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1.Brief Introduction



Black hole is a spacetime domain from where no
information carrying signals can escape to infinity.
The black hole boundary is an event horizon.

Can we prove that an object in the center of our
Galaxy is a black hole (according to this definition) ?
Yes, only if you expect to live forever.

This definition is very useful for proof of theorems,
but certainly is not very practical.



Event horizon vs.apparent horizon



"Quasi-local definition” of BH:
Apparent horizon

A compact smooth surface B is called a trapped

@ surface if both, in- and out-going null surfaces,
orthogonal to B, are non-expanding .

—

Q A trapped region is a region inside B.

@ A boundary of all trapped regions is called

an apparent horizon.



Null energy condition: T 1”1 >0

~

[ Trapped surface + NEC
=Event horizon existence |




According to GR: Singularity exists inside a black hole.
Theorems on singularities: Penrose and Hawking.
Penrose theorem: Assume

1.The null energy condition holds T, I“1" > 0;

2. There exists a noncompact connected Cauchy surface.
3. There exist a closed trapped null surface .
Then, we either have null geodesic incompleteness, or
closed timelike curves.



Schwarzschild ST has a spacelike singularity.
RN and Kerr ST have a timelike singularity.
In both cases this Is a curvature singularity.

Expectation 1. When curvature becomes high (e.g. reaches
the Planckian value) the classical GR must be modified
(quantum corrections, it Is an emergent theory, etc.).
Expectation 2: Singularities of GR would be resolved.



[Regularity at r=0 and AHJ

dr?
g(t,r)

F(t.r) ~ R+ RO g(t.r) ~ go(t) + g,(1) r’,
g2 M8 -1 _ 4[[(Vr)2 —1]] |

ds® = —F(t,r)dt* + +ride’,

r.4 r2

Apparent horizon: g=(Vr)* = 0. If an AH crosses
r =0, then before this the curvature singularity is
developed at r = 0.



Schwarzschild metric: ¢ =—-GM /.

2
ds® = —Fdt’ +d%+ r’de’, F =1+ 20¢.
Apparent (event) horizonat F =0, r =2GM.

48 (GM)?

I,6

Kretschmann scalar R? =

Linearized version
ds® = —(1+ 2¢)dt* + (1—2¢)(dr* + r’dw®).



Three connected problems:

1. Regularity of potential ¢ at r =0;

2. Finiteness of the self-energy of a point charge;

3. Existence of AH: |p|<CM.ForM <C/2, F > 0.

Regularization :

Ag0:47zGI\/I5(?)—>g0=G—M,
r

o
(A+ 12)p = 42GMS(F) — ¢ = GMre |

Dy (1) = (1) — G(r) = 2N (1; )

Py (0) = GM 1 — Pauli-Villars regularization




AG =—1, (A+ £H)G =1,

G. -G-G-= 12 1 _ 1 _
’ A+u A AL+ AT 1)

AQ+ Al 1), =47GMS(F) —>
Higher-derivative theory.

Source-smearing vs non-locality:
A@, =47Gp, p=(1+ Al ) p=Me *[r.



2.Higher Derivative and
Ghost Free Gravity




[Quadr‘a‘ric in Curvature Action]

S:jdx@[R/2+ R,(S"R,],

O™ Is an operator constructed from V and g.
Biswas, Gerwick, Koivisto, Mazumdar (2012):
The number of arbitrary functions of o operator
(after using the Bianchi identities) Is 6.

For metric perturbations over the flat background
only 2 arbitrary functions survive.



s=—]d*x|1n a@h* +hb(m)a,o,h*

2

+he(@),0,h" + % hd (9)h

RIC) 0,0,0,0,h" |.

[l

a+b=0,c+d=0,b+c+ f =0.

IR GR limit: a(0) = c(0) = —b(0) = —d (0) = 1



1. General Relativity (GR): L=R,a=c =1,
2. L(R) gravity: L(R) = L(0)+ L'(0)R+1/2L"(0)R* +
a=1 c=1-L"(0);

3. Weyl gravity: L=R—-y*C C** a=1-u"n,

uves
C= 1——y O ;
4. Higher derivative (HD) gravity: a = H o),
C=Hk:1(1—vk_ O

5. Ghost free (GF) gravity: a = ¢ = exp(—o/u°).



3.Weak Gravity: Gravita-
tional Field of a Point Mass



Static solutions of linearized gravity
equations in the Newtonian limit

Stress-energy tensor: 7., = p(F)5,6,

ds® = —(1+ 2p)dt* + (12w + 2¢)d ¢*.

Biswas, Gerwick, Koivisto, Mazumdar (2012):.
a(A)ay =87Gp,
(a(A)—3c(A))(Ap-2Ay) =87Gp

Modesto, Netto, Shapiro (2014)



For a point mass p = mo(r) the solution is
spherically symmetric. We call it finite if
near r =0 It Is of the form

1
w(r) ~w,+w,r +§t//2r2 +0(r’),

1
@(r) ~ @, + I + E(”zrz +O(r3)-



A finite solution Is not necessary regular one.

RE =R, R =22+ 24000,

Az = 8(4l//12 — 5@”1(”1 T 3(”12) :
A =16y, (5y, —4¢,) — 4o, (v, —9,)].

The solution is regular if v, = ¢, =0.

The solution 1s w-regular If w, =0.
If a=c, o=y, and w-regular iIs regular



(" The gravitational collapse is regular in linearized
regular HD and in GF theories of gravity.
= Mass gap for mini black hole production.

. J




O =a(A)A,
Q()=0 (A=-¢)=-sa(-)1".
Q)= dsf(s)e ™

F(6) =5 ] deQEye

Q) = f()]

Q-1mage and f -image of the field equation.




Green function: OG =—1.
S _ A1 * SA
G=-0'= jo ds f(s)e*,

Heat kernel:

"2
e—|x—x| /(4s)

<x'|e*|x>=K(x—-x"];8)=

[w(r) =87Gm jow ds f (s) K(r;s),]
GMm pea+i

== " deQ(e)e v

7Z'| r a—I1oo




HD gravity: Q&) = e[ [ @+&u) ™,

The Heaviside expansion theorem:

f(s) =—(1- ZP* ), R=[],,., 0w,

\

(r)_—ZGmr (1- ZPl A

- J

General Relativity: f(s) =1, w(r) =2¢(r) =-2Gm/r.



Solutionnearr=0: » P =1.
1=1

Wy =—26ms,, v, =Gms,, 5, = Z 1P
i—1

[ The solution i1s y-regular If S, = O.]

For the GF gravity f (s) = —3(s— ©?),

() =2¢(r) =—2Gm erf (ur/2)/r |
The solution is regular at r = 0.




4_HD and 6F Gyratons



We obtain now a solution for an ultra-relativistic particle.
In 4D Einstein gravity -- Aichelburg-Sexl solution.
Higher dimensional generalization for a particle with spin --

gyraton Metric (v.r. Fursaev, PRD 71 104034 (2005); V/F., Israel, Zelnikov, PRD 72, 084031]
ds® = ds; +dh?,
ds; =—dt> +d¢*, d¢*=dy*+d¢?.
Boost transformation:
t=Av+AU,y=4AV-A0U,
A=Ax )2, y=01-p°)""



In the limit ¥ — oo one has

y ~—pu, t~pu, £~ yu®+{7,
ds® = —dudv+d¢? +dh?,

dh® =ddu®, @ =-2lim(y°y).

Y —>0

Penrose limit: M = ym = const;
lim v exp(—=y°u®/(4s)) = V4rsS(u).

Y —>0



w(r) =87Gm j: ds f(s)K(r;s),
e—|x—x’|2/(4s)

(478)%*

(@ :—4GI\/IF(/;2)5(U) h

FE= S e

/

K(IXx=x"[;8) =

For GR, as well as for GB and L(R) gravity:
F(z) =In(z/n%), n is IR cut-off parameter.



For HD gravity:

-

F(z) = In(z/n%) + 22 P, (14Z),

\_

F(2) ~C—%SZZ(|HZ—2C)—%SZ+O(ZZ)’

c=1+In2-y, S=>"" u’In(u?)P.
For y-regular theory S, =0.



For ghost free gravity

F(z)=Inz+y+Ei(L2)

~ z—%zz+0(z3)




5.Null Shell Collapse in
HD and GH Gravity




| Metric for Thin Null Shell b




We consider a set of gyratons, passing through

a point P in Minkowski spacetime. They form a
null cone with the vertex at P. A section t = const
of the cone Is a sphere. We take a continuous
limit of this destibution, assuming that the mass
density per a unit solid angle is constant M /4r.




Gyraton frame vs Minkowski frame



The result of averaging:

B 2 2y 2 2 12 |
< dh? >= Z2ME(r -1) (dt—idrj LT 2t do? |
I I

F =0 inside the null cones.
For F = const the metric ds® = ds; + < dh? > is flat.

< dh® > can be "gauged away" .
2M

For F(z) =In z, ds* = ds; + — (dt* + dr?)
r



6.Mass Gap for Mini BH
formation



[ Apparent Horizon ]

GM
g = (Vp)Z,pZ = ge& = r2 _TZF(Z)i

[9=1-2GMrq(z), q(z)=2F'(2). |
For GR (as well as for GB and L(R)-gravity) q(z) =1,
so that an apparent horizon exists for any value of M.

For HD gravity q(z) =1-+z > 1P 'K, (1442),
=1

q(z) = —%SZZ(In Z—26+4) —%Sz +0(z%)

S=> wiIn(u?)P™.




Outside the null shell [t]/r <1t =+\1- B°r,

A@)r = B mPIZ(Y), Y, = Pur,

a(2) [ /r<0.4) 4 |R[”
i=1

Z(y) ==~ K,(y).
y

Z(y) Is positive,
Z . =0399 aty =1.114




" In the "regular" HD theory and GF gravity,

\

i If GM 1 <1, then there Is no apparent horizon.)




[Cur'va'rur'e Invariant J

 48G*M?

r.6

R2

F,F=27%q"*-2zqq +q°,

F N%zz[(wz +4w+5)S? +2(w+2)SS, +5°],

w=Ilnhz-2c.

The Kretschmann curvature vanishes on the null shells.
However, In a general case It Is divergent at r = 0.




HD and GF theories have the mass scale parameter
. "Physical" null shell should be constructed from
flields. One can expect that the thickness of the shell

should be larger than A = x*. Let us show that this
makes curvature finite.



| Metric for Thick Null Shell '




\4



Additional averaging results in the metric in | -domain:

2GM dr? 1
i [c,dt’ +c, 7+§(cor2 —c,)dw’],

C, = j_rr dxx“F (r? — x?),

<< gh® >=—

3

C, :—%[(GU—S)S2 +3S], u=Inr—-c-In2,

I..5

225
32

R? ~ EGZ M 2[(36u° +5)S2 +36US,S +957].

C, = [(30u —31)S, +15S].



For HD gravity R is finite for a y-regular
theory, that Is when S, =0.

-2 4

For ghost free gravity: R* ~2G*M “u

In both cases for small GM x the linear
perturbarion is uniformly small and higher
order corrections can be neglected. This
means that a no-apparent-horizon result

IS robust.




/ Denote x* =A. Then we have \

GM.ForTz/I :>R~M !

TA? u A
IfM < 14 = R<R,_. Then one can

R ~

neglect all higher in curvature corrections

\ (weak field regime!) /




For regular HD and GF theories there exists the mass

gap for mini black hole formation. For small mass the

(time-dependent) gravitational field of the collapsing
body is regular and no apparent horizon.



7.Strong Gravity: Models
with Closed Apparent
Horizon



1
Limiting curvature conjecture: [RI< I
Markov, JETP Letters, 36 (1982) 266;
Ann.Phys., 155 (1984) 333;

Polchinski, Nucl.Phys. B325 (1989) 619.

Spherically symmetric ST:
An apparent horizon does not cross r=0. It is
either closed or unlimited.



Main assumptions of the model

ST with a geometry g ,, satisfying modified gravitational equations;

Limiting curvature conjecture ;

Geometry differes from the classical one in the domains, where
r<n=r(l,/r)*">

Hawking radiation to the infinity is accompanied by negative energy
flux through the horizon, which slowly reduces the black hole's mass;

Null fluid approximation for incoming and outgoing energy fluxes;

This massive shell approximation for the region near the horizon, where
massless quanta are created.



Volume 1068, number 4 PHYSICS LETTERS 12 November 1981

SPHERICALLY SYMMETRIC COLLAPSE IN QUANTUM GRAVITY

W.P. FROLOV
PN Lebedev Physical Institute, Academy of Sciences, Moscow, USSR

and

G.A. VILKOVISKY
State Commirtee of Srandards, Moscow, USSR

Received 27 July 1981

The problem of classical singularities is revised on the basis of the quantum-gravity effective equations. We find a simple
rule for establishing the Birkhoff theorem in spherically symmetric problems. All exact salutions of the lagrangian with
c? o Are obtained. Spherically symmetric collapse of the thin null shell of mass M is considered in the framework of a
mﬁ?lhmr}' describing vacuwm polarization effects. The boundary-value problem is set and the asymplotic solution is ob-
tained, 1t is found that the shell collapses to r = 0 without the rise of a singularity, and begins expanding. The global be-
haviour of the solution s obtained for small M. For large M it is conjectured that the event horizon does not form, and
the apparent horizon is closed. An object forms, possessing the observable properties of a black hole, but living a finite
time.



Fig. 1. Penrose diagram for the collapse of the null shell

(A = 1). Solid (dashed) lines are used for the known (hypo-
thetical) details of the picture, The shaded region is the re-
gron of validity of the obtained asymptotic solution. The line
N7 U NT 1 the world line of the null shell. The closed and
dashed bold line ABC is the apparent horizon. The lHght
lines are the level lines » = const,



Other publications on regular BH
models with closed apparent horizons

T. A. Roman and P.G. Bergmann (1983);

P. Bolashenko and V.F. (1986)

S. N. Solodukhin, (1999);

S. A. Hayward (2006);

S. Ansoldi (2008);

C. Bambi, D. Malafarina, L. Modesto (2013);
V. N. Lukas and V. N. Strokov (2013);

V. Frolov (2014);

J.M. Bardeen (2014);

C. Rovelli and F. Vidotto (2014);

T. De Lorenzo, C. Pacilio, C. Rovelli, S. Speziale (2015);

D.l. Kazakov, S.N. Solodukhin (1993)
P. Hajicek (2002);

D. Grumiller (2003, 2004;

J. Ziprick and G. Kunstatter (2010)



| Model for Particle Creation Domain l

Hawking radiation at far distance is effectively described by a
properly chosen null fluid flux. The conservation law requires
that this radiation is accompanied by the negative energy flux
through the horizon, which we also approximate by the null
fluid. In order to make a model consistent one needs to
assume that between the two regions with pure outgoing and
pure incoming fluxes there exists a transition region,
corresponding to the domain where the particle are created.

(We assume that this region is narrow and approximate it by 3 )

massive thin shell. Main conclusion: For slow change of the
black hole the back-reaction of the shell is negligible.




fl\/lodified Vaidya model )

[Hayward ‘06, Frolov ‘14]
. Py

Use Plankian scale parameter' b to transform the

metric into I1ts dimensionless form

dS® =b*ds®, ds®=-—fdv’+2dvdp+ p°dw?,
2u(V)p°

p°+2u(v)

In the limit p — 0 one has f ~1— p* and the

(curvature)® ~1

. Apparent horizon: (Vp) =1 =0






3f

1, = —— 1S the minimal mass

of the black hole.

Simplest model:
0 :,ug—v, for v >0,
u=u,(1-v/v,), forv, <v<0
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Quasi-horizon

Radial out-going null rays: dp 1 f
dv 2

d2
Quasi-horizon: '[2) =0=20,f+fo f =0
dv g

Another definition: (Vf)? =0
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Apparent horizon-

| Appérent horizon

3

30 40 50



64

10

Apparent horizon

20

40



J" (v=o0)
3
1 Apparent

h{orizpn |

2

J” (U=—)




8.New Universe Formation
inside a Black Hole?



“Through A Black Hole Into A New Universe?”

V.F., Markov, Mukhanov, Phys.Lett. B216 (1989) 272;
"Black Holes As Possible Sources Of Closed and

Semiclosed Worlds" V. F., Markov, Mukhanov,

IC/88/91. May 1988. Phys.Rev. D41 (1990) 383:
"How many new worlds are inside a black hole?”

Barrabes and V. F. Phys.Rev. D53 (1996) 3215



Buonanno, Damour, Veneziano ‘99: “Gravitational instability,
leading to the possible formation of many black holes” ... each
of which becomes the place of “birth of a baby Friedmann
universe after a period of dilaton-driven inflation”.

Smolin, The Life of the Cosmos ‘97: “A collapsing black hole
causes the emergence of a new universe on the "other
side", whose fundamental constant parameters (speed of
light, Planck length and so forth) may differ slightly from
those of the universe where the black hole collapsed. Each

universe therefore gives rise to as many new universes as it
has black holes.”



E. Poisson, W. Israel (1990);

|.G. Dymnikova (1991);

E. Poisson (1991).

E. Elizalde, S. R. Hildebrandt (2000);
l.V. Artemova, |. D. Novikov (2002);
L. Ford (2003);

S. Conboy, K. Lake (2005);

S. Ansoldi (2008);

O. B. Zaslavskii (2009);

S. Hossenfelder, L. Smolin (2010);
S. Hossenfelder, L. Modesto, |. Premont-Schwarz (2010);
J. P.S. Lemos, V.T. Zanchin (2011);
V.N. Lukash, E.V. Mikheeva (2013)
A. Vilenkin, J. Zhang (2014)



F =00
H"' H; 2
(] r=0
N E,
A r=£L
]
iF=T junctinn hyperaurface
it {* n-const
" +
! am M H, $
- r=2m
td——--==X—g— - ——>r
g g

FIG. 3. Conformal diagram for an eternal black hole with
the de Sitter-type world in its interior. The surface I, where
r=ry=const is a junction surface which represents a short
transition layer. After passing this surface the anisotropic
Kasner-type contraction of space inside the black hole is
changed into the isotropic de Sitter contraction (deflation). The
surface £, corresponds to the moment of “minimal size” of the
de Sitter world. After passing this surface the de Sitter world
begins its inflationary expansion.

- 04
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K

FIG. 6. Conformal diagram for the spacetime of a black hole
formed by a collapsing spherically symmetric dust cloud. The
domains corresponding to the Schwarzschild-Kruskal, Fried-
mann, and de Sitter solutions are denoted by K, F, and S, re-
spectively. The boundaries FK, FS, and KS which separate
these domains are also shown.



"Black holes in cutoff gravity”, D. Morgan, PRD 43 (1991) 3144

"Extrema of the action are either local extrema, leading to
the ordinary equations of motion of general relativity, or
extrema on the boundary of field space, with at least one

eigenvalue of the curvature attaining its maximum 1/4°."

"The singularities are replaced by perfectly well-behaved
regions, and an infalling observer ends up in an exponentially
expanding de Sitter-like core."



2
4S? —bds?.  f —1_ _2HP°
P +2u




[Vacuum SET for 2D Black Holes]

We take the 2D metric in the form
ds® =—fdv’ +2dvdr, f =1-2M (v)/r.
To describes a formation of the 2D black
hole in the collapse of the thin null shell at v=0
we shall put M (v) = M 8(v).
4M (V)
r*

2D curvature IS R =



Conformal anomaly: T*"., = cR plus boundary

conditions= no In-fluxes determines T *".

Energy current: K# =-T#"& | K* :i(K,I“ +K,n%),

J2

F=—Twer

MV,

=K, -K,,

1 H
& =2 Tw=K,
f_r Tus's

=00



Vacuum stress-energy tensor

\5

for 2D black hole

K, (out-going energy flux)

s

X
horizon

mn-coming energy flux) X

r=2M (1+ X)







yll shell




9.Summary and
Discussions



Two type of models: With “closed” and “open”
apparent horizon.

Common feature is reqularity of the BH interior.
Difference: Either V or U dominated energy fluxes?

In V-model: Solution for information loss paradox:
Extended time of the final phase;
Large blue shift of out-coming particles
(trans-Planckian energy):
Anti-Hawking effect, etc



