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            Outline of the talk: 
 

1.Brief Introduction 
2.Higher Derivative (HD) and Ghost Free (GH) 
   Gravity 
3.Weak Gravity: Gravitational Field of a Point 
   Mass 
4.HD and GF Gyratons 
5.Null Shell Collapse in HD and GH Gravity 
6.Mass Gap for Mini-BH formation 
7.Strong Gravity: Models with Closed Apparent 
   Horizon 
8.New Universe Formation inside a Black Hole? 
9.Summary and Discussions 

(Remark: Everything in four dimensions, however 3 and 4 
have been done for arbitrary D) 





Black hole is a spacetime domain from where no 
information carrying signals can escape to infinity. 
The black hole boundary is an event horizon. 
 
Can we prove that an object in the center of our 
Galaxy is a black hole (according to this definition) ? 
Yes, only if you expect to live forever.  
 
This definition is very useful for proof of theorems, 
but  certainly is not very practical. 



Event horizon vs.apparent horizon 
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`Quasi-local definition’ of BH:  
Apparent  horizon 

A compact smooth surface  is called a trapped 

surface if  both, in- and out-going  null surfaces, 

orthogonal to ,  are non-expanding .

A trapped region is a region inside .

A boundary of all trapped r

B

B
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egions is called

an apparent horizon.
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According to GR: Singularity exists inside a black hole.

Theorems on singularities: Penrose and Hawkin

Penrose theorem: Assume

    1.The null energy condition holds 0;

    2. There exists a no

g.

nc

T l l 

 

ompact connected Cauchy surface.

    3. There exist a closed trapped null surface .

Then, we either have null geodesic incompleteness, or 

closed timelike curves. 



Schwarzschild ST has a spacelike singularity.

RN and Kerr ST have a timelike singularity.

In both cases this is a curvature singularity.

Expectation 1: When curvature becomes high (e.g. reaches 

the Planckian value) the classical GR must be modified

(quantum corrections, it is an emergent theory, etc.).

Expectation 2: Singularities of GR would be resolved.



Regularity at r=0 and AH 
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Schwarzschild metric: / .
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Three connected problems:

1. Regularity of potential at 0;

2. Finiteness of the self-energy of a point charge;

3. Existence of AH: | | . For 2, .
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Quadratic in Curvature Action 

ˆ        / 2 ,

ˆ  is an operator constructed from  and g.

Biswas, Gerwick, Koivisto, Mazumdar (2012):

The number of arbitrary functions of  operator
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For metric perturbations over the flat background

only 2 arbitrary functions survive.
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1. General Relativity (GR): , 1;

2. ( ) gravity: ( ) (0) (0) 1 2 (0) ;

    1,  1 (0);

3. Weyl gravity: ,   1 ,  

    1  ;

4. Higher derivative (HD) gravi
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5. Ghost free (GF) gravity: exp( ).
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2 2 2(1 2 ) (1 2 2 )ds dt d       

Static solutions of linearized gravity 

equations in the Newtonian limit 
  

0 0( )r     Stress-energy tensor:  

Biswas, Gerwick, Koivisto, Mazumdar (2

Modesto, Netto, Shapiro (2014
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finite

For a point mass ( ) the solution is 

spherically symmetric. We call it  if 

near 0 it is of the form
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A finite solution is not necessary regular one. 
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-regu,  la= , r  and is regulara c  



The gravitational collapse is regular in linearized 

    regular HD and in GF theories of gravity. 

 Mass gap for mini black hole production.
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In 4  Einstein gravity -- Aichelburg-Sexl solution.

Higher dimensional generalization for a
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gyraton metric 

elativistic particle. 

D

ev, PRD 71 104034 (2005); V.F., Israel, Zelnikov, PRD 72, 084031]

2 2 2

0

2 2 2

0

2

2 2

2 1

2

Boost transformation:

,

(1 ) 2,  (

,

,

1 ) .

.

ds ds dh

ds dt d d dy d

t v u y v u   

   







   

 



 



    

   

 



 



2 2

2

2 2

2 2 2

2

2

2

2

Penrose limit: const;

li

In the limit   one has 

,  ,  ,

,

2 lim(

m exp( (4 )) 4 ( )

)

.

.dh du

y u t u u

ds dudv d d

M m

u s u

h

s






   



   



 













 

   

 





 











2

2

(4 )2

0

4 ( ) ( ) ,

( ) ) .(
s

GMF u

ds
F f s e

s



 










 

  

 

2

For GR, as well as for GB and ( ) gravity:

( ) ln( ),   is IR cut-off parameter.
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For ghost free gravity
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Metric for Thin Null Shell 
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We consider a set of gyratons, passing through 

a point  in Minkowski spacetime. They form a

null cone with the vertex at . A section const

of the cone is a sphere. We take a continuous

limit of this 

P
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destibution, assuming that the mass

density per a unit solid angle is constant / 4 .M 
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Apparent Horizon 
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In the "regular" HD theory and GF gravity, 

if  1, then there is no apparent horizo . nGM 



Curvature Invariant 
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HD and GF theories have the mass scale parameter

. "Physical" null shell should be constructed from

flields. One can expect that the thickness of the shell

should be larger than . Let us show that 
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makes curvature finite.



Metric for Thick Null Shell 
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For regular HD and GF theories there exists the mass 
gap for mini black hole formation. For small mass the 
(time-dependent) gravitational field of the collapsing  

body is regular and no apparent horizon.   





Limiting curvature conjecture: 
 
Markov, JETP Letters, 36 (1982) 266; 
Ann.Phys., 155 (1984) 333; 
Polchinski, Nucl.Phys. B325 (1989) 619. 

2

1
|| R ||




Spherically symmetric ST: 
An apparent horizon does not cross r=0. It is  

either closed or unlimited. 



2 / 3

0

ST with a geometry  satisfying modified  gravitational equations;

Limiting curvature conjecture ;

Geometry differes from the classical one in the domains,  where    

( / ) ;

Hawking radiati
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on to the infinity is accompanied by negative energy 

flux through the horizon, which slowly reduces the black hole's mass;

Null fluid approximation for incoming and outgoing energy fluxes;

This massive shell approximation for the region near the horizon, where 

massless quanta are created.

Main assumptions of the model 
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T. A. Roman and P.G. Bergmann (1983);  
P. Bolashenko and V.F. (1986) 
S. N. Solodukhin, (1999); 
S. A. Hayward (2006); 
S. Ansoldi (2008); 
C. Bambi, D. Malafarina, L. Modesto (2013); 
V. N. Lukas and V. N. Strokov (2013); 
V. Frolov (2014); 
J.M. Bardeen (2014); 
C. Rovelli and F. Vidotto (2014); 
T. De Lorenzo, C. Pacilio , C. Rovelli, S. Speziale (2015); 
 
D.I. Kazakov, S.N. Solodukhin (1993) 
P. Hajicek (2002); 
D. Grumiller (2003, 2004; 
J. Ziprick and G. Kunstatter (2010) 

Other publications on regular BH  
models  with closed apparent horizons 



Hawking radiation at far distance is effectively described by a 
properly chosen null fluid flux. The conservation law requires 
that this radiation is accompanied by the negative energy flux 
through the horizon, which we also approximate by the null 
fluid. In order to make a model consistent one needs to 
assume that between the two regions with pure outgoing and 
pure incoming fluxes there exists a transition region, 
corresponding to the domain where the particle are created.  
 
We assume that this region is narrow and approximate it by a 

massive thin shell. Main conclusion: For slow change of the 
black hole the back-reaction of the shell is negligible. 

Model for Particle Creation Domain 
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Apparent horizon: ( ) 0f  

Modified Vaidya model  
[Hayward ‘06, Frolov ‘14]  
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Quasi-horizon 
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“Through A Black Hole Into A New Universe?” 
       V.F., Markov, Mukhanov,  Phys.Lett. B216 (1989) 272; 
“Black Holes As Possible Sources Of Closed  and  
        Semiclosed Worlds” ,V. F., Markov, Mukhanov, 
        IC/88/91. May 1988. Phys.Rev. D41 (1990) 383; 
“How many new worlds are inside a black hole?” 
        Barrabes and V. F. Phys.Rev. D53 (1996) 3215 



Smolin, The Life of the Cosmos ‘97: “A collapsing black hole 
causes the emergence of a new universe on the "other 

side", whose fundamental constant parameters (speed of 
light, Planck length and so forth) may differ slightly from 

those of the universe where the black hole collapsed. Each 
universe therefore gives rise to as many new universes as it 

has black holes.” 

Buonanno, Damour, Veneziano ‘99:  “Gravitational instability, 
leading to the possible formation of many black holes”  … each 

of which becomes the place of “birth of a baby Friedmann 
universe after a period of dilaton-driven inflation”. 



E. Poisson, W. Israel (1990); 
I.G. Dymnikova (1991); 
E. Poisson (1991). 
E. Elizalde, S. R. Hildebrandt (2000); 
I.V. Artemova, I. D. Novikov (2002); 
L. Ford (2003); 
S. Conboy, K. Lake (2005);  
S. Ansoldi (2008); 
O. B. Zaslavskii (2009); 
S. Hossenfelder, L. Smolin (2010); 
S. Hossenfelder, L. Modesto, I. Premont-Schwarz (2010); 
J. P.S. Lemos, V.T. Zanchin (2011); 
V.N. Lukash, E.V. Mikheeva (2013) 
A. Vilenkin, J. Zhang (2014) 





“Black holes in cutoff gravity”, D. Morgan, PRD 43 (1991) 3144 

"Extrema of the action are either local extrema, leading to 

the ordinary equations of motion of general relativity, or 

extrema on the boundary of field space, with at least one 

eigenvalue of the curva 2ture attaining its maximum 1/ ."

"The singularities are replaced by perfectly well-behaved 

regions, and an infalling observer ends up in an exponentially 

expanding de Sitter-like core."
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Vacuum SET for 2D Black Holes 

2 2

To describes a formation of the 2D black 

hole in the collapse of the thin null 

We take the 2D metric
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(in-coming energy flux)lK

 (out-going energy flux)nK

Vacuum stress-energy tensor  
for 2D black hole 

horizon
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Two type of models: With “closed” and “open”  
      apparent horizon. 
 
Common feature is regularity of the BH interior. 
 
Difference: Either V or U dominated energy fluxes? 
 
In V-model: Solution for information loss paradox; 
               Extended time of the final phase; 
               Large blue shift of out-coming particles 
               (trans-Planckian energy); 
               Anti-Hawking effect, etc 


