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Motivation

Secular growth of loop corrections is practically inevitable in

non�stationary situations (Landau and Lifshitz, X-th volume)

This growth is the IR e�ect. No modi�cations of UV physics.

Quantum corrections are of the same order as classical

contributions, if one weights long enough.

de Sitter space interacting QFT (review arXiv:1309.2557).

QED on strong electric �eld background beyond the

background �eld approximation (arXiv:1405.5225).

Loop correction to Hawking radiation (arXiv:1509. ...).
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Adiabatic catastrophe

Suppose one would like to �nd:

⟨𝒪⟩t0 (t) =
⟨

Ψ
⃒⃒⃒
T e

i
∫︀ t
t0
dt′H(t′)𝒪T e

−i
∫︀ t
t0
dt′H(t′)

⃒⃒⃒
Ψ
⟩
, (1)

e.g. ⟨T𝜇𝜈⟩ or ⟨J𝜇⟩.

Here H(t) = H0(t) + V (t).

T � time�ordering, T � anti�time�ordering.

t0 � initial moment of time, |Ψ⟩ � initial state, ⟨Ψ |𝒪|Ψ⟩ (t0)
is supposed to be given.
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Adiabatic catastrophe

Transferring to the interaction picture:

⟨𝒪⟩t0 (t) =
⟨︀
Ψ
⃒⃒
S+(+∞, t0)T [𝒪0(t) S(+∞, t0)]

⃒⃒
Ψ
⟩︀
. (2)

Here S(t2, t1) = T e
−i

∫︀ t2
t1

dt′V0(t′); 𝒪0(t) and V0(t) are

operators in the interaction picture.

Slightly changing the problem:

⟨𝒪⟩t0 (t) =
⟨︀
Ψ
⃒⃒
S+
t0

(+∞,−∞)T [𝒪0(t) St0(+∞,−∞)]
⃒⃒

Ψ
⟩︀
. (3)

Here t0 is the time moment after which the interactions,

V (t), are adiabatically turned on.
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Discussion

When does the dependence on t0 disappear? Otherwise we

have adiabatic catastrophe and breaking of various symmetries:

E.g. correlation functions stop to depend only on |t1 − t2|.

The dependence on t0 disappears when the situation is or

becomes stationary.
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Discussion

The seminal example of the stationary situation is when the

free Hamiltonian H0 is time independent and has a spectrum

bounded from below: H0 |vac⟩ = 0 and |𝜓⟩ = |vac⟩.

In fact, in the latter case by adiabatic turning on and then

switching o� V (t) we do not disturb the ground state:⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
excited state

⟩︀
= 0,

while ⃒⃒⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
vac

⟩︀⃒⃒
= 1.

It does not matter when one turns on interactions. The

dependence on t0 disappeared!
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Stationary case

Furthermore, in the latter case we obtain:

⟨𝒪⟩ (t) =∑︁
sta

⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
sta

⟩︀
⟨sta |T [𝒪0(t) S(+∞,−∞)]| vac⟩ =

=
⟨︀
vac

⃒⃒
S+(+∞,−∞)

⃒⃒
vac

⟩︀
⟨vac |T [𝒪0(t) S(+∞,−∞)]| vac⟩ =

=
⟨vac |T [𝒪0(t) S(+∞,−∞)]| vac⟩

⟨vac |S(+∞,−∞)| vac⟩
.

This way we arrive at having only the T�ordered expressions

and then can use Feynman technique.

Other situation when the dependence on t0 disappears if there

is a stationary state (e.g. thermal density matrix in �at

space�time).
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Discussion

Is there a stationary state if a background �eld is never

switched o�? What is that state, if it is present? What if

there is no stationary state?

How does the dependence on t0 reveals itself? t0 does not

appear in UV renormalization! In UV limit one always can use

the Feynman technique, because high frequency modes are not

sensitive to background �elds.

To answer the above questions one has to calculate directly:

⟨𝒪⟩t0 (t) =
⟨︀
Ψ
⃒⃒
S+
t0

(+∞,−∞)T [𝒪0(t) St0(+∞,−∞)]
⃒⃒

Ψ
⟩︀

(4)

for various choices of 𝒪.
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Non–stationary case

Schwinger notations: S � �+� vertexes, S+ � �−� vertexes:

D++(1, 2) =
⟨

Ψ
⃒⃒⃒
T
(︁
𝜑(1) 𝜑(2)

)︁⃒⃒⃒
Ψ
⟩
,

D−−(1, 2) =
⟨

Ψ
⃒⃒⃒
T
(︁
𝜑(1) 𝜑(2)

)︁⃒⃒⃒
Ψ
⟩
,

D+−(1, 2) = ⟨Ψ |𝜑(1)𝜑(2)|Ψ⟩ ,
D−+(1, 2) = ⟨Ψ |𝜑(2)𝜑(1)|Ψ⟩ . (5)

Every �eld is characterized by a matrix of propagators.

9 / 21



Non–stationary case

After Keldysh's rotation of 𝜑+ and 𝜑−, we obtain:

DR,A(1, 2) = 𝜃 (±∆t1,2)
(︁
D+−(1, 2) − D−+(1, 2)

)︁
=

= 𝜃 (±∆t1,2)
[︁
𝜑(1) , 𝜑(2)

]︁
(6)

� state independent Retarded and Advanced propagators.

They characterize only the spectrum of excitations.

The Keldysh propagator:

DK (1, 2) =
1

2

(︁
D+−(1, 2) + D−+(1, 2)

)︁
=

=
1

2

⟨
Ψ
⃒⃒⃒{︁
𝜑(1) , 𝜑(2)

}︁⃒⃒⃒
Ψ
⟩
. (7)
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Discussion

If we have spatially homogeneous non�stationary state:

𝜑(t, x⃗) =
∫︀
dD−1p⃗

(︀
ap⃗ e

i p⃗ x⃗ gp(t) + h.c .
)︀
, for the case of real

scalar �eld, then

∫︁
dD−1p⃗ e−i p⃗ (x⃗1−x⃗2)DK (t1, t2, |⃗x1 − x⃗2|) ≡ DK

p (t1, t2) =

=

(︂
1

2
+

⟨
a+
p⃗
ap⃗

⟩)︂
gp(t1) g*

p (t2) +
⟨︀
ap⃗ a−p⃗

⟩︀
gp(t1) gp(t2) + c.c.

� carries information about background state!

In QED, global de Sitter and black hole collapse case the

formulas are a bit di�erent, but the situation is conceptually

the same.
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Discussion

In a free theory
⟨
a+
p⃗
ap⃗

⟩
= const,

⟨︀
ap⃗ a−p⃗

⟩︀
= const. All

time dependence is gone into harmonic functions � gp(t).

If the initial state is the ground one: |Ψ⟩ = |ground⟩ and
ap |ground⟩ = 0, we obviously have that⟨
a+
p⃗
ap⃗

⟩
=

⟨︀
ap⃗ a−p⃗

⟩︀
= 0.

All quasi�classical results (non�interacting �elds, background

�eld approximation) follow from the tree�level propagator:

DK
p (t1, t2) =

1

2

(︁
gp(t1) g*

p (t2) + g*
p (t1) gp(t2)

)︁
. (8)

E.g. ⟨T𝜇𝜈⟩0 in de Sitter space and black hole collapse, and

⟨J𝜇⟩0 in QED.
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Secular growth of loop corrections

However, if one turns on interactions, then
⟨
a+
p⃗
ap⃗

⟩
and⟨︀

ap⃗ a−p⃗

⟩︀
start to depend on time.

Say for 𝜆𝜑3 (or 𝜆𝜑4) theory at loop level, as

t = t1+t2
2

→ +∞, we obtain that

DK
p (t1, t2) =

(︂
1

2
+ np(t)

)︂
gp(t1) g*

p (t2) + 𝜅p(t) gp(t1) gp(t2) + c.c ..

At one loop level

np(t) ∝ 𝜆2
∫︁

dD−1q⃗1

∫︁
dD−1q⃗2

∫︁∫︁ t

t0

dt3 dt4 𝛿 (p⃗ + q⃗1 + q⃗2) ×

×g*
p (t3) gp (t4) g*

q1
(t3) gq1(t4) g*

q2
(t3) gq2(t4) + O (t1 − t2),

𝜅p(t) ∝ −𝜆2
∫︁

dD−1q⃗1

∫︁
dD−1q⃗2

∫︁∫︁ t

t0

dt3 dt4 𝛿 (p⃗ + q⃗1 + q⃗2) ×

×g*
p (t3) g*

p (t4) g*
q1

(t3) gq1(t4) g*
q2

(t3) gq2(t4) + O (t1 − t2).
13 / 21



Secular growth of loop corrections

If there is no background �eld, then gp ∝ e−i 𝜖(p) t√
𝜖(p)

and

np(t) ∝ 𝜆2 (t − t0)

∫︁
dD−1q⃗1

∫︁
dD−1q⃗2𝛿 (p⃗ + q⃗1 + q⃗2) ×

×𝛿
(︁
𝜖(p) + 𝜖(q1) + 𝜖(q2)

)︁
. (9)

Hence, np(t) = 0 due to energy conservation.

There is no energy conservation in time�dependent

background �elds (or energy is not bounded from below), then

we generically obtain:

np(t) ∝ 𝜆2 (t − t0) × (production rate),

𝜅p(t) ∝ −𝜆2 (t − t0) × (backreaction rate). (10)

The RHS is the collision integral.
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Explicit examples (QED)

In QED with E⃗ = const formulas a bit di�erent. Harmonics

are gp(t) = g(p + eEt).

All expressions are invariant under p → p + a and

t → t − a/eE .

As the result, beyond the background �eld approximation, for

photons we obtain that:

np(t) ∝ e2 (t − t0) × (production rate),

𝜅p(t) = 0. (11)

Because of that t0 cannot be taken to past in�nity. Hence, we

have adiabatic catastrophe.

For charged �elds np and 𝜅p are time�dependent, but do not

grow as t − t0 → ∞.
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Explicit examples (de Sitter, expanding patch)

In expanding Poincare patch: gp(t) = 𝜂
D−1
2 h(p𝜂), where

𝜂 = e−t and h(p𝜂) is a Bessel function.

There is invariance under p → p a and 𝜂 → 𝜂/a.

For the case of massive scalars, m > D−1

2
, in the limit p𝜂 → 0,

we obtain that

np(𝜂) ∝ 𝜆2 log

(︂
m

p𝜂

)︂
× (production rate),

𝜅p(𝜂) ∝ −𝜆2 log
(︂
m

p𝜂

)︂
× (backreaction rate). (12)

No divergence, but there is secular growth.
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Explicit examples (de Sitter, contracting patch)

Contracting Poincare patch is just time�reversal of the

expanding one.

For the case of massive scalars, m > D−1

2
, in the limit

p𝜂0 → 0 and p𝜂 → +∞, we obtain that

np(𝜂) ∝ 𝜆2 log

(︂
m

p𝜂0

)︂
× (production rate),

𝜅p(𝜂) ∝ −𝜆2 log
(︂

m

p𝜂0

)︂
× (backreaction rate). (13)

Here 𝜂0 = et0 is the time after which interactions are

adiabatically turned on.

In this case � IR divergence and, hence, adiabatic catastrophe.

In global de Sitter there is also adiabatic catastrophe.
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Explicit examples (black hole collapse)

Harmonics are much more complicated, but at future in�nity

they depend on 𝜔 e−t/2rg .

Invariance under 𝜔 → 𝜔 a and t → t + 2rg log a.

As the result, if the collapse had started at t = 0, then we

obtain

np(t) ∝ 𝜆2 t × (production rate),

𝜅p(t) ∝ −𝜆2 t × (backreaction rate). (14)

Change of the Hawking's thermal spectrum? Information

paradox?
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Discussion

What should one do with these growing with time quantum

corrections?

Note that if background �eld is on for long enough, then

𝜆2(t − t0) ∼ 1 and quantum corrections are of the same order

as classical contributions; np ∼ 1 � classical e�ects.

We need to sum up leading corrections from all loops: sum(︀
𝜆2(t − t0)

)︀n
and drop o� e.g. 𝜆4(t − t0) ≪ 𝜆2(t − t0).

Does the dependence on t0 disappear after the summation?

We did this summation in de Sitter space (expanding and

contracting Poincare patches) and in QED with constant �eld

background.
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Summation of leading loop corrections

To do the summation one has to solve the system of the

Dyson�Schwinger equations for propagators and vertexes in

the IR limit.

In all the above listed cases vertexes do not receive growing

with time corrections. Also retarded and advanced propagators

do not secularly growing correction. Hence, to sum up leading

corrections we put them to be of tree�level form.

Ansatz for the Keldysh propagator:

DK
p (t1, t2) =

(︂
1

2
+ np(t)

)︂
gp(t1) g*

p (t2) + 𝜅p(t) gp(t1) gp(t2) + c.c ..

As the result we obtain a system of Boltzmann type of

equations for np and 𝜅p.

Solution of these equations, with speci�ed initial conditions,

solves the problem of the summation of such corrections.
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Summation of leading loop corrections

Dyson�Schwinger equations are covariant under simultaneous

Bogolyubov rotations of harmonics and np and 𝜅p.

Hence, to sum up leading IR corrections we have to �nd

harmonics for which there is such a solution that 𝜅p = 0.

Otherwise there is no hope for stationary state!

Inspiration from the non�stationary theory for superconductors.
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