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Main approaches to quantum gravity

No question about quantum gravity is more difficult
than the question, “What is the question?”
(John Wheeler 1984)

» Quantum general relativity

» Covariant approaches (perturbation theory, path integrals,

)

» Canonical approaches (geometrodynamics, connection
dynamics, loop dynamics, ...)

» String theory

» Fundamental discrete approaches
(quantum topology, causal sets, group field theory, .. .);
have partially grown out of the other approaches



Quantum gravitational corrections in the covariant
approach

One-loop corrections to the non-relativistic potentials obtained from
the scattering amplitude by calculating the non-analytic terms in the
momentum transfer

» Quantum gravitational correction to the Newtonian potential
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(Bj errum Bohr et al. 2003)

» Quantum gravitational effects to the Coulomb potential (scalar

QED)
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Quantum geometrodynamics

» Question: what is the quantum wave equation that immediately
gives Einstein’s equations in the semiclassical limit?

» Answer: the Wheeler—DeWitt equation

Constraints of this type also occur in loop quantum gravity



Semiclassical (Born—Oppenheimer type)
approximation

Ansatz: L
W [hap]) = Clhaple™ 5| o))

and expansion with respect to the Planck-mass squared.

Highest order: One evaluates |i[hy)) along a solution of the
classical Einstein equations, hq;(x,t), corresponding to a
solution, S[hg], of the Hamilton—-Jacobi equations;
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This leads to a functional Schrédinger equation for quantized
matter fields in the chosen external classical gravitational field:
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H™: matter-field Hamiltonian in the Schrodinger picture,

parametrically depending on (generally non-static) metric
coefficients of the curved space—time background.

WAKB time ¢ controls the dynamics in this approximation



Quantum gravitational corrections

The next order in the Born—Oppenheimer approximation gives
rrm rm 1 .
H™ — H™ + —5 X (various terms)
mp
(C. K. and T. P. Singh (1991); A. O. Barvinsky and C. K. (1998))

Example: Quantum gravitational correction to the trace
anomaly in de Sitter space:
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(C.K. 1996)



Observations

Does the anisotropy spectrum of the cosmic background
radiation contain information about quantum gravity?

C.K. and M. Krdmer, Phys. Rev. Lett., 108, 021301 (2012);
D. Bini, G. Esposito, C.K., M. Kramer, and F. Pessina, Phys. Rev. D, 87,
104008 (2013); D. Brizuela, C.K., M. Kramer, in preparation.



Minisuperspace background

Wheeler-DeWitt equation for small fluctuations in a flat
Friedmann—Lemaitre universe with scale factor a = exp(«) and
inflaton field ¢

Choose a potential that classically obeys the slow-roll condition

¢ < V(9)|
Simple example:

V(@) = 5 m*o?



Minisuperspace Wheeler—DeWitt equation
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56 m—l% W - W + QaOe V(¢) \Ijo(a,(b) =0
> h = Cc = 1
» mp = +/31/2G ~ 2.65 x 10! GeV
> ¢ — ¢/V2m

» assume below 920, /9¢? < 2a5e5*V(¢) ¥, and substitute
2mv/V by mpH, where H is the quasistatic Hubble
parameter of inflation (Born—Oppenheimer type of
approximation)



Introduction of inhomogeneities

For simplicity: perturbation in the scalar field only; general
result below
¢ — () + 0¢(x,1)
Perform a decomposition into Fourier modes with wave vector
k, k = k|,
Sp(x,t) = > fult)ex.
k

The Wheeler-DeWitt equation including the fluctuation modes
then reads (Halliwell and Hawking 1985)
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Ansatz:
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Born—Oppenheimer approximation

Following the general scheme, we make the ansatz
Ui(a, fr) = €' S
and expand S(a, fx) in terms of powers of m#,
S(a, fx) = mp So +md Sy +mp> Sz + ...

We insert this ansatz into the full Wheeler—-DeWitt equation and
compare consecutive orders of m3.



O(m$): Sp is independent of f;,
O(m3): Sy obeys the Hamilton—Jacobi equation
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%] —V(a) =0, V(a):=e"*H

solved by Sy(a) = +e3*H/3

O(mb): Write \*) (v, fi) = () ¢ $1(f) and impose a
condition on ~(«) that makes it equal to the standard WKB
prefactor. After introducing the ‘WKB time’ according to

9 3,05 0
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one finds that each w,g,o) obeys a Schrodinger equation,
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Solution of the uncorrected Schrodinger equation

Ansatz: o
Ot fi) = NO () e 3 U O 7
This leads to
NOW = —se NP m e @),
OV = e [—(920)(t))2+Wk (t)]

The solution can be given in terms of Bessel functions. Using
m? < H? (realistic for inflationary models) as well as the
boundary condition that the Minkowski vacuum is obtained for
k — oo, it reads

ko1 §
Ql(io)(f) = H—Qf ; + O(%)

with £(1) := k/(Ha(t))



Quantum gravitational corrections

O(mp?): decompose Sa(a, fi,) as

S2(a> fk’) = C(Oé) + 77(% fk’)

and demand that ¢(«) be the standard second-order WKB
correction. The wave functions

v (a, fr) = 0 (@, fi) e M dk)

then obey the quantum gravitationally corrected Schrodinger
equation
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Solution of the corrected Schrodinger equation

Ansatz:
oW, f) = (N,£°> 0+ Né”(t))
mp
1 1
X exp [— 5 (Q,S” (t) + o Q,S’(t)) f%]

Inserting this into the corrected Schrédinger equation leads to
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This equation can be solved analytically (special functions).



Unperturbed power spectrum
Use of gauge-invariant variables
ds? = a2(77){— (1 — 24) dp®+2 (9;B) dz*dn+[(1 — 2¢b) 6;; + 20,0, E) da*da’ }
3¢ (n, %) := 06+ ¢ (B — E')

1
(0. x) = A+ ~[a(B— B
Mukhanov—Sasaki variable:
. P
v(n.x) = a |66E) + ¢ =2
=[5+ %2

where H :=da'/a = Ha, and H = a/a is the standard Hubble
parameter.



Unperturbed power spectrum
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» de Sitter case:

2
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» Slow-roll case:

(tpH)?
TE

PO (k) = [1 = 2¢ + (2¢ = 0) (4 = 29 — 2In(2))]

k=Ha
This coincides with the standard result.

Note that this is already a quantum-gravitational effect
(tree level)!



Modification of the power spectrum

» de Sitter case:

_ GH} [1 HE 0.32347 +O<H§>}
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» Slow-roll case:
H4
1 0
PO (k) = PO (k) [1 + AMW (k) + O (m—gﬂ ,
P
where
WDW Hg 1
A 5 (k) == — —5 T3 (0.32347 + 4.8331 € — 2.9492 )
76’ m kd
P k=Ha

We note that we have a violation of (near) scale invariance and
a suppression of power on the largest scales!



Tensor perturbations

» Uncorrected spectrum:

1 H?
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» Corrected spectrum (slow-roll):
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r-parameter

;1
r) ~ 16¢ [1 +(6—¢) (1.4593 —2.9492 —2 —)]
m?3 k3
P

Correction is of higher order!




Observations

Following G. Calcagni (2013), we can write

» Spectral index:

__dlogP

= ~ 20 — 4e—3AWPWV (L
dlog k =385 (k)

Nng —

» Running of spectral index:

dng
o 1= Tlog ~ 2(5ed — 4€ — 12)+IANOW (k)

€,0,¢: slow-roll parameters



If r < 0.11, one has

it .
0 <35%x10°°
mp

and thus (taking the reference scale to be the pivot scale
ko ~ 2 x 1073 Mpc™1):
‘AVSV;EYLOUCO)‘ <4.0 x 10712

Comparing this with the PLANCK 2015 results,

ng = 0.968 £ 0.006 and «ag = —0.0065 =+ 0.0076,

we see that the correction terms are too small to be seen.
Cosmic variance may forbid to improve these errors.



Comparison with loop quantum cosmology
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Figure: Primordial power spectrum for a certain model of loop
guantum cosmology (upper curve). The dotted line is the classical
case, and the solid line is the experimental upper bound. From:
M. Bojowald, G. Calcagni, and S. Tsujikawa, Phys. Rev. Lett., 107, 211302 (2011).

Loop quantum cosmology predicts an enhancement of power
at large scales.

(See talk by Ivan Agullo)



Summary and Outlook

» Concrete prediction from a conservative approach to quantum
gravity; consistent with existing observational limits

» Suppression of power on largest scales
» k—3-dependence

» In the present case, the effect is too small to be observable
(main limit for accuracy: cosmic variance)

» Similar results (but different in detail) from a modified scheme
put forward by Kamenshchik, Tronconi, and Venturi (2013-2015)

» Quantum gravitational corrections for galaxy—galaxy correlation
functions?

» More general initial states?

» More general models of inflations?
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