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♠

How can we understand renormalization in a

nonperturbative manner?

♠

] Study very simple models:

H = −
h̄2

2m
∇2 − gδ(x) (1)

in two dimensions.

] This problem has a scaling symmetry, hence

if we have one bound state, we have infinitely

many!

♦ H is not bounded from below!

• Making hamiltonian bounded from below (re-

quirement of stability) via renormalization we

break this symmetry (Berezin and Fadeev).

This is an effective theory, there is no real delta

function, if we have large momenta the potential



will look different, altough we do not know its

details and we are not interested in (the energy

scales we work with are below this cut-off).

] renormalization will introduce a scale into the

problem. Since the original one has no scale,

there is no natural way to deduce energy values!

♠ the hamiltonian is symmetric but not self-

adjoint, finding a self-adjoint extension of our

Hamiltonian will make it bounded from below.



• Recall that, in momentum cut-off scheme, we

choose

g−1(Λ) =
∫
|k|<Λ

[d2k]
1

h̄2

2mk
2 + µ2

(2)

where −µ2 corresponds to the bound state en-

egy!

] Now we may take the limit Λ→∞, the results

become finite!

Define R0(x, y|E) =< x|(H0 − E)−1|y >, where

H0 = − h̄2

2m∇
2.

R0(x, y) =
m

πh̄2K0(

√
−2mE

h̄
|x− y|) (3)

• We can actually compute the Greens function:

R(x, y|E) = R0(x, y|E) (4)

+ R0(x,0|E)
πh̄2

m

1

ln
√
−E
µ

R0(0, y|E).



If we know the Greens function we can find the

total scattering cross-section:

σ(E) =
64 h̄√
2mE︸ ︷︷ ︸

from dimensional analysis

×

g2
eff(E)︷ ︸︸ ︷

1

ln2 (E/µ2) + π2
(5)

([σ(E)] ≈ L in two dimensions)

• Experimentally, we would say geff decreases

with energy!

We can compute the bound state wave function:

ψν(x) = µ

√
2m

πh̄2K0

(√
2m

h̄
µ|x|

)
, E = −µ2.

(6)

K0(x) =
∫ ∞

0
dte−x cosh t

K0(x) ≈ − ln(
x

2
) x→ 0

K0(x) ≈
√
π

2x
e−x x→∞



Note that ∫
d2x|ψν(x)|2 = 1 (7)

Yet,

< ψν|P2/2m|ψν >∝
∫

k2[d2k]

( h̄
2k2

2m + ν2)2
=∞ (8)

Alternatively, we could choose,

1

g(Λ)
=

1

gR(M)
+
∫
|k|<Λ

[d2k]
1

h̄2

2mk
2 +M2

(9)

where M is an arbitrary mass parameter!

We could solve for µ in terms of gR and M .

M is arbitrary, so if the theory has physical pre-

dictions the choice of M should not matter:

Renormalization group invariance,

∂

∂M

[ 1

gR(M)
+
∫

[d2k](
1

h̄2

2mk
2 +M2

−
1

h̄2

2mk
2 + ν2

)
]

= 0

(10)



• For the multi center case, we may use the

same approach. We may choose the coupling

constants as

1

gi(Λ)
=
∫
|k|<Λ

[d2k]
1

h̄2

2mk
2 + µ2

i

. (11)

We find a matrix equation,

Φij(−ν2)ψ(aj) = 0 (12)

where

Φij(−ν2) =
m

πh̄2

 ln( νµi
) i = j

−K0(
√

2m
h̄ ν|ai − aj|) i 6= j

.(13)



] (B. Altunkaynak and F. Erman) Abstract set-

ting:

H = H0 −
∑
i

|fi >< fi|, (14)

Find the Greens function which is an operator

family (H − z)−1 for z ∈ C.

] a self-adjoint extension problem, there is a for-

mula due to M. G. Krein.

• Think of |fi >= g
1/2
i (ε)|f ′i >,

(H − z)−1 = (H0 − z)−1

+(H0 − z)−1∑
i,j

|f ′i > Φ−1
ij (z) < f ′j|(H0 − z)−1,

(15)

we have here

Φij(z) =

 g
−1
i (ε)− < f ′i|(H0 − z)−1|f ′i > i = j

− < f ′i|(H0 − z)−1|f ′j > i 6= j
.

(16)



• This allows us to formulate the problem inde-

pendent of the momentum regularization!

♠ We need an independent approach for curves

in R3!!!!

• Choose |f ′i > to be Gaussian bump functions

centered around some points ai, approaching

delta functions.

] A natural choice f
′ε
i (x) = Kε(ai, x).

♠ Incidentally, this approach works for particles

living on surfaces!

Laplace-Beltrami operator:

∇2
g = −

1
√
g
∂i(g

ij√g∂j), (17)

Introduce the Heat kernel,

Kt(x, y) =< x|e−
t
h̄( h̄

2
2m4g)|y > (18)



Solves the Heat equation (Euclidean Schrodinger

Eqn).

Kt(x, y) = Kt(y, x) ,
∂Kt(x, x′)

∂t
−∇2

gKt(x, x
′) = 0

lim
t→0+

Kt(x, y) = δg(x, y),

∫
M
dgx Kt1(x, z)Kt2(z, y) = Kt1+t2(x, y)

On a compact manifold, we have

Kt(x, y) =
∑
λ

e−λtfλ(x)fλ(y) (19)

although we will use this expression in some

cases for non-compact manifolds as well. Here,

∆gfλ = λfλ
0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ .....→∞

For stochastically complete manifolds(for exam-

ple compact manifolds):∫
M
dgx Kt(x, y) = 1 (20)



This means that the total heat content
∫
dgy h(y)

is preserved.

•Theorem: Given a geodesically complete man-

ifold assume that for some point x we have∫ ∞
R

rdr

lnV (x, r)
=∞, (21)

then the stochastic completeness holds.

• (Yau) A geodesically complete manifold with

bounded below Ricci curvature is stochastically

complete.

On a product manifold M1 ×M2,

Kt(x, y) = K
(1)
t (x1, y1)K(2)

t (x2, y2) (22)

Decay of the heat kernel, M noncompact:

Kt(x, y)→ 0 as t→∞ (23)

M compact:

Kt(x, y)→
1

V (M)
as t→∞. (24)



• Free Greens function for Re(z) < 0,

(H0 − z)−1 =
1

h̄

∫ ∞
0

e−
t
h̄( h̄

2
2m4g−z)dt, (25)

should be continued analytically to its largest set

in the entire complex plane.

In general, it is possible to write for a positive

operator H0 a heat kernel,

〈ai| (H0 − z)−1 |aj〉 =
1

h̄

∫ ∞
0

e
zt
h̄Kt(ai, aj) dt ,

(26)



Φε
ij(z) = g
−1
i (ε)−

∫
dgxdgyKε/2(ai, x)R0(x, y|z)Kε/2(y, ai)

−
∫
dgxdgyKε/2(ai, x)R0(x, y|z)Kε/2(y, aj)

.

Let us look at the diagonal term,

g−1
i (ε) −

∫ ∞
0

dt

h̄

∫
dgxdgy

Kε/2(ai, x)Kt(x, y)Kε/2(y, ai)e
tz/h̄.

Reproducing property gives us

g−1
i (ε)−

∫ ∞
0

dt

h̄
Kt+ε(ai, ai)e

tz/h̄ (27)

Shift of integration variable shows that

g−1
i (ε)−

∫ ∞
ε

dt

h̄
Kt(ai, ai)e

(t−ε)z/h̄ (28)



• Remark: In general, on a manifold, as t→ 0+,

we have the asymptotic expansion,

Kt(x, x) ∼
(

4π
h̄t

2m

)−1 ∞∑
k=0

uk(x, x)
(
h̄t

2m

)k
,

(29)

• The coefficients uk(x, x) are universal polyno-

mials in the curvature tensor and its covariant

derivatives. e.g.

u0(x, x) = 1

u1(x, x) =
1

6
R

u2(x, x) =
1

360
(2RijklR

ijkl + 2RjkR
jk + 5R2

−12∆gR)

Choose,

g−1
i (ε, µi) =

1

h̄

∫ ∞
ε

e
−µ2

i
t

h̄ Kt(ai, ai) dt . (30)



• As a result we find,

Φij(z) =


1
h̄

∫∞
0 Kt(ai, ai)

e−µ2
i
t

h̄ − e
zt
h̄

 dt i = j

−1
h̄

∫∞
0 e

zt
h̄Kt(ai, aj) dt i 6= j

(31)

] In case of R2, this gives us

Φij(z) =


m
πh̄2 ln[

√
−z
µi

] i = j

− m
πh̄2K0(

√
−2mz
h̄ |x− y|) i 6= j

(32)

R(x, y|z) = R0(x, y|z)

+
N∑

i,j=1

R0(x, ai|z) Φ−1
ij (z)R0(aj, y|z) .



• Let us go back to the multi-center case. Bound

states are simple poles of R(x, y|z):

Φij(E)Aj = 0 (33)

determines bound state energies!

• All the information contained in the resolvent:

How do we find the bound states?

] For bound states:

ψ∗n(x)ψn(y) =
1

2πi

∮
Γn3λn

dzR(x, y|z) (34)



ψn(x) =

∫ ∞
0

dtte−ν
2
nt
∑
i,j

Kt(ai, aj)A
∗
i (νn)Aj(νn)

−1
2

×
∫ ∞

0
e−

tν2
n
h̄

N∑
i=1

Ai(νn)Kt(ai, x)
dt

h̄
, (35)

] how do we know that the spectrum is bounded

from below? Resolvent!



General observation:

Φii(−ν2) ≈ ln
ν

µi
, as ν →∞,

∂|Φii(−ν2)|
∂ν

=
2ν

h̄2

∫ ∞
0

tKt(ai, ai)e
−(ν

2t
h̄ )dt > 0

and

|Φij(−ν2)| ≈ e−νd(ai,aj) as ν →∞
∂|Φij(−ν2)|

∂ν
= −

2ν

h̄2

∫ ∞
0

tdtKt(ai, aj)e
−(ν

2t
h̄ ) < 0.

As we increase ν the inequality will be satisfied

for some value! Thus Egr > −(ν∗)2, energy is

bounded from below!



• H2 Case: Upper half-plane model, defined by

the metric

cosh
d(x, y)

R
= 1 +

|x− y|2

2 x2 y2
, (36)

Kt(x, y) =

√
2

(4π
[

h̄
2mR2

]
t)3/2

e
− h̄

2mR2
t
4

R2

∫ ∞
d(x,y)
R

re−
r2
4

2mR2
h̄

1
t√

cosh r − cosh d(x,y)
R

dr

Φii(z) =
m
√

2

2πh̄2

ψ
1

2
+

√√√√1

4
−

z

µ2
R

− ψ
1

2
+

√√√√1

4
+
µ2
i

µ2
R


(37)

Φij(z) = −
m

2πh̄2

∫ ∞
dij
R

e
−1

2r
√

1− 4z
µ2
R√

cosh r − cosh
dij
R

dr,

=

√
2

4πR2µ2
R

Q
1/2

√
1−4z/µ2

R−1/2
(cosh

d(ai, aj)

R
)



• a comparison theorem.Instead of −ν2 use E!

ωm(E) = (Am(E),Φ(E)Am(E)). (38)

By the Feynman-Helmann theorem,

∂ωm(E)

∂E
= (Am(E),

∂Φ(E)

∂ν
Am(E))

∂Φij(E)

∂E
= −

∫ ∞
0

dttKt(ai, aj)e
Et

the integral is finite in two and three dimensions

due to the short time behaviour of the heat ker-

nel.

∂ωm(E)

∂E
= −

∫ ∞
0

dt teEt
∑
i,j

Kt(ai, aj)A
m∗
i (E)Amj (E)

= −
∫ ∞

0
dt teEt

×
∫
dgx|

∑
i

Kt/2(ai, x)Ami (E)|2 < 0.



] uniqueness of the ground state: The rigorous
proof of non-degeneracy and positivity of the
ground state in standard quantum mechanics is
nontrivial (see for example Reed and Simon ).

Perron - Frobenius theorem: If M ∈ MN and
if we suppose that all Mij < 0, and Mii > 0, then
let ω0 be the smallest eigenvalue of M ;

(1) There is an x ∈ CN with all xi > 0 and
Mijxj = ω0xi;

(2) ω0 is an algebraically (and hence geometri-
cally) simple eigenvalue of M ;

] Φij obeys this condition!

Ground state corresponds to ω0(E) = 0, Egr =
−ν2
∗ , the smallest eigenvalue of Φij. Because of

the flow of the eigenvalues,

∂ωk(E)

∂E
< 0. (39)

This means that the positive eigenvector Ai cor-
responds to the ground state energy so we prove
that the eigenvector Ai is strictly positive.



ψν∗(x) =

[
N∑

i,j=1

Ai(ν
∗)
∫ ∞

0

tdt

h̄2Kt(ai, aj)e
−tν
∗2
h̄ Aj(ν

∗)]−
1
2

×
∫ ∞

0

dt

h̄
e−

tν∗2
h̄︸ ︷︷ ︸

>0

N∑
i=1

Ai(ν
∗)︸ ︷︷ ︸

>0

Kt(ai, x)︸ ︷︷ ︸
>0

> 0 ,

Hence, we prove that despite the singular char-

acter of the interaction, the ground state is still

non-degenerate and unique.

• Remark:A general bound for the ground state

energy for the multi-delta functions could be

proved using the upper and lower bounds given

above (Erman and Turgut 2010).



♠ what is the symmetry of this problem?

• Consider metric rescalings

g(., .) 7→ γ−2g(., .) (40)

Then

∇2
g 7→ γ2∇g δg(x, a) 7→ γ2δg(x, a) (41)

So a similar argument leads to infinite bound

state energies! To save the hamiltonian the

symmetry is broken.

] Alternative renormalization:

1

λR(M)
=

1

λi(ε)
−
∫ ∞
ε

dt
e−M

2t

4πt
+ Σi , (42)

where M is the arbitrary renormalization scale.

Σi’s refer to the relative strengths of delta inter-

actions in this renormalization scheme: ΦR
11(−µ2

1) =

0, hence Σ1 = 0. Choose Σi(µi) such that

ΦR
ii(−µ

2
i ) = 0 can be satisfied.



ΦR
ii(E) =

1

λR(M)
−Σi

−
∫ ∞

0
dt(Kt(ai, ai; g)etE −

e−M
2t

4πt
)

ΦR
ij(E) = −

∫ ∞
0

dt Kt(ai, aj; g)etE i 6= j.

The renormalization condition is given by

M
dΦR

ij(M,λR(M), E; g)

dM
= 0 (43)

or equivalently,

(M
∂

∂M
+ β(λR)

∂

∂λR
)ΦR

ij(M,λR(M), E; g) = 0

(44)

where

β(λR) = M
∂λR
∂M

(45)

we can find β function exactly

β(λR) = −
λ2
R

2π
< 0 . (46)

The heat kernel scales as,

Kt(x, y; g) = γ−DKγ−2t(x, y; γ−2g) (47)



Under metric and energy rescalings:

ΦR
ij(M,λR(M), γ2E; γ−2g) = ΦR

ij(γ
−1M,λR(M), E; g) .

(48)

Let us see this:

ΦR
ii(γ

2E; γ−2g) =
1

λR(M)
−Σi

−
∫ ∞

0
dt(Kt(ai, ai; γ

−2g)etγ
2E −

e−M
2t

4πt
)

=
1

λR(M)
−Σi

−
∫ ∞

0
dt(γ2Kγ2t(ai, ai; γ

−2γ2g)etγ
2E −

e−M
2t

4πt
)

=
1

λR(M)
−Σi

−
∫ ∞

0
dt(Kt(ai, ai; g)etE −

e−M
2γ−2t

4πt
)

Hence we have

γ
d

dγ
[ΦR

ij(M,λR(M), γ2E; γ−2g)

−ΦR
ij(γ

−1M,λR(M), E; g)] = 0.



This leads to the renormalization group equa-

tion for ΦR
ij(M,λR(M), γ2E; γ−2g)

γ
d

dγ
ΦR
ij(M,λR(M), γ2E; γ−2g)

+M
∂

∂M
ΦR
ij(M,λR(M), γ2E; γ−2g) = 0

or

[γ
d

dγ
−β(λR)

∂

∂λR
]ΦR

ij(M,λR(M), γ2E; γ−2g) = 0 .

(49)

If we postulate the following functional form for

the principal matrix

ΦR
ij(M,λR(M), γ2E; γ−2g) = f(γ)ΦR

ij(M,λR(γM), E; g)

(50)

we obtain an ordinary differential equation for

the function f

γ
df(γ)

dγ
= 0 . (51)

This gives the solution f(γ) = 1 using the initial

condition at γ = 1. Therefore, we get

ΦR
ij(M,λR(M), γ2E; γ−2g) = ΦR

ij(M,λR(γM), E; g)

(52)



which means that there is no anamolous scaling.
After integrating

β(λR) = M̄
∂λR(M̄)

∂M̄
= −

λ2
R(M̄)

2π
(53)

between M̄ = M to M̄ = γM we can find the
flow equation for the coupling constant

λR(γM) =
λR(M)

1 + 1
2πλR(M) ln γ

(54)

One can explicitly check the above scaling rela-
tion if the coupling constant evolves accordingly.
Recall that heat kernel scales as,

Kt(x, y; g) = α−DKγ−2t(x, y; γ−2g) (55)

ΦR
ii(M,λR(γM), E; g) =

1

λR(M)
+

1

2π
ln γ

−
∫ ∞

0
dt (Kt(ai, ai; g)etE −

e−M
2t

4πt
)−Σi

=
1

λR(M)
+

1

2π
ln γ

−
∫ ∞

0
dt
(
Kt(ai, ai; g)etE −

e−M
2t

4πt
+
e−M

2γ−2t

4πt

−
e−M

2γ−2t

4πt

)
−Σi

=
1

λR(M)
−Σi



−
∫ ∞

0
dt
(
Kt(ai, ai; g)etE −

e−M
2γ−2t

4πt

)
and then using the scaling property of heat ker-

nel we get

1

λR(M)
−Σi

−
∫ ∞

0
dt
(
γ−2Kγ−2t(ai, ai; γ

−2g)etE −
e−M

2γ−2t

4πt

)
=

1

λR(M)
−Σi

−
∫ ∞

0
ds

(
Ks(ai, ai; γ

−2g)esγ
2E −

e−M
2s

4πs

)
= ΦR

ii(M,λR(M), γ2E; γ−2g) .

Off diagonal term can be directly checked using

just the scaling property of heat kernel.



• An interesting extension is possible Curves!

−
h̄

2m
∇2
gψ(x)−

λ

L

∫
Γ
dgsδg(x, γ(s))

∫
Γ
dgs
′ψ(γ(s′))

= Eψ(x) (56)

• We introduce a family of functions supported

on curves,

Γεi(x) =
∫

Γi
dgsKε/2(x, γi(s)) . (57)

Note that as ε → 0+ we get a delta function

supported on the curve.

We can rewrite a regularized Schrödinger equa-

tion for this family,

(H0 − E)|ψ〉 =
∑
i

λi
Li
|Γεi〉〈Γ

ε
i|ψ〉 (58)

• As done before. we find the resolvent,



(H − E)−1 = (H0 − E)−1

+
1√
LiLj

(H0 − E)−1|Γεi〉Φ
−1
ij 〈Γ

ε
j|(H0 − E)−1

(59)

where Φij refers to the principal operator,

Φij =


1
λi
− 1
Li
〈Γεi|(H0 − E)−1|Γεi〉

− 1√
LiLj
〈Γεi|(H0 − E)−1|Γεj〉

. (60)

Φε(E) =
1

λ(ε)
−

1

L

∫
M×M

d3
gx d

3
gy
∫

Γ×Γ
dgsdgs

′

×
∫ ∞

0

dt

h̄
eEt/h̄Kε/2(γ(s), x)Kt(x, y)

×Kε/2(y, γ(s′))

(61)

ΦR(E) =
1

L

∫
Γ×Γ

dgsdgs
′
∫ ∞

0

dt

h̄
[e−µ

2t/h̄ − eEt/h̄]

×Kt(γ(s), γ(s′)). (62)



satisfies the following eigenvalue equation for

the kth eigenvalue ω(k)(E),

Φij(E)A(k)
j = ω(k)(E)A(k)

i , (63)

A(k) being the kth eigenvector, and there is a

summation over the repeated index j. The deriva-

tive of the principal operator with respect to the

energy E, after which we rewrite in a convenient

form, reads

∂ω(k)(E)

∂E
= −

∫
M
d3
gx
∫ ∞

0

dt

h̄

t

h̄
eEt/h̄

×

∣∣∣∣∣∣
∑
i

1
√
Li

∫
Γi
dsKt (γi(s), x)A

(k)
i

∣∣∣∣∣∣
2

< 0.

(64)

It is obvious that the expression above is strictly

negative. Therefore, all eigenvalues are decreas-

ing functions of energy. This tells that the ground

state energy must correspond to the zero of the

lowest eigenvalue of the principal operator.



If we look at the ground state wave function,

we see that each term in it is positive,

ψgr(x) =
1

N
∑
i

1
√
Li

∫ ∞
0

dt

h̄

>0︷ ︸︸ ︷
eEgrt/h̄

×
∫

Γi
ds

>0︷ ︸︸ ︷
Kt (x, γi(s))

>0︷ ︸︸ ︷
A

(0)
i . (65)

The ground state is, hence, proven to be posi-

tive, and as a result unique.



•An extension is possible, the semi-relativistic

version (joint work with C. Dogan):

Hε = H0 +HI
ε

where

H0 =
∫
dgx : φ(x)(−∇2

g +m2)φ(x) :

HI
ε = −

N∑
i=1

g2
i φ

(−)(ai)φ
(+)(ai)

φ(−)(x) =
∑
σ

a
†
σ√
ωσ
fσ(x)

ω2
σ = σ2 +m2

φ(+)(x) is the Hermitian conjugate.



we will use the orthofermion algebra technique
developed by Rajeev. Introduce fictitous opera-
tors χi and χ

†
i named angels. These operators

commute with the bosonic creation and annihi-
lation operators and satisfy the relations given
below.

χiχ
†
j = δijΠ0

χiχj = 0∑
i

χ
†
iχi = Π1 (66)

Π0 and Πi are projection operators onto the
spaces with no angels and with one angel re-
spectively. The physical space will be the direct
product of the space of angels and the bosonic
one.

The new operator in matrix form is as follows

G− EΠ0 = (H0 − E)Π0
∑N
i=1

∫
dgxKε(ai, x)φ(−)(x)χi∑N

j=1
∫
dgyKε(aj, y)φ(+)(y)χ†j

∑N
k=1

1
g2
k(ε)

χ
†
kχk

 ≡ ( a b†

b d

)
(67)

with the resolvent or the Green’s function de-
fined as

(G− EΠ0)−1 ≡
(
α β†

β δ

)
(68)



The projection of this Green’s function matrix
on to the no angel subspace can be written in
two alternative ways:

α = (a− b†d−1b)−1 = (H − E)−1

= a−1 + a−1b†Φ−1ba−1 (69)

The characteristic matrix Φ is given by

Φ ≡ d− ba−1b† (70)

• The first relation for α, by the properties of
the angel operators, shows that the projection
of the resolvent of the new operator onto the no
angel subspace reproduces the Green’s function
of the original Hamiltonian.

Φε =
N∑
i=1

1

g2
i

χ
†
iχi −

∑
i,j

∑
σ

∫
dgxKε/2(ai, x)fσ(x)

×
∫
dgyKε/2(aj, y)f∗σ(y)

1

ωσ
·

χ
†
iχj

(H0 − E + ωσ)

−
∑
i,j

∫
dgxKε/2(aj, x)

∑
λ,σ

f∗λ(x)a†λ√
ωλ

×
χ
†
iχj

(H0 − E + ωσ + ωλ)

∫
dgyKε/2(ai, y)

fσ(y)aσ√
ωσ



] Subordination:

e−sA =
s

2
√
π

∫ ∞
0

e−s
2/(4u)−uA2 du

u3/2
(71)



We find for the principal operator:

Φε =
N∑
i=1

1

g2
i

χ
†
iχi −

1

2
√
π

∑
i,j

∫ ∞
0

du
√
u
e−um

2

×
∫
dgx

∫
dgyKε/2(ai, x)Kε/2(aj, y)Ku(x, y)︸ ︷︷ ︸

Ku+ε(ai,aj)

×
∫ ∞

0
ds se−s

2/4

1− esE
√
u

(−E)

χ†iχj

Φε =
N∑
i=1

[ 1

g2
i

−
1
√
π

∫ ∞
0

dse−s
2/4

×
∫ ∞
ε

du︸ ︷︷ ︸
cut−off

esE
√
u e−um

2
Ku(ai, ai)

]
χ
†
iχi

−
1
√
π

∑
i,j

(i 6=j)

∫ ∞
0

ds e−s
2/4

∫ ∞
0

duesE
√
u

×e−um
2
Ku(ai, aj)χ

†
iχj

lim
ε→0

∫ ∞
ε

duesE
√
u e−um

2
Ku(ai, ai) ≈ −

1

4π
ln(ε)

(72)



1

g2
i (µi, ε)

=
1
√
π

∫ ∞
0

ds e−s
2/4

×
∫ ∞
ε

du esµi
√
u︸ ︷︷ ︸

a mass scale

e−um
2
Ku(ai, ai).

Φ =
1
√
π

N∑
i=1

∫ ∞
0

dse−s
2/4

∫ ∞
0

due−um
2
Ku(ai, ai)

×
[
e
√
uµis − e

√
uEs

]
χ
†
iχi

−
1
√
π

∑
i,j

(i6=j)

∫ ∞
0

dse−s
2/4

∫ ∞
0

due−um
2

×Ku(ai, aj)e
√
uEsχ

†
iχj



After ε 7→ 0+, we have

b =
∑
j

φ(+)(aj)χ
†
j (73)

[a−1 + a−1b†Φ−1ba−1]
(
|0 >

⊗
|Ψ(1) >B

)
∝ [1 + a−1b†Φ−1b]

(
|0 >

⊗
|Ψ′(1) >B

)
∝
(
|0 >

⊗
|Ψ′(1) >B

)
+a−1b†Φ−1

 N∑
i=1

ci|χi >
⊗
|0 >B



Φ−1(E∗)

 N∑
i=1

ci|χi >
⊗
|0 >B

 7→ ∞ (74)

defines the energy eigenvalue E∗ < m.

[χ†iΦij(E)χj]
−1 = χ

†
i [Φ
−1(E)]ijχj (75)

Thus what matters is the solution to

Φ(E)ijRj(E) = ω(E)Ri(E) (76)

for ω(E∗) = 0!



ψE∗(x) = π−1/4
N∑
i=1

Ri(E
∗)
∫ ∞

0
ds e−s

2/4

∫ ∞
0

du e−um
2
esE

∗√uKu(ai, x)

×
[∑
j,k

R∗j(E
∗)Rk(E∗)

∫ ∞
0

ds e−s
2/4

×
∫ ∞

0
du
√
u e−um

2
esE

∗√uKu(ak, aj)
]−1/2

• on R2 we have,

Φii =
1

2π
ln

(
m− E
m− µi

)

Φij =
−1

2π

∫ ∞
0

ds√
s2 + 1

exp
[
−dij

(
m
√
s2 + 1− Es

)]



Many body theory of bosons(OTT and F. Er-

man, J.Phys A 2013)

H = H0 +HI , (77)

where

H0 = −
h̄2

2m

∫
M

d2
gx φ

†
g(x)∇2

g φg(x) ,

HI = −
λ

2

∫
M2

d2
gxd2

gx
′ φ†g(x

′)φ†g(x)

×δ2
g (x, x′)φg(x)φg(x

′) (78)

Regularized version:

Hε = H0 −
λ(ε)

2

∫
M5

d2
gx1d2

gx
′
1d2

gx2d2
gx
′
2d2

gy

×φ†g(x1)φ†g(x2)Kε(x1, y; g)Kε(x2, y; g)

×Kε(x′1, y; g)Kε(x
′
2, y; g)φg(x

′
1)φg(x

′
2).

Using very similar ideas and employing again an

orthofermion algebra(proposed by Rajeev for the

flat case)



χg(x)χ†g(y) = δ
(2)
g (x, y)Π0,

χg(x)χg(y) = 0 = χ†g(x)χ†g(y),

where

Π1 =
∫
M

d2
gxχ

†
g(x)χg(x), Π0 = 1−Π1 (79)

are the projection operators onto the 1-angel

and no-angel states, respectively.



Φ(E) =
∫
M2

d2
gxd2

gx
′χ†g(x)

∫ ∞
0

dt[
e−tµ

2

4πt/m
δ2
g (x, x′)

−K2
t (x, x′; g)e−t(H0−E)]χg(x

′)

−
1

2

∫
M2

d2
gxd2

gx
′ χ†g(x)

×
[ ∫
M4

d2
gx1 d2

gx2 d2
gx
′
1 d2

gx
′
2

×φ†g(x′1)φ†g(x
′
2)
∫ ∞

0
dt Kt(x1, x; g)Kt(x2, x; g)

×Kt(x′, x′1; g)Kt(x
′, x′2; g) e−t(H0−E)φg(x1)φg(x2)

+4
∫
M2

d2
gx1 d2

gx2 φ
†
g(x1)

×
∫ ∞

0
dt Kt(x2, x; g)Kt(x

′, x; g)Kt(x
′, x1; g)

×e−t(H0−E)φg(x2)
]
χg(x

′) . (80)

• renormalization is much more complicated, re-

quires a careful study of the singular structure!

Above operator is well-defined!

] How do we know that we define a bound state

system? The variational principle for the first

eigenvalue ω0(E) of Φ(E) in the two-boson sec-



tor. On a compact manifold we choose the or-

thofermion wave function as constant, 1√
V (M)

.

|Ψvar〉 = |0〉 ⊗
1√

V (M)

∫
M

d3
gx χ

†(x)|0〉 . (81)

Since Φ(E) is normal ordered, all the parts which

contain bosonic creation and annihilation oper-

ators will vanish. The only term which survives

sets an upper bound for ω0(E). Hence,

ω0(E) ≤ 〈Ψvar|Φ(E)|Ψvar〉

≤
∫ ∞

0
dt
[e−µ2t

8πt

−
1

V (M)

∫
M

d2
gx K2t(x, x; g)e−|E|t

]
.

Compactness of the manifold implies that it is

complete as a Riemannian manifold and it has

a Ricci tensor bounded from below which we

formally write Rc ≥ κ. As a result of the theorem

proven by J. Cheeger and S.-T. Yau, the heat

kernel has the following lower bound

Kt(x, y; g) ≥ Kκ
t (dg(x, y)) , (82)

where Kκ
t is the heat kernel of the simply con-

nected complete two dimensional manifold of



constant sectional curvature κ. In particular,
we choose Kκ

t (dg(x, y)) as the heat kernel of
the two dimensional Hyperbolic manifold H2 for
κ = −1/R2, where R is the corresponding length
scale.

K2t(x, x) ≥
R
√

2

(8πt)3/2
e−t/2R2

∫ ∞
0

ds
s e−s

2R2/8t
√

cosh s− 1
.

We can then show by a careful estimate of the
integral,

ω0(E) ≤
1

8π
ln

|E|+ R2

2

µ2

+
1

2π

1

|E|+ R2

2

.(83)

For large values of µ2 there always exists a unique
E∗ < 0 such that

1

8π
ln

|E∗|+ R2

2

µ2

 = −
1

2π

1

|E∗|+ R2

2

. (84)

As we will emphasize below, one has,

∂ω0

∂E
< 0 , (85)

thus to get the true zero E
(2)
gr of ω0(E), we must

further decrease E (or increase |E|) so that we
will have a well-defined expression of µ2 in terms
of two-particle binding energy E

(2)
gr < E∗ < 0



] Mean field approach: Φ(E)’s lowest eigenfunc-

tion may be approximated by a product form for

large number of bosons, that is,

û0(x1, · · · , xn−2) = u0(x1) · · ·u0(xn−2) (86)

with the normalization

||u0||2 =
∫
M

d2
gx |u0(x)|2 = 1∫

M
d2
gx |ψ0(x)|2 = 1 . (87)

] Why lowest eigenvalue? Again, using Feynmann-

Helmann, after some estimates, similar to delta-

function case but harder, we prove that

∂ωk(E)

∂E
< 0. (88)

Hence, lowest eigenvalue of Φ(E) cuts the E-

axis first, as they flow with E and that solution

gives the ground state energy.

• If we assume that Egr ≈ f(n) >> 1, then there

is a simplification, the true ground state be-

comes, in terms of the eigenvector û0(y1, ...yn−2)

of Φ(E),



|Ψ0〉 ≈
1√
2

∫
Mn

d2
gy1 · · ·d2

gyn

1

n!

∑
σ∈[1···n]

∫ ∞
0

dt e−t|Egr|Kt(yσ(1), yσ(2); g)

× û0(yσ(3), · · · , yσ(n))ψ0(yσ(2))

×
(
−
∂ω0(E)

∂E
|Egr

)−1/2

|y1 · · · yn〉 .

It is important to notice that |Ψ0〉 is not in the

domain of H0. The solution takes a kind of

convolution of the wave functions in the domain

of H0 with the bound state wave function which

is outside of this domain. We use



〈û0|Φ(Egr)|û0〉 = 0 . (89)

• In the spirit of mean-field we assume Egr >> 1

as n >> 1, hence we may use an asymptotic

expansion. The kinetic term becomes, in the

limit |Egr| → ∞∫ ∞
0

dt
[e−tµ2

8πt

−
∫
M

d2
gx |ψ0(x)|2

e−t|Egr|

8πt
(
∫
M

d2
gx
′ |u0(x′)|2)n

]
=
∫ ∞

0
dt
[e−tµ2

8πt
−
e−t|Egr|

8πt

]
=

1

8π
ln(|Egr|/µ2),

We can rewrite the ”potential part” by making

a change of variable t = t′/|Egr| as

n2

2

∫ ∞
0

dt′

|Egr|

∣∣∣ ∫
M

d2
gx |u0(x)|2ψ0(x)

∣∣∣2e−t′
×

[
(1−

t′

|Egr|
K[u0])|Egr|

] n
|Egr|

+2n
∫ ∞

0

dt′

|Egr|

∣∣∣ ∫
M

d2
gx u

∗
0(x)ψ0(x)

∣∣∣2e−t′
×

[
(1−

t′

|Egr|
K[u0])|Egr|

] n
|Egr| . (90)



where

K[u0] =
∫
M

d2
gx |∇gu0(x)|2 . (91)

Moreover, we can think of terms in the square
brackets as an exponential when |Egr| → ∞ so
that

n2

2

∫ ∞
0

dt′

|Egr|

∣∣∣ ∫
M

d2
gx |u0(x)|2ψ0(x)

∣∣∣2e−t′− t′n
|Egr|K[u0]

+ 2n
∫ ∞

0

dt′

|Egr|

∣∣∣ ∫
M

d2
gxu
∗
0(x)ψ0(x)

∣∣∣2e−t′− t′n
|Egr|K[u0]

.

set the normalized wave function of the angel
to saturate the Cauchy-Schwartz inequality:

ψ0(x) =
|u0(x)|2

(
∫
M d2

gx |u0(x)|4)1/2
. (92)

Sobolev Inequality in 2-dimensions(Aubin):( ∫
M

d2
gx|f(x)|2

)1/2
≤ A(0)

∫
M

d2
gx |f(x)|

+K(2,1)
∫
M

d2
gx |∇gf(x)|

get

|Egr| ln(|Egr|/µ2) ≈ n2A2(0)
(1 + βz)2

1 + αz2
(93)



where α = 1/|Egr|, β = 2K(2,1)/A(0)
√
n and

z =
√
nK[u0].

K[u0] =
∫
M
d2
gx|∇gu0|2. (94)

Maximize with respect to z and find,

Egr ≈ −µ2e4K2(2,1)n (95)

♠ Contrast this approach with the 1-dimensional
boson model. In that case the answer is known
exactly, which agrees to the leading order with
the mean-field result:

Egr ≈ −
λ2

48
n3. (96)

If we use the same approach we have for two
dimensions–and do not use the fact that 1-dimension
is flat and the heat equation is known, we find

1

λ
−

1

2
√

2|Egr|
=

n2

2|Egr|
1

(1 + nK[u0]
|Egr| )

∫
dx |u0(x)|4

+
2n

|Egr|
1

(1 + nK[u0]
|Egr| )

. (97)



Sobolev inequality in 1-dimension gives∫
dx|u0|4

≤ S−2
1,4(

∫
dx

∣∣∣∣du0

dx

∣∣∣∣2 )1/2(
∫

dx|u0|2)3/2

=
1√
3
K1/2[u0], (98)

Keeping the leading order term on both sides,

we obtain

1

λ
≤

n2

2
√

3|Egr|
K1/2[u0]

(1 + nK[u0]
|Egr| )

. (99)

Let us define the variables z = nK[u0] and α =

1/|Egr|, and then find the upper bound to the

right hand side. This occurs at z = 1/α so we

get

Egr ≥ −
λ2

48
n3 , (100)



• Renormalization group!

We define λR(M) in terms of the bare coupling
constant λ(ε)

1

λR(M)
=

1

λ(ε)
−
∫ ∞
ε

dt
e−M

2t

8πt
, (101)

where M is the renormalization scale. For the
Φ operator, we then demand,

M
dΦR(M,λR(M), E; g)

dM
= 0 (102)

or

(M
∂

∂M
+ β(λR)

∂

∂λR
)ΦR(M,λR(M), E; g) = 0

(103)
where

β(λR) = M
∂λR
∂M

(104)

we can find β function exactly

β(λR) = −
λ2
R

4π
< 0. (105)

This result is exactly the same as the one in flat
spaces given in (Bergmann), so our problem is
asymptotically free, too.



The scaling transformation of the metric g 7→
γ−2g, there is a unitary operator, such that the
creation and annihilation operators transform like

U(γ)φg(x)U†(γ) = γ−1φγ−2g(x)

U(γ)χg(x)U†(γ) = γ−1χγ−2g(x) (106)

U†(γ)ΦR(M,λR(M), γ2E; γ−2g) U(γ)
= ΦR(γ−1M,λR(M), E; g). (107)

we get

U†(γ)ΦR(M,λR(M), γ2E; γ−2g)U(γ)
= ΦR(M,λR(γM), E; g) , (108)

which means that there is no anamolous scaling.

We have the flow equation for the coupling con-
stant,

λR(γM) =
λR(M)

1 + 1
4πλR(M) ln γ

. (109)

This would allow us to check the above renor-
malization group relation exactly. It holds, non-
perturbatively!



•BEC in a nontrivial geometry. (Joint work with

L. Akant, E. Ertugrul, and F. Tapramaz)

• Let (S, g) be a d dimensional Riemannian man-

ifold with metric g and nonnegative Ricci curva-

ture

RicS ≥ 0. (110)

Let M be a connected open submanifold of S

with compact closure and smooth convex bound-

ary ∂M .

] {fσ} (σ = 0,1,2, . . .) be a complete orthonor-

mal set of real (standing wave) square-integrable

eigenfunctions of −∆ on M , obeying the Neu-

mann boundary conditions

−∆ fσ = εσfσ, n̂ · ∇fσ|∂K = 0. (111)

Here n̂ is the outward looking unit normal to

∂M . The eigenvalues can be ordered as

ε0 = 0 < ε1 ≤ . . .→∞. (112)

The ground state is

f0 =
1√
V
, (113)



with eigenvalue ν0 = 0. Here V is the volume of

M . Connectedness of M implies the uniqueness

of the ground state and the existence of the

fundamental gap ε1 > 0.

For the Neumann heat kernel on a manifold M

with a nonnegative Ricci curvature and diameter

DM one has the following estimates of Li and

Yau:

1

(4πt)d/2
V ≤ Tr e∆t ≤ C̃(d)g(t). (114)

Here C̃(d) is a positive constant which depends

only on the dimension d and

g(t) =


(
DM√
t

)d
if
√
t ≤ DM ,

1 if
√
t ≥ DM .

A direct consequence is the eigenvalue bound of

Li-Yau

εσ ≥
C(d)

D2
M

σ2/d, (115)

where C(d) is a positive constant which depends

only on the dimension.



One also has the following upper bound of Col-

bois and Maerten for the eigenvalues

εσ ≤ B(d)
(
σ

V

)2/d
. (116)

Here B(d) is a positive constant which depends

only on the dimension.

• We will assume that the gas obeys Neumann

boundary conditions on ∂M .

The thermal averages in the grand-canonical en-

semble are given by

〈O〉 =
TrO e−β H

Tr e−β H
. (117)

Here

H =
∫
dµgφ

†(x)(h− µ)φ(x) +HI (118)

and µ is the chemical potential.

• Assumption: the volume and the diameter of

our box M satisfies

DM = O(V 1/d) as V →∞. (119)



Thus we have a finite limit,

A = lim
V→∞

Dd
M

V
. (120)

] Remark: by the Bishop-Gromov volume com-

parison the geodesic balls in such a space satisfy:

Vol(Br(p)) ≤ ωnrn (121)

where ωn is volume of the unit ball in Euclidean

space. It is known (Perelman, Cheeger-Colding)

that if we have

Vol(Br(p)) ≥ (1− ε(n))ωnr
n (122)

for a calculable specific constant ε(n) then the

manifold is diffeomorphic to Rn.

The many-body Hamiltonian with a hard-core

repulsive potential

H ′ =
∫
dµg [φ†(x)hφ(x)+

u0

2
φ†(x)φ†(x)φ(x)φ(x)]

(123)

here u0 > 0. It is convenient to include the

chemical potential in the Hamiltonian and define

H = H ′ − µN. (124)



• We can prove the exactness of the c-number
substitution in the thermodynamic limit folowing
Lieb et al..

• Our starting point will be the expansion of the
field operator φ(x) around the background

φ0(x) =
√
N0f0 =

√
N0

V
=
√
n0 (125)

as

φ(x) = φ0(x) + η(x), (126)

with

η(x) =
∑
σ 6=0

aσfσ. (127)

• Assuming the quantum fluctuations to be small,
we can approximate H ′ as:

H ′eff =
u0n

2
0V

2
+
∑
σ 6=0

[(εσ+2u0n0)a†σaσ+
u0n0

2
(a2
σ+a†2

σ )].

(128)
Similarly, the number operator is given by

N =
∫
dµg(x)φ†(x)φ(x)

=
∫
dµg(x) [φ2

0 + φ0(η†(x) + η(x)) + η†(x)η(x)]

= n0V +
∑
σ 6=0

a†σaσ. (129)



or

H ′eff − µN =
u0n

2
0V

2
− µn0V

+
∑
σ 6=0

[(εσ + 2u0n0 − µ)a†σaσ

+
u0n0

2
(a2
σ + a†2

σ )]. (130)

For a fixed n0 the thermodynamic pressure

1

V
ln Tr′e

−β(H ′eff−µN)
(131)

is maximized at the zeroth order in η by

µ = n0u0. (132)

Here Tr′ means that the trace is taken over the

states with no quanta in the f0 mode. With this

value of µ we get

H ′eff − µN = −
u0n

2
0V

2

+
∑
σ 6=0

[(εσ + u0n0)a†σaσ +
u0n0

2
(a2
σ + a†2

σ )].



Therefore the thermal averages can be calcu-

lated using the effective Hamiltonian

Heff =
∑
σ 6=0

[(εσ + u0n0)a†σaσ +
u0n0

2
(a2
σ + a†2

σ )],

(133)

which can be diagonalized by the Bogoliubov

transformation

aσ = (sinh ξσ) b†σ + (cosh ξσ) bσ, (134)

where

λσ := εσ + u0n0 = ωσ cosh 2ξσ, (135)

u0n0 = −ωσ sinh 2ξσ, (136)

ωσ :=
√

(εσ + u0n0)2 − (u0n0)2. (137)

The last equation is the curved space analog of

the Bogoliubov dispersion relation.

The resulting diagonal Hamiltonian is

Heff =
∑
σ 6=0

[λσ cosh 2ξσ + u0n0 sinh 2ξσ] b†σbσ + E0

=
∑
σ 6=0

ωσb
†
σbσ + E0, (138)



where E0 is the ground state energy

E0 = −
1

2

∞∑
σ=1

(λσ − ωσ)

= −
1

2

∞∑
σ=1

(u0n0)2

2

1

εσ
+O(

1

ε2σ
). (139)

Now using the lower eigenvalue bound (115) we
see that for k ≥ 2 and d = 3,2

∞∑
σ=1

1

εkσ
(140)

is convergent. On the other hand, we see that
the k = 1 sum is divergent for d = 3,2.

• since u0 should be taken as the bare coupling,
we have a renormalized ground state energy:

E0 = −
1

2

∞∑
σ=1

[(εσ + u0n0)

−
√
ε2σ + 2u0n0εσ −

(u0n0)2

2εσ
]. (141)

Remark : This renomalization can be under-
stood as the renormalization of the bare cou-
pling in equation (35), if we do it order by or-
der in perturbation theory keeping renormalized



coupling and the number of excited particles in

the same order.

♠ Let a = (u0n0)2/2

] This expression written in terms of heat kernel

becomes:

(
1

at
I1(at)e−at −

1

2
)Tr e∆t

∼
1

at

at

2
(at)

1

t3/2
as t→ 0+.(142)

We observe here, Tr e∆t = O(t3/2), and I1(t) ∼
et/
√
t, there is no divergence as t→∞. However,

as t → 0+ which corresponds to the ultraviolet

properties, we have I1(t) ∼ t/2 we get

1

at
I1(at)e−atTr e∆t ∼

1

at

at

2

1

t3/2
as t→ 0+,

(143)

so subtraction of 1/2 is essential. Note that

the subtraction does not lead to an infrared di-

vergence, i.e. an ultraviolet divergence in the

t variable, thanks to t−3/2 behavior of the heat

kernel.



Let us recall the formula;

I1(t)

t
=

2

π

∫ 1

0
dx

√
1− x2 cosh(tx) (144)

moreover we have∫ 1

0
dx

√
1− x2 =

π

4
(145)

As a result we rewrite the ground state energy

as

Eg =
u0n

2
0V

2
−
aV

π

∫ ∞
0

dt
∫ 1

0
dx

√
1− x2

×( cosh(tx)e−t − 1)
1

V
Tr e∆t/a

or reorganizing this as we have a new form for

the Lee-Yang formula:

Eg =
u0n

2
0V

2
+
aV

2π

∫ ∞
0

dt
∫ 1

0
dx

√
1− x2

×( 1− e−t(1−x)︸ ︷︷ ︸
>0

+ 1− e−t(1+x)︸ ︷︷ ︸
>0

)
1

V
Tr e∆t/a

since 0 ≤ x ≤ 1.

] Remark: This allows us to use the upper and

lower bounds of the heat kernel for now to get

bounds on the ground state energy!



]Assuming V →∞ and using the physical values
for the energy eigenvalues, i.e. set the flat space
heat kernel corrected with a factor of h̄2/2m, we
find:

Eg

N
=

2πσn0

m
[1 +

128

15π1/2
(n0σ

3)1/2], (146)

where, u0 = 4πσh̄2/m, in terms of the scattering
cross section, the well-known result of Lee and
Yang is recovered.

] We will now study the depletion coefficient in
3d.

] depletion for T = 0:

ne =
1

V

∑
σ 6=0

〈a†σaσ〉 (147)

is expressed in terms of quasi-particle states as

ne =
1

V

∑
σ 6=0

[sinh2 ξσ + cosh 2ξσ〈b†σbσ〉

+
1

2
sinh 2ξσ〈b†2

σ + b2σ〉]

=
1

2V

∑
σ 6=0

[
λσ

ωσ
coth

βωσ

2
− 1]. (148)



The zero temperature limit is

ne =
1

2V

∑
σ 6=0

[
λσ√

λ2
σ − (u0n0)2

− 1]. (149)

equivalently,

λσ√
λ2
σ − (u0n0)2

= 1 + u0n0

∫ ∞
0

dt e−λσtI1(u0n0t).

Thus,

ne =
u0n0

2

∫ ∞
0

dt
1

V
Tr′e−ht e−u0n0t I1(u0n0t).

• In the limit, V,DM → ∞, Dd
M/V → A we get

an upper bound:

ne ≤
u0n0

2

A

Cd/2
Γ
(
d

2
+ 1

) ∫ ∞
0

dt
1

td/2
e−u0n0tI1(u0n0t).

(150)

The integral is convergent for d = 3.

Similarly we have a lower bound:

ne ≥
u0n0

2

1

Bd/2
Γ
(
d

2
+ 1

) ∫ ∞
0

dt
1

td/2
e−u0n0tI1(u0n0t).

(151)



As a result we get:

(u0n0)d/2αγd ≤ ne ≤ (u0n0)d/2βγd, (152)

where

α =
1

2

1

Bd/2
Γ
(
d

2
+ 1

)
, β =

1

2

A

Cd/2
Γ
(
d

2
+ 1

)
,

(153)

and

γd =
∫ ∞

0

ds

sd/2
e−s I1(s). (154)

Thus we get, as in the flat case,

ne

n0
= O(u

d/2
0 n

d/2−1
0 ). (155)

The smallness of the parameter u
d/2
0 n

d/2−1
0 can

now be used as a criterion for the validity of the

Gross-Pitaevskii equation.

• Depletion of the condensate at finite temper-

atures:

ne(T ) = ne(0) + ñe(T ), (156)



ñe(T ) =
∞∑
k=1

[(
1

V
Tr′ekβ∆)e−kβu0n0

+ u0n0

∫ ∞
0

dt (
1

V
Tr′e∆

√
t2+k2β2

)

×e−u0n0

√
t2+k2β2

I1(u0n0t)].

(157)

We now use heat kernel bounds that we alluded

before, as a result the first expression becomes

bounded by

C1

∞∑
k=1

1

(kβ)3/2
+ C1

(u0n0)1/2

β
. (158)

Apply the subordination identity for the expo-

nent:

e−b
√
x =

b

2
√
π

∫ ∞
0

ds

s3/2
e−

b2
4s e−sx, (159)

and find that the second expression becomes,

C2u0n0

∫ ∞
0

dt
∞∑
k=1

1

(t2 + k2β2)3/4

×
∫ ∞

0

ds

s3/2
e−

1
4s−s(u0n0)2(t2+k2β2) I1(u0n0t).

] the terms of the sum are monotonically de-

creasing as the summand increases, hence the



integral gives an upper bound which we estimate

separately;

∞∑
k=1

1

(t2 + k2β2)3/4
e−(u0n0)2sk2β2

< C3
1

s1/4(u0n0)1/2β1/2

1

β1/2t
. (160)

After some algebra and recognizing the modified

bessel function, we rewrite,

C5(u0n0)1/2

β

∫ ∞
0

dt

t
(u0n0t)

3/4K3/4(u0n0t) I1(u0n0t).

(161)

Note that in the integral (u0n0) completely scales

out. Hence we find that

ñe(T ) < C1

∞∑
k=1

1

(kβ)3/2
+ C6

(u0n0)1/2

β
, (162)

the last piece of which will go to zero as u0 → 0+

and moreover the full expression will go to zero

as β →∞.



] As a by product, we can take the V → ∞
limit within Bogoliubov theory rigorously, thanks

to the estimate, for Neumann heat kernel and

Lipshitz boundaries,∣∣∣∣∣Kt(x, x)−
1

(4πt)3/2

∣∣∣∣∣ ≤ C1/2

( √
t

∂(x)

)1/2
e−∂

2(x)/t

(4πt)3/2
,

here ∂(x) denotes the distance from x to the

boundary.

We may now prove that

|Ebox
gr − E0

gr| <
C

L1/4
(163)

for a box of size L. It will be interesting to

improve this and generalize for convex bodies

with bounded extrinsic curvature.



] Thanks for your patience and it is great to be

here!!!!


