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Three choice for Quantum Gravity (QG)

One may suppose the presence of some new fundamental
physics at the Planck scale.

Possible approaches to QG can be classified into three distin ct
groups. Namely, we can

• Quantize both gravity and matter fields. This is the most
fundamental approach and the main subject of this talk.

•• Quantize only matter fields on classical curved
background (semiclassical approach).
QFT and Curved space-time are well-established notions,
which passed many experimental/observational tests.

••• Quantize something else. E.g., in case of (super)string
theory both matter and gravity are induced.
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•• The renormalizable QFT in curved space requires
introducing a generalized action of gravity (external field ).
The theory is renormalizable, but only with certain
higher derivatives terms in the vacuum action.

Introduction: Buchbinder, Odintsov & I.Sh. Effective Action in
Quantum Gravity (IOPP - 1992);
I.Sh., Class.Quant.Grav. Topical review (2008), arXiv:0801.0216.

Relevant diagrams for the vacuum sector

Possible covariant counterterms have the structure of

Svac = SEH + SHD
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The renormalizable QFT in curved space requires introducin g a
generalized form of the gravity (external field), “vacuum ac tion”.

Svac = SEH + SHD

where SEH = − 1
16πG

∫

d4x
√−g {R + 2Λ } .

is the Einstein-Hilbert action with the cosmological const ant.

SHD includes higher derivative terms. The most useful form is

SHD =

∫

d4x
√−g

{

a1C2 + a2E + a3�R + a4R2} ,

where C2(4) = R2
µναβ − 2R2

αβ + 1/3 R2

is the square of the Weyl tensor in d = 4,

E = RµναβRµναβ − 4 RαβRαβ + R2

is integrand of the Gauss-Bonnet term (topological term in d=4 ).
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General considerations about higher derivatives:

• One should definitely quantize both matter and gravity, for
otherwise the QG theory would not be complete.

• The diagrams with matter internal lines in a complete QG
are exactly the same as in a semiclassical theory.

• This means one can not quantize metric without higher
derivative terms in a consistent way, since these terms
are produced already in the semiclassical theory.

• Indeed, most of the achievements in curved-space QFT are
related to the renormalization of higher derivative vacuum terms,
including Hawking radiation, Starobinsky inflation and oth ers.
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Quantum Gravity (QG)

starts from some covariant action of gravity,

S =

∫

d4x
√−g L(gµν) .

L(gµν ) can be of GR, L(gµν ) = −κ−2(R + 2Λ) or some other.

Gauge transformation x ′µ = xµ + ξµ. The metric transforms as

δgµν = g′

µν(x)− gµν(x) = −∇µξν −∇νξµ .

In the case of gµν(x) = ηµν + κhµν(x) ,

δhµν = −1
κ
(∂µξν +∂νξµ)−hµα∂νξ

α−hνα∂µξ
α− ξα∂αhµν = Rµν , αξ

α .

The gauge invariance of the action means

δS
δhµν

· Rµν , α · ξα = 0 .

One can prove that the same is true for the Effective Action.
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Let us use power counting.
As the first example consider quantum GR.

S = − 1
16πG

∫

d4x
√−g (R + 2Λ) .

For the sake of simplicity we consider only vertices with
maximal Kν . Then we have rl = Kν = 2 and, combining

D + d =
∑

lint

(4 − rl) − 4n + 4 +
∑

ν

Kν

with
lint = p + n − 1

we arrive at the estimate ( D = 0 means log. divergences)

D + d = 2 + 2p .

This output means that quantum GR is not renormalizable and
we can look for some other starting point.
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Perhaps, the most natural is HDQG.
Reason: we need HD’s anyway for quantum matter field.

Already known action: Sgravity = SEH + SHD

where SEH = − 1
16πG

∫

d4x
√−g {R + 2Λ }

and SHD include higher derivative terms

SHD = −
∫

d4x
√−g

{

1
2λ

C2 +
ω

3λ
R2

}

,

C2(4) = R2
µναβ − 2R2

αβ + 1/3 R2 ,

K. Stelle, Phys. Rev. D (1977).

Propagators and vertices in HDQG are not like in quantum GR.
Propagators of metric and ghosts behave like O(k−4) and we
have K4, K2, K0 vertices. The superficial degree of divergence

D + d = 4 − 2K2 − 2K0.

This theory is definitely renormalizable.
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Including even more derivatives was initially thought to mo ve
massive pole to even higher mass scale,

S = SEH +

∫

d4x
√−g

{

a1R2
µναβ + a2R2

µν + a3R2 + ...

+ c1Rµναβ�
kRµναβ + c2Rµν�

k Rµν + c3R�
k R + b1,2,..R

k+1
...

}

.

Simple analysis shows this theory is superrenormalizable, but
the massive ghosts are still here. For the case of real poles:

G2(k) =
A0

k2 +
A1

k2 + m2
1

+
A2

k2 + m2
2

+ · · ·+ AN+1

k2 + m2
N+1

For any sequence 0 < m2
1 < m2

2 < m2
3 < · · · < m2

N+1, the signs of
the corresponding terms alternate, Aj · Aj+1 < 0.

Asorey, Lopez & I. Sh., hep-th/9610006; IJMPhA (1997).

D + d = 4 + k(1 − p) .

In what follows we deal with the four derivative theories onl y.
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The price to pay for renormalizability: For linearized gravity

gµν = ηµν + hµν ,

there are assive ghosts

Gspin−2(k) ∼ 1
m2

(

1
k2 − 1

m2 + k2

)

, m ∝ MP .

The tree-level spectrum includes massless graviton and mas sive
spin-2 “ghost” with negative kinetic energy and huge mass.

Tree-level spectrum includes massless graviton and massiv e
spin-2 “ghost” with negative kinetic energy and huge mass.

• In classical systems higher derivatives generate explodin g
instabilities at the non-linear level (M.V. Ostrogradsky, 1850).

• Interaction between ghost and gravitons may violate energy
conservation in the massless sector (M.J.G. Veltman, 1963).

• Without ghost one violates unitarity of the S -matrix.
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There were several attempts to solve the HD ghost problem.

Stelle, Salam & Strathdee, Tomboulis,
Antonidis & Tomboulis, Johnston, Hawking, ....

In what follows we suggest a new approach which is much
simpler and is probably working.

Assumption we made to declassify higher derivative gravity :

• One can draw conclusions using linearized gravity
approximation. S-matrix of gravitons is the main object.

•• Ostrogradsky instabilities or Veltman scattering are
relevant independent on the energy scale, in all cases they
produce run-away solutions and “Universe explodes”.

There is a simple way to check all these assumptions at once.

Take higher derivative theory of gravity and verify the stab ility
with respect to the linear perturbations on some, physicall y
interesting, dynamical background.

Ilya Shapiro, Massive ghosts and stability in higher deriva tive gravity. MITP, Mainz – June 26, 2015



Stability & Gravitational Waves

As far as classical action and quantum, anomaly-induced ter m,
both have higher derivatives, an important question is whet her
the stability of classical solutions in cosmology holds or n ot.

Consider small perturbation

gµν = g0
µν + hµν , hµν = δ gµν ,

where g0
µν = {1, −δij a2(t)}, µ = 0, 1, 2, 3 and i = 1, 2, 3.

hµν(t ,~r) =

∫

d3k
(2π)3 ei~r ·~k hµν(t , ~k) .

Using the conditions ∂i hij = 0 and hii = 0 , together with
the synchronous coordinate condition hµ0 = 0, we arrive at the
equation for the tensor mode

Fabris, Pelinson and I.Sh., (2001);
Fabris, Pelinson, Salles and I.Sh., (2011).
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1
3

....

h + 2H
...

h +
(

H2 +
MP

2

32πa1

)

ḧ +
2
3

(1
4
∇4h
a4 − ∇2ḧ

a2 − H
∇2ḣ
a2

)

−
[

HḢ + Ḧ + 6H3 − 3MP
2 H

32πa1

] .

h −
[ MP

2

32πa1
− 4

3

(

Ḣ + 2H2)
] ∇2h

a2

−
[(

24ḢH2 + 12Ḣ2 + 16HḦ +
8
3

...

H
)

− MP
2

16πa1

(

2Ḣ + 3H2)
]

h = 0 .

It looks much simpler than Eqs. with semiclassical correcti ons:

Fabris, Pelinson and I.Sh., NPB, hep-th/0009197;
Fabris, Pelinson, Salles and I.Sh., JCAP, arXiv:1112.5202;
F. Salles and I.Sh., PRD, arXiv:1401.4583.

Net Result: The stability does not actually depend on quantum
corrections. It is completely defined by the sign of the class ical
coefficient a1 of the Weyl-squared term. The sign of this term
defines whether graviton or ghost has positive kinetic energ y!
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We can distinguish the three cases. First two are:

• The coefficient of the Weyl-squared term is a1 < 0 Then

Gspin−2(k) ∼ 1
m2

(

1
k2 − 1

m2 + k2

)

, m ∝ MP ,

there are no growing modes up to the Planck scale, ~k2 ≈ M2
P .

For the dS background this is in a perfect agreement with
Starobinsky, Let.Astr.Journ. (in Russian) (1983);
Hawking, Hertog and Real, PRD (2001).

• The coefficient a1 > 0 or a1 > 0 , G → −G.

Gspin−2(k) ∼ 1
m2

(

− 1
k2 +

1
m2 + k2

)

, m ∝ MP .

and there are rapidly growing modes at any scale.

Ilya Shapiro, Massive ghosts and stability in higher deriva tive gravity. MITP, Mainz – June 26, 2015



1000 2000 3000 4000 5000 6000
t

- 6000

- 4000

- 2000

2000

4000

6000

h H t L

k = 0.44

k = 0.42

k = 0.40

k = 0.30

k = 0.20

50 100 150 200 250
t

- 150000

- 100000

- 50000

50000

100000

150000

h H t L
k = 0.50

a1 < 0 Radiation-dominated Universe. There are no
growing modes until the frequency k achieves the
value ≈ 0.5 in Planck units. Starting from this value, we
observe instability as an effect of massive ghost.

The anomaly-induced quantum correction is O(R3
....). Until the

energy is not of the Planck order of magnitude, these
corrections can not compete with classical O(R2

....) - terms.

Massive ghosts are present only in the vacuum state. We just d o
not observe them “alive” until the energy scale MP
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CONSIDER THE THIRD CASE.

Giulia Cusin, Filipe de O. Salles, I.Sh., arXive:1503.08059.

• The coefficient of the Weyl-squared term is a1 > 0. Then

Gspin−2(k) ∼ − 1
m2

(

1
k2 − m2 − 1

k2

)

, m ∝ MP ,

a graviton plus a ghost-tachyon with the Planck-scale mass.

In this case there are growing modes with all frequencies!

Why is that? What is the notion of tachyon?

Consider general second-order action of a free field h(x) = h(t ,~r )

S(h) =
s1

2

∫

d4x
{

ḣ2 − (∇h)2 − s2m2h2} .

s1,2 = ±1 for different types of fields.
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Perform the Fourier transform in the space variables,

h(t ,~r ) =
1

(2π)3

∫

d3k ei~k ·~r h(t , ~k ) ,

and consider the dynamics of each h ≡ h(t , ~k ) separately.

S~k (h) =
s1

2

∫

dt
{

ḣ2 − k2h − s2m2h2} =
s1

2

∫

dt
{

ḣ2 − m2
k h2} ,

where
k2 = ~k · ~k , m2

k = s2m2 + k2 .

• Normal healthy field corresponds to s1 = s2 = 1.

Kinetic energy is positive. The minimal action can be achiev ed
for a static configuration. The equation of motion is of the
oscillatory type,

ḧ + m2
k h = 0 .

with the usual periodic solution.
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• Massive ghost has s1 = −1, s2 = 1.

It is not a tachyon, because m2
k = s2m2 + k2 ≥ 0.

Kinetic energy is negative, but one can postulate zero varia tion
of the action and arrive at the normal oscillatory equation.

A particle with negative kinetic energy has the tendency to
achieve a maximal speed, but a free particle can not accelera te,
for this would violate energy conservation.

A free ghost does not produce any harm to the environment,
being isolated from it.

However, if we admit an interaction with healthy fields, the
tendency of a ghost is to accelerate and transmit a positive
energy difference to these healthy fields.
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Tachyon has s2 = −1. For relatively small momenta m2
k < 0 in

Eq. the equation of motion is

ḧ − ω2h = 0 , ω2 =
∣

∣m2
k

∣

∣ , m2
k = s2m2 + k2 .

If the particle moves faster than light the solution is of the
oscillatory kind, indicating that such a motion is “natural ” for
this kind of particle (Sudarshan et al, 1962 - ...).

But for a smaller velocities the equation is anti-oscillato ry, with
exponential-type unstable solutions,

h = h1eωt + h2e−ωt . (∗)

For a field interacting with an external gravitational backg round,
it is possible that the same wave changes from being a normal
healthy state to a tachyonic one.

In principle, this situation may produce very strong effect s at
both quantum and classical levels.

D. Vanzella et all, 2010-2015.
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In the fourth-order gravity the equations for the metric
perturbations in flat space are

¨̈h + 2k2ḧ + k4h − 1
32πGa1

(

ḧ + k2h
)

= 0 .

It proves useful to introduce a new notation

1
32πGa1

= − s2 m2 , where s2 = −sign a1 and m2 > 0 .

Then
( ∂2

∂t2 + k2
)( ∂2

∂t2 + m2
k

)

h = 0 , where m2
k = k2 + s2m2 .

The general formula for the frequencies is

ω1,2 ≈ ± i
(

k2)1/2
and ω3,4 ≈ ±

(

− m2
k

)

−1/2
,

For a negative a1 there are only imaginary frequencies and
hence oscillator-type solutions (ghost case).

On the contrary, for a positive a1 the roots ω3,4 are real, since
in this case −m2

k > 0 for sufficiently small k2 (tachyonic ghost) .
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The main difference between ghosts and tachyons is that a
ghost may cause instabilities only when it couples to some
healthy fields or to the background, while with tachyons
there is no such a protection.

The situation with ghosts can be kept under control in the
effective field theory framework, and in general when the
intensity of the background fields is low and involved
energies insufficient to generate a ghost from vacuum.

On the contrary, no low-energy protection can be expected in
the theory with tachyons, because they produce instabiliti es
independently on their interaction to normal particles or o n
the intensity of the background.

In other words, for tachyons the exponential behavior occur s
at all frequencies, and not only above the Planck threshold.
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The bad news for those expecting an eternal ΛCDM universe
is that massive ghost will eventually become tachyon.

At the end of the ΛCDM universe the energy of the background is
very law. At low energies all massive fields decouple and only
the quantum effects of virtual photons are relevant.

hµν hαβ
hµν hαβ

Figure: Photon loops with two external gravitational lines.

These quantum effects are pretty well-known,

ΓWeyl−squared = − 1
320π2

∫ √−g Cαβλτ log
(

�

µ2

)

Cαβλτ .
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ΓWeyl−squared = − 1
320π2

∫ √−g Cαβλτ log
(

�

µ2

)

Cαβλτ .

It is easy to see that:

• This expression is time-dependent during the cosmological
evolution.

• Log. function is slow, hence we can approximately treat
log

(

�/µ2
)

as a slowly varying parameter.

• Namely,

gµν = a2(η) ḡµν = eσ(η) ḡµν ⇒ log
(

�

µ2

)

∝ −2σ(η) = −2σ(t) .

For any initial value of a1 (including zero!) we meet

aeff
1 (t) = a1 +

1
160π2 σ(t) .

What this means, from the side of Physics?
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At the final stage of the ΛCDM universe

σ(t) = H0t , H0 ∼
√

8π × 0.7 ρ0
c

3 M2
P

≈ 10−42 GeV .

Then the effective coefficient is

aeff
1 (t) = a1 +

1
160π2 σ(t) = a1 +

1
160π2 H0t .

Earlier or later aeff
1 will change sign and become positive.

The moment of this occurrence will be quite remarkable, but
nobody will perhaps appreciate this, because all points of t he
space will explode at once.
The time remaining until tachyonic modes emerge is

tq =
160π2 a1

H0
≃ 2.4 · 1013 yr = 2.4 · 104 bi , a1(initial) = 1 .

The instability corresponds to linear perturbations. Next orders
in the perturbative expansion in hµν will restore the stability.
Even this “restricted” gravitational explosion should be c apable
to produce relevant changes in the space-time properties.
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• Consider the list of approximations which have been used.

Heat-up question: “Can we trust logarithmic approximation at
the one-loop level?” - Yes.

• Can we expect qualitative change in the result by taking the
higher-order loops into account?

Formally, higher-loop contributions do not change the sign of
the β1-function ( c-theorem), but this is not sufficient to draw
conclusions about the (ir)relevance of the higher-loop ter ms.

In the UV there will be higher-log. contributions, capable t o
produce a strong change in the running of a1. However, the
situation at low energies (far IR) is quite different.

Let us remember that second- and higher-loop corrections to
the one-photon bubble include a loop of electrons or of other
massive charged fermions.
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Because of the Appelquist & Carazzone decoupling theorem th e
contribution of the second loop is suppressed by a factor
(

E/me
)2

.

Aµ

Aν

hµν

hαβ

Our interest is not the dynamics of the conformal factor itse lf,
but its interaction to gravitational waves. For instance, t aking
EGW = 1eV we have “only” ten-orders decoupling.

Up to the frequencies of the order of electron mass, the one-l oop
approximation is completely robust. Only above this thresh old
there is a small chance of stabilization by higher loops.
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What about quantum gravity (QG) effects, which have been
neglected so far?

It is not easy to give a definite answer due to the variety of
existing models of QG. Let us consider a short list of the
possibilities which are better explored.

The standard effective framework for the IR effects of QG
assumes that GR is a universal theory of IR quantum gravity.

J. Donoghue - 1994, PRL & PRD, gr-qc/9405057

QG based on GR is non-renormalizable, hence there is no
consistent perturbative β-function for the parameter a1.

One can easily derive the 1-loop logarithmic form factor.

G. ’tHooft and M.Veltman, (1974).

However, it is gauge-fixing dependent and vanish on-shell.

R. Kallosh, O. Tarasov and I.V. Tyutin (1978).

Therefore, no physical correction can be expected. Similar
situation holds at higher loops.
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• Higher derivative QG (HDQG)

The β-function for the parameter a1 is well-defined, free of
ambiguities. According to the well-verified calculations

E.S. Fradkin & A.A. Tseytlin (1982);
I. Avramidi & A.O. Barvinsky (1986);
I. Antoniadis and E. Mottola (1992);
G.B. Peixoto & I.Sh. (2003)

the contribution of HDQG enhance the one of the photon loop by
a factor of 10 − 20 in the four-derivative QG case.

Indeed, this statement requires great care. In fact, the IR e ffects
of HDQG are not sufficiently well-explored.

The standard point of view is that the universal IR limit of al l
these theories is quantum GR. Then we come back to the
irrelevant contribution of QG in the IR.
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Conclusions

• In the gravity with higher derivatives the propagator
includes massive nonphysical mode(s) called ghosts.

• The massive ghosts are capable to produce terrible
instabilities, but ... for this end there should be at least o ne
such ghost excitation in the initial spectrum.

• At least in the cosmological case, the ghost is not actually
generated below Planck scale.

• The final conclusion is that the HDQG may be a perfect
candidate to be an effective QG below the Planck scale.

• Finally, we can predict an intensive tachyonic explosion at
the end of the ΛCDM universe.
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• In (super)string theory the terms providing the β-function
for the parameter a1 are removed by means of the Zwiebach
transformation for the “background” metric.

B. Zwiebach, (1985).

Γ =

∫

dDx
√

g e−2Φ
{

−R + 4α′
(

RµναβRµναβ−4 RαβRαβ+R2) + ...
}

.

By construction, the β-function for the parameter a1 is zero.

However, string theory is not supposed to significantly corr ect
QFT results at low and very low energies.

Otherwise we would observe such corrections in precision
experiments, e.g., the ones that test QED and Standard Model
calculations. Using string theory to evaluate the β1-function in
the far IR is not reasonable from a conceptual point of view.

After all, in known versions of QG & string theories the IR
running of universe to the tachyonic end can’t be cancelled.
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