬁVfo‘laK:O (111)

Here n is the outward looking unit normal to
OM . The eigenvalues can be ordered as

e =0<¢e1 <...— o00. (112)

The ground state is

fo= (113)

i



with eigenvalue vg = 0. Here V is the volume of
M. Connectedness of M implies the uniqueness
of the ground state and the existence of the
fundamental gap ¢; > O.

For the Neumann heat kernel on a manifold M
with a nonnegative Ricci curvature and diameter
Djp; one has the following estimates of Li and
Yau:

(47rt)d/2v < Tre®t < C(d)g(8). (114)

Here C(d) is a positive constant which depends
only on the dimension d and

d
Dy -
g(t) = (ﬁ) vt < Dy,
1 if \/t> Djy.

A direct consequence is the eigenvalue bound of
Li-Yau

C(gl) 52/d,
M

where C(d) is a positive constant which depends
only on the dimension.

€5 >

(115)



One also has the following upper bound of Col-
bois and Maerten for the eigenvalues

o\ 2/d

eo < B(d) (V) . (116)
Here B(d) is a positive constant which depends
only on the dimension.

e We will assume that the gas obeys Neumann
boundary conditions on oM.

The thermal averages in the grand-canonical en-
semble are given by

TrOe PH
= : 117
©0)=—"x (117)

Here

H= [ dugs!(@)(h = ) 6(x) + Hy  (118)

and p is the chemical potential.

e Assumption: the volume and the diameter of
our box M satisfies

Dy =0WYY as V= . (119)



Thus we have a finite limit,

Dd
A= lim =M (120)

V=00
 Remark: by the Bishop-Gromov volume com-
parison the geodesic balls in such a space satisfy:

Vol(Br(p)) < wpr” (121)

where wy IS volume of the unit ball in Euclidean
space. It is known (Perelman, Cheeger-Colding)
that if we have

Vol(Br(p)) > (1 —e(n))wnr”™ (122)

for a calculable specific constant ¢(n) then the
manifold is diffeomorphic to R™.

The many-body Hamiltonian with a hard-core
repulsive potential

' = [ dyg[6'@)hé(2)+2 6 (2)9} ()6 (2)9(2)
(123)

here ug > 0. It is convenient to include the
chemical potential in the Hamiltonian and define

H = H' — uN. (124)



e \We can prove the exactness of the c-number
substitution in the thermodynamic limit folowing
Lieb et al..

e Our starting point will be the expansion of the
field operator ¢(x) around the background

do(x) = \/Nofo = @ =V (125)

as
¢(x) = ¢o(x) + n(x), (126)
with
n(x) = Z ao fo. (127)
oc7#0

e Assuming the quantum fluctuations to be small,
we can approximate H’ as:

uOnQV’ uOnO

(a2+al?)]

(128)
Similarly, the number operator is given by

N = [ dug(@) 6'(2)e(a)
— / dpg(z) (5 + do(n'(z) + n(2)) + n' (z)n(z)]

noV + Z a:f,ag. (129)
070

+ > [(eg—I—QuOno)a as+
oc7#0

ff_



or

uonoV

+ Y [(eo + 2ugng — p)alas
oc7#0

uono

(a2 +al?)]. (130)

For a fixed ng the thermodynamlc pressure

1 CS(H
~InTre BlHepy=1N) (131)

IS maximized at the zeroth order in n by

L= noug. (132)

Here Tr’ means that the trace is taken over the
states with no quanta in the fop mode. With this
value of u we get

uOnOV
2

+ Y [(eo + ugno)alas +
oc7#0

Hepp —ulN =

’u,on()

(a5 + al)].




Therefore the thermal averages can be calcu-
lated using the effective Hamiltonian

(a2 + a}?)],

(133)
which can be diagonalized by the Bogoliubov
transformation

uono
2

Hopr = Y [(eo + uono)abas +
oc7#0

as = (sinh&,) bl + (cosh&y) by, (134)

where
)\0‘ .— €g _I_ uong — Wo COSh 260‘, (135)
upng = —wgSinh?2&,, (136)
wo = /(o + uogng)? — (ugno)?. (137)

The last equation is the curved space analog of
the Bogoliubov dispersion relation.

The resulting diagonal Hamiltonian is

Heff = Z [)\0‘ Cosh 250 + uonQ sinh 250] b:rjbg -+ EO
o#0
= > woblbs + Ep, (138)

oc7#0



where Eg is the ground state energy

1 @)
EO —_— —— Z ()\0' - CUO')
2 o=1

00 2

_ _% 3 (“OZO> 61 +0(€i2). (139)
o=1 g o

Now using the lower eigenvalue bound (115) we

see that for k> 2 and d = 3,2

> 1

> = (140)

o=1 %o
is convergent. On the other hand, we see that
the £k =1 sum is divergent for d = 3, 2.

e since ug should be taken as the bare coupling,
we have a renormalized ground state energy:

1 ©.@)
Eq = —5 > [(eo + ugno)
o=1

U’n/2
(oo)]

€o

— e + 2ugnoes — . (141)

Remark : This renomalization can be under-
stood as the renormalization of the bare cou-
pling in equation (35), if we do it order by or-
der in perturbation theory keeping renormalized



coupling and the number of excited particles in
the same order.

& Let a = (ugng)?/2

#f This expression written in terms of heat kernel
becomes:

1 _ 1 At
(—I7(at)e at _ —)Tre
at 2

1 at 1
~ = at)——~ as t— 0T (142)

We observe here, Trelt = O(+3/2), and I1(t) ~
et/\/i, there is no divergence ast — oo. However,
as t — 0T which corresponds to the ultraviolet
properties, we have I1(t) ~t/2 we get

1 lat 1
"I (at)e R Tr et ~
at 1(at) at 2 +3/2

as t — O"',
(143)
SO subtraction of 1/2 is essential. Note that
the subtraction does not lead to an infrared di-
vergence, i.e. an ultraviolet divergence in the
¢t variable, thanks to t—3/2 behavior of the heat

kernel.




Let us recall the formula;

h (t) / dz\/ 1 — z2 cosh(tx) (144)

moreover we have

1
/ dey/1 — a2 =2 (145)
0 4
As a result we rewrite the ground state energy

as
3V aV
Ey, = 20 _°¢ / dt/ dz\/1 — 2

2
x (cosh(tx)e ! — 1)VTr eAt/a

or reorganizing this as we have a new form for
the Lee-Yang formula:

Ey = uono / dt/ dw\/l—a:

“(1= e_t(l_x),+l 040 Ly o

A

>0 >0
since 0 <x<1.

f Remark: This allows us to use the upper and
lower bounds of the heat kernel for now to get
bounds on the ground state energy!



ftAssuming V — oo and using the physical values
for the energy eigenvalues, i.e. set the flat space
heat kernel corrected with a factor of B2/2m, we
find:

& 27rano[1 n 128

N 1571/2
where, ug = 47TO‘TL2/m, in terms of the scattering
cross section, the well-known result of Lee and

Yang is recovered.

(ngo®)/?],  (146)

f We will now study the depletion coefficient in
3d.

#f depletion for T'= 0:

— Z (147)
J;&O
IS expressed in terms of quasi-particle states as

ne = — Y [sinh? &, + cosh 2¢,(blbs)
4 oc#0

. Sinh 26, (6)2 + 82)]

Z [w— coth % —1]. (148)
070 o



The zero temperature limit is

1 Ao
Ne — ——

Qvfa#oLng-—(uono)z
equivalently,

Ao
\/Ag--(uo%)2
Thus,

~1].  (149)

> Aot
=14 uOno/o dt e " I1 (ugnot).

uQnQ

Ne —

oo 1
/O dt % Tr' e e=w0m0t 11 (ygngt).

e In the limit, V,Dy; — oo, D4 Uu/V — A we get
an upper bound:

ugng A
- 2 (d/2

Ne

( -+ 1)/ dt ——= td/2 _uonotfl(uOnot).
(150)
The integral is convergent for d = 3.

Similarly we have a lower bound:

uong 1 (d )
> [ — 1
neZ 5 gap' ot

e—uonotll (ugnot).
(151)

4d/2



As a result we get:

(uono)¥2avg < ne < (uono)¥?pvg,  (152)
where
1 1 I‘(d+1) 5 1 A I‘(d—l—l)
O = — —< — , = - — ,
2 Bd/2  \2 2 Cd/2 \2
(153)
and
oo (s s
= [ gme ). (154)
Thus we get, as in the flat case,
e — odPnd? ). (155)
no
The smallness of the parameter ug/zng/z 1 can

now be used as a criterion for the validity of the
Gross-Pitaevskii equation.

e Depletion of the condensate at finite temper-
atures:

ne(T) = ne(0) + ne(T), (156)



@)
1
’FLG(T) — E [(VTr/ekﬂA)e_kﬁuono
k=1
o 1
+ uono /O dt(vTr’eAVtQ'l'kQBQ)

X e 10NV t2+k25211 (ugnot)].
(157)

We now use heat kernel bounds that we alluded
before, as a result the first expression becomes
bounded by

P +01(“0"§)1/2.

Apply the subordination identity for the expo-
nent:

(158)

e~ VT —

b o0 ds b2
— T 4s e o7 159
Qﬁ/() 3/2 e e | )

and find that the second expression becomes,

C d E 1
uoNn t
220 0/0 = (124 k252)3/4

0 ds L —s(ugno)?(t2+k%6?)
X/O 83/26 4s I1 (ugnot).
f the terms of the sum are monotonically de-
creasing as the summand increases, hence the




integral gives an upper bound which we estimate
separately;

- 1 —(ugng)?sk?p?

k§1 (12 + k2p2)3/4
< C 1 1
3s1/4(ugng)1/281/2 81/2¢
After some algebra and recognizing the modified
bessel function, we rewrite,

(160)

(ugnot)> K34 (ugnot) I1 (ugnot).

(161)
Note that in the integral (ugng) completely scales
out. Hence we find that

1 1/2
.+ Co (uong) |

L (kB)3/ B

the last piece of which will go to zero as ug — 07t

and moreover the full expression will go to zero

as B8 — oo.

Cs(ugno)t/? /OO dt
I} 0

(162)

ne(T) < (4 Z




f As a by product, we can take the V — oo
limit within Bogoliubov theory rigorously, thanks
to the estimate, for Neumann heat kernel and
Lipshitz boundaries,

/2 _92(z)/t
1 t
Ki(z,z) — < C1/2 ( vt ) °

(47t)3/2 o(x) (47t)3/2’
here d(x) denotes the distance from x to the
boundary.

We may now prove that

C

b 0

|Eg79X o Egr| < m (163)
for a box of size L. It will be interesting to
improve this and generalize for convex bodies

with bounded extrinsic curvature.



# Thanks for your patience and it is great to be
herellll



