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Introduction

@ The cosmological initial fluctuations most probably stem from quantum fluctuations
generated during inflation.

What are the strongest indications that this is so?

@ CMB parameter estimation favors a composition of the Universe with close to 70%
quantum vacuum energy.

How sure are we?
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Introduction

Accidental discovery of the CMB by Arno Penzias and Robert Wilson 50 years ago
(Nobel Prize 1978)
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Introduction

Gamov has predicted the existence of the CMB already in 1948.

Here with Alpher and Hermann.
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The cosmic microwave background (CMB)
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@ The Universe is expanding. In the past it was much denser and hotter.

@ At T > 3000K hydrogen was ionised and the 'cosmic plasma’ of protons, electrons
and photons was strongly coupled by Thomson scattering and in thermal
equilibrium.

@ At T ~ 3000K protons and electrons combined to neutral hydrogen.
The photons became free and their distribution evolved simply by redshifting of the
photon energies to a thermal distribution with To = 2.7255 + 0.0006K today.

@ This corresponds to about 400 photons per cm® with typical energy of
E, = kTo ~ 2.3 x 107*eV ~ 150GHz (A ~ 0.2cm). This is the observed CMB.

@ At T > 9300K~ 0.8eV the Universe was 'radiation dominated’, i.e. its energy
density was dominated by the contribution from these photons (and 3 species of
relativistic neutrinos which made up about 35%). Hence initial fluctuations in the
energy density of the Universe should be imprinted as fluctuations in the CMB
temperature.
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The frequency spectrum of the CMB
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CMB fluctuations and structure formation
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CMB fluctuations and structure formation

@ We assume that structures in the Universe (galaxies, clusters, filaments and voids)
formed by gravitational instability from small initial fluctuations.

@ Due to the expansion of the Universe the fluctuations grow only very slowly and
statistical initial fluctuations are far too small. Initial fluctuations of the order of
107° are needed.

@ Ainflationary phase can generate them. As we have seen in the previous talk,
during inflation quantum fluctuations of the metric and of the scalar field are
amplified by their coupling to the time dependent background metric.

@ These fluctuations get 'squeezed’ and after inflation they become classical
fluctuations of the energy density and of the metric. They are also present as
coherent fluctuations in the CMB.

o Immediately after its discovery, astrophysicists began to search for fluctuations in
the CMB. The found them in 1992 with the COBE satellite (Nobel Prize 2006).
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Fluctuations in the CMB
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The cosmic microwave background (CMB)
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The physics of CMB fluctuations

The CMB fluctuations into a direction n in the instant decoupling approximation and in
linear perturbation theory are given by

AT 1 %o
7(n): ZDg+n~V+\|J+d> (n,7) + 0-(V + ®)ds.
S

(RD 1991)

@ In the radiation dominated Universe small density fluctuations perform acoustic
oscillations at constant amplitude, Dy ~ —%\Uo cos(k [ csdr).
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The physics of CMB fluctuations

The CMB fluctuations into a direction n in the instant decoupling approximation and in
linear perturbation theory are given by

AT(n)— 1Dg+n V+\Il+d>](n ) / 0, (V + )ds.

(RD 1991)

@ In the radiation dominated Universe small density fluctuations perform acoustic
oscillations at constant amplitude, Dy ~ —%\Uo cos(k [ csdr).

@ The wavelength corresponding to the first acoustic peak is A\, = 2« /k. with
k. 4" csdr = 7. In a matter-radiation Universe this gives (wx = Qx?)
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The physics of CMB fluctuations

The CMB fluctuations into a direction n in the instant decoupling approximation and in
linear perturbation theory are given by

AT(n)— 1Dg+n V+\Il+d>](n ) / 0, (V + )ds.

(RD 1991)

@ In the radiation dominated Universe small density fluctuations perform acoustic
oscillations at constant amplitude, Dy ~ —%\Uo cos(k [ csdr).

@ The wavelength corresponding to the first acoustic peak is A\, = 2« /k. with
k. 4" csdr = 7. In a matter-radiation Universe this gives (wx = Qx?)

(1+24) (A+2z)rwr
Ho 4 VI1+zo+ 144/ +z Jrer 4y 3wp
(1+2)\ = . r=

n V3t % itz (1+\/%) don

@ On small scales fluctuations are damped by free streaming (Silk damping).
@ The fluctuations are lensed by foreground structures.
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The distance to the CMB

The angle onto which the scale k. is projected depends on the angular diameter
distance to the CMB, 0. = \../(2da(z.) This is the best measured quantity of the CMB,
with a relative error of about 3 x 10~*

I« _2
0. = - — = (1.04077 £ 0.00032) x 107 ~.
daz) ¢ )

(Planck Collaboration: Planck results 2015 XIlI [arXiv:1502.01589])
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distance to the CMB, 0. = \../(2da(z.) This is the best measured quantity of the CMB,
with a relative error of about 3 x 10~*

I« _2
0. = - — = (1.04077 £ 0.00032) x 107 ~.
daz) ¢ )

(Planck Collaboration: Planck results 2015 XIlI [arXiv:1502.01589])
The distance to the CMB is given by

— i /Z* 1 az
Ho Jo  \/wm(1+ 2)3 + wk(1 + 2)2 + wx(2)

(1+ z.)da(z) = /Oz* H(z) 'dz
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Coherence

Why do we believe that these fluctuations come from a period of inflation?
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Coherence

Why do we believe that these fluctuations come from a period of inflation?

@ They have a nearly scale invariant,
slightly red spectrum.
ns = 0.9653 + 0.0048
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Coherence

Why do we believe that these fluctuations come from a period of inflation?
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Coherence & causality

@ |t is extremely difficult to generate such coherent fluctuations in a causal way
without invoking a period of inflation.
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Coherence & causality

@ |t is extremely difficult to generate such coherent fluctuations in a causal way
without invoking a period of inflation.

@ Fluctuations on very large scales, ¢ < 150 were super-Hubble at the time of
decoupling and therefore, without invoking a period of inflation, there cannot be
any structure in the CMB on these scales.

@ In a'causally generated’ CMB spectrum the first acoustic peak in the T-E
correlation spectrum must be absent. (Spergel & Zaldarriaga 1997)
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Polarisation

The Thompson scattering cross
section depends on polarisation.
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Polarisation

The Thompson scattering cross
section depends on polarisation.
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Polarisation

The Thompson scattering cross
section depends on polarisation.

It is suppressed by a factor cos?y
for polarisation in the scattering
plane.

= A quadrupole anisotropy in the
intensity (temperature) introduces
linear polarisation.

Ruth Durrer (Université de Genéve, DPT & CAP)
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Polarisation
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Acausality

We have considered a model with relativistic exploding shells leading to a scale
invariant spectrum of fluctuations (Scodeller, Kunz & RD 2009)
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Polarisarion B and gravitational waves

Only tensor (and vector) perturbations can generate B polarisation
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Limits on initial fluctuations
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The tensor to scalar ratio is r < 0.1.
If r # 0 we might be able to test the slow roll consistency relation, r = —8n;.
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The Planck 'base’ model

@ Curvature K =0
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The Planck 'base’ model

@ Curvature K =0
@ No tensor perturbations, r =0

@ Three species of thermal neutrinos, N. = 3.046 with temperature
T, =4/11)"°T,

@ 2 neutrino species are massless and the third has mz; = 0.06eV such that
Z,- m; = 0.06eV.

@ Helium fraction Y, = 4nu/np is calculated from N and wp.

Parameters
@ Amplitude uf curvature perturbations, As

@ Scalar spectral index, ns
@ Baryon density w, = Q,h?
@ Cold dark matter density we = Qch?

@ Present value of Hubble parameter Hy, = 100hkm/sec/Mpc
Q/\ =1- (wb +wc)/h2

@ optical depth to reionization
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Cosmological parameters from Planck 2015 arXiv:1502.01589
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The lensing potential (Planck 2015 arXiv:1502.01591)
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Lensing breaks degeneracies
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Dark energy models

A simple Taylor expansion, Fo
PDE
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Conclusions

R. Durrer, "The Cosmic Microwave Background” ( Cambridge University Press 2008)
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Conclusions

R. Durrer, "The Cosmic Microwave Background” ( Cambridge University Press 2008)

@ A flat A dominated Universe with a nearly scale invariant spectrum of scalar initial
fluctuations from inflation is a good fit to the CMB data.

In this picture

@ The biggest structures in the Universe have been generated by small quantum
fluctuations.

@ If we ever find B polarisation it probably originates from quantum fluctuations of
the gravitational field.

@ The energy density in the Universe is at present and for all future times dominated
by vacuum energy.
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