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Review

@ Structure of effective action of massive rank-2 and rank-3 antisymmetric
tensor fields in curved space-time

@ Quantum equivalence of these models to massive vector field model and
massive scalar field model with minimal coupling to gravity respectively

Based on I.L.B, E.N. Kirillova, N.G. Pletnev, Phys.Rev. D78, 084024, 2008
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@ Motivations

@ Model of massless rank-2 antisymmetric field. Classical equivalence to scalar
field model

@ Quantization

@ Problem of quantum equivalence

@ Massive rank-2 and rank-3 antisymmetric tensor field models in curved
space-time

o Classical equivalence to massive vector and massive scalar field models
respectively

@ Quantization

@ Problem of quantum equivalence

e Summary
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@ Antisymmetric tensor fields are the natural ingredients of the higher
dimensional supersymmetric models

@ Antisymmetric tensor fields or p-forms are naturally arisen in the low-energy
limit of superstring theory

Examples:

e D =11, N =1 Poincare supergravity:
gravitational field e, *, real antisymmetric tensor field Bz,
Majorana-Rarita-Schwinger field 1,,.

e D =10, N = (1,1) Poincare supergravity (low-energy effective theory of
type llA superstring theory):
gravitational field e, *, real antisymmetric tensor fields B,g~, Bag, a real
vector field B, a real scalar field ¢, a Majorana-Rarita-Schwinger field v, a
Majorana spinor field A.

e D =10, N = (2,0) Poincare supergravity (low-energy effective theory of
type 1IB superstring theory):
gravitational field e,,*, real antisymmetric tensor field B,g-5, complex
antisymmetric tensor field B3, a complex scalar field 7, a
Weyl-Rarita-Schwinger field of positive chirality 1., a Weyl spinor field of
negative chirality A.

I.L. Buchbinder (Tomsk) MASSIVE ANTISYMMETRIC TENSOR FIELD MODI Tomsk, 2015



After reduction from higher dimensions to four dimensions we get the
antisymmetric rank-2 and rank-3 tensor fields coupled to gravitational field.

@ Massless rank two antisymmetric field model and massive rank-2 and rank-3
antisymmetric tensor field models are the new (in comparison with known
scalar, spinor and vector field models) four dimensional models coupled to an
gravitational field.

@ Massless antisymmetric rank-2 tensor field models and massive rank-2 and
rank-3 antisymmetric tensor field models are the new (in comparison with the
known scalar, spin and vector field models) models for study the effective
action in curved space-time (Schwinger-DeWitt proper-time technique,
¢-function, divergences, exact or approximate calculations on concrete
background, ....

@ Non-standard (in comparison with vector field models) gauge structure.
Quantization problem.

@ These models are classically equivalent or dynamically dual to scalar or vector
fields models. Problem of quantum equivalence.
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Model of massless rank-2 antisymmetric field

V.I. Ogievetsky, .V. Polubarinov, 1967. Notoph field.
Massless antisymmetric tensor field B,g (Bag = —Bjag) is described by the action

1 l4 l YOéﬂ Y ! 1
S[B]———2/ rv—9g afy
where FQB,Y is the strength tensor

Fapy = VaBpy + Vo + Vo Bag
Properties:

@ Strength Fl,3, is totally antisymmetric.
@ Action is invariant under the gauge transformations

B&ﬁ = Baﬂ + Vafg — Vﬁfa

where £, is the arbitrary vector field.
o Field B, is invariant under the transformations with parameter

Ea = va§

where £ is the arbitrary scalar field.
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Classical equivalence to massless scalar field with minimal coupling to

gravity

Equations of motion:
Valg —VgLy =0
VYL, =0
where

1
Ly = 5./_—gea5.ﬂsvﬂ375

Local solution to equations of motion:

La = Va(;b

where ¢ is a scalar field.
Equation of motion for ¢:

O¢ =0
Relation between B,z and ¢:

1
vad) = 5 Vv _geaﬁvévﬁB’y(s
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@ The theory of massless antisymmetric field B,z is the gauge theory.
Faddeev-Popov quantization ansatz. First step of covariant quantization is
gauge fixing condition.

@ The only covariant gauge is x* = VﬂB"‘B

@ The gauge is degenerated, V,x® = 0.

o Faddeev-Popov operator

(0%

dx

M=%

= —(6%30 = VgV?)

@ M%gz is the operator in quadratic part of Maxwell Lagrangian. This operator
is degenerated due to invariance of field B,z under the gauge
transformations with parameters &, = V,£.

@ Faddeev-Popov ansatz in its literal form does not work. Problem of definition
of effective action.
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Faddeev-Popov procedure for vector field:
e Gauge invariant theory with action S[A?]
e Gauge transformations §A" = R?,[A]¢®
o Consider the naive integral
DAeiS[A]

Multiply this integral with unit

- / DEA[AJS[x[A]]

Integral over gauge group is factorized and one gets finally

/ D ASA AL AL [y [AS]

Crucial point: existing the integral over gauge group
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Problem of covariant quantization:

Basic element of Faddeev-Popov definition of functional integral for gauge theories
is separation the integral over gauge group in naive path integral over gauge field.
In the model under consideration the integral over gauge group is ill defined.
Correct path integral: A.S. Schwarz, 1978.

General idea: Application of Faddeev-Popov ansazt to integral over gauge group.
Let F[B] is a (non-gauge invariant) functional of the field B,g and let Big is the
gauge transformed field, Biﬂ = Bag + Vs — V&a.

The naive path integral over gauge group

/ DEF[BY]
is replaced by the path integral
/ DEF[B]Det(00)5(VEy)

Here Oy is the scalar filed d'Alambertian, Det(Og) is the functional determinant
of the differential operator and V%¢, is the gauge for gauge parameters &,,.
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Application of Faddeev-Popov procedure with modified integration over gauge
group.
Final result for path integral:

e T'Blon] — Det(Dl)Det—%(Do)/DBei(S[B]+ScF[B])

Here S[B] is the classical action and Sgr[B] = —3 [ d*2z/=gx“Xa is the gauge
fixing term.
After calculating the integral:

U'plgu] =Tglguw] + %(Trln(Dg) — 2T7In(0y) 4 2Trin(0p))

Here Oy is the antisymmetric f_ield d’Alambertian, O; is the vector field
d'Alambertian and T'y[g,,] = 5TrIn(0p) is the effective action of real scalar field
minimally coupled to gravity.

D2Ba6 = V”qua,@ — QR’Y[aBﬁh — QRV[QB]éBMS
0,V = VAV, V, — RV
Oop = VIV 0
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Quantum Equivalence

Problem: whether the effective action of the field B,z coincides with effective
action of the field ¢7 Whether I'p =157

PB[g,uu] = F¢[9,W] +X

X = %(Trln(l:lg) —2Trin(04) + 2Trin(0y))

Possibilities to get the quantum equivalence:
o Whether X =07
N
@ Whether 5 (x) =07
e Xisa topologlcal invariant.

M.T Grisaru, N.K. Nielsen, W. Siegel, D. Zanon, 1984;
I.L.B, S.M. Kuzenko, 1988
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Quantum Equivalence

Idea of proof
@ Non-degenerate change of variables
1
K,=V,®+ 5\/_—gewa5V”B°‘B

VM == VM‘I’ + V”B/,LV
Jacobian: D(K,V|®, ¥, B) = Det(0g)Detz (0)

@ Inverse change of variable

1 1,
B, = D_QV“‘V”] + \/—gewﬁm—j K”

1 1
= — V'K, ¥ = —V"V,
o Ho

Jacobian: D(®,¥, B|K,V) = Det~(0;)

e D(K,V|®,¥,B)D(®,¥,B|K,V)=1. It is equivalent to X =0 up to
integrals of total divergences.
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Massive rank-2 and rank-3 antisymmetric field models in curved space-time

Massive rank-2 antisymmetric tensor field model
P. Townsend, 1981.

e Field By = (Bag), Bap = —Bga
@ Action
1
S(B d*z/—g F“ﬁv (B)Fop,(B) + Z771219af319a5)
® Fupy(B) =VaBsy + VB + V,Bag

Kinetic term is gauge invariant. Massive term violates this symmetry.
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Massive rank-3 antisymmetric tensor field model
P. Townsend, 1981.

o Field B3 = (Bagy), Bagy = Blagy]
@ Action
1
S[B o/~ Fa,@vé (B)Fop4s(B) + ﬁmQBaﬂwBaﬁw)
® Fapys(B) = VaBsys = VBysa + VyBsap = VsBagy

Kinetic term is gauge invariant under the transformations
Bvp — Bﬁl/p = Buvp + Vubvp + Vilpu + Vol

with a tensor gauge parameter £, = —§,,,,. This parameter is defined up to
a gauge transformation f;w =& + V.6 — V€, with the vector gauge
parameter £,. In its turn, the parameter §,, is defined up to gauge
transformation é“L = £, + V& with the scalar gauge parameter . This
means from general point of view that the gauge generators are linearly
dependent. Massive term violates this symmetry.
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Equivalence of the massive B field model to the massive vector field model

Consider of the theory of the fields V,,, A,,, B,,, with action
1 1
S[V,A,B] = /d4xv =gV Vit g B By +m A" (V= V=geuapy V* B7))

Equations of motion
V. =-mA,

1
Vi=1Lu(B) = 5V ~9epap, VB
1 (o34
By = 3V GeuanF " (4)

@ If to eliminate the fields V},, A,, one gets the equations of motion for massive
antisymmetric tensor field B,,,

@ If to eliminate the field B,,,, one gets the equations of motion for massive
vector field A,

The theory of the massive rank-2 antisymmetric tensor field is classically
equivalent to theory of massive vector field

I.L. Buchbinder (Tomsk) MASSIVE ANTISYMMETRIC TENSOR FIELD MODI Tomsk, 2015 16 / 32



Equivalence of the massive B; field model to the massive scalar field model

@ Consider of the theory of the fields ¢ and B,z with action

S10.85] = [ d'ay/ =gV = By gt g B By

o If to eliminate the field ¢ from the equation of motion and substitute the
result into action one gets the action of massive rank-3 antisymmetric tensor
field.

o If to eliminate the field B,g, from the equations of motion and substitute
the result into action, one gets the action of massive scalar field minimally
coupled to gravity.

The theory of the massive rank-3 antisymmetric tensor field is classically
equivalent to the theory of massive scalar field
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Gauge invariant formulation with help of Stiickelberg fields

The theories of massive rank-2 and rank-3 antisymmetric fields models are not
gauge theories and therefore there should be no quantization problem. Effective
actions are defined by conventional path integrals

B3 19 — / DB,eiSIB:]

eiFB3[ng] :/DBgeiS[B3]

However we face the problem how to evaluate the effective actions.

@ In general the effective action in quadratic theories with set of the fields ®
and action S[®] is given by the expression of the form I' ~ T'rin(H) where

525[®
H= 5<1>5[<1>]'

@ The systematic methods for calculating the effective action like the
Schwinger-DeWitt proper-time technique are applicable only if the operator
H is minimal. That means that the second derivatives in operator H form
the O, H = 10+ lower derivatives.

@ But in the theories where the kinetic term of Lagrangian is gauge invariant
and massive term violates this gauge invariance the operator H does not have
the minimal form.
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Gauge invariant formulation with help of Stiickelberg fields

Gauge invariant formulation of massive electrodynamics

@ Consider the model
S[A] = /d4ms/_( F‘“’F,w—i— Loz ama )

Kinetic term is gauge invariant, the massive term violates this symmetry.
Operator associated with action is non-minimal, g, (0 — m?) — V,V,.

@ Consider another model
1 1 1
S[4, 0] = / By =g~ R, + m2ar — Lyreya, - Lv,0)
4 2 m m
Action is invariant under the transformations 64, = V£, 6C = —m¢. This
is the gauge theory. In the gauge C' = 0 one gets the model with action
S[A]. In the gauge V#A,, = 0 one gets the equivalent model with minimal
operator. After gauge fixing the Lagrangian takes the form

1

1 1
iAu(gMV(D - m2) - R;w)AV - mANV#C — §CDC

Operator associated with this Lagrangian is minimal. Price for this is the
Stiickelberg field C.
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Gauge invariant formulation with help of Stiickelberg fields

Aim: reformulate the models of massive rank-2 and rank-3 antisymmetric tensor
fields in gauge invariant form with help of the Stiickelberg fields.
Model of massive rank-2 antisymmetric tensor field.

o Model with action S[Bs] is equivalent to model with action S[Bs, C1],
containing the vector Stijckelberg field C,,,

S[By, Ci] = [ d*z\/—g FW )F,“,A(B)+%m2(BW+%F’“’(C))2)

where F,,,(C) =V,C, — VVC’M.
@ Action is invariant under the gauge transformations of the field B2 and under
the shift of the field C,,,
G, =Cy—mé,.

Also the action is invariant under the gauge transformations of the
Stiickelberg vector field

C,=C.,+V,\, B, =B,

o In the gauge C,, = 0 one gets the initial action S[B5], in the gauge
V. B" =0 one gets the action corresponding to the minimal operator.
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Gauge invariant formulation with help of Stiickelberg fields

Model of massive rank-3 antisymmetric tensor field.
@ Model with action S[Bj3] is equivalent to model with action S[Bs, Cs],
containing the rank-2 antisymmetric tensor Stiickelberg field,

m2

S(Ba. Ca] = [ d'a /=g~ S P (B)Fyupa (B)+ T (B4 P2 (C))

where F,,,,(C) is the strength tensor for rank-2 antisymmetric tensor field

Chuv-
@ Action is invariant under the gauge transformations of the field B3 and under
the shift of the field C,,,,

C:“, =Cu — m&u.
Also the action is invariant under the gauge transformations of the

Stiickelberg tensor field
Cl//ol’ = C/‘V + VHAV - vVAVa B, = Bp,l/p

pvp
@ In the gauge C},, = 0 one gets the initial action S[B3]. In the gauge
V. B*P =0, V,CH" =0 one gets the action corresponding to minimal
operator.
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Quantization and effective action

After the models under consideration are formulated with help of Stiickelberg
fields, they can be quantized as the gauge theories.

From general point of view such models belong to a class of gauge theories with
linearly dependent generators. In principle all such theories can be quantized by
Batalin-Vilkovisky method (I. Batalin, G. Vilkovisky, 1983).

However the quantization of theories with quadratic actions and Abelian linearly
dependent gauge generators can be carried out much more simpler by multi-step
applications of the Faddeev-Popov procedure (I.L.B, S.M. Kuzenko, 1988).

Quantization of massless rank-2 antisymmetric tensor field models on the base of
the multi-step applications of the Faddeev-Popov procedure has been illustrated in
my talk for the example of massless rank-2 antisymmetric tensor field model.
Omitting the calculations one formulates only the final results for the effective
actions.
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Quantization and effective action

Effective action T'y(") [guv] of the massive rank-2 antisymmetric tensor field model
Fém) [9u0] = %[Tr In(Og +m?) — Trin(0y + m?) + Trin(0g + m?)]

Effective action T'1(™)[g,,] of the massive vector field

Fgm) (9] = %[Tr In(0Oy + m2) — Trln(0g + m2)]

Effective action Fgm) (9] of the massive rank-3 antisymmetric tensor field

[Trin(d3 +m?) — Trin(Dg +m?) + Trin(O; +m?) — Trin(Og +m?)]

m 1
05" gl = 5

Effective action of Fém) [guv] of the massive scalar field minimally coupled to
gravity

m {
I 9] = 5 TrIn(To +m?)

Here the O3, 0y, 07 and Og are the d'Alembertians acting on rank-p
antisymmetric tensor fields.
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Quantum equivalence

Aim: to study the quantities
AF(I) = Fgm) [g;w] - Fgm) [g;w]

Ar(z) = F:(Bm) [g;w] - Fém) [g,uu]

AT = % [Trin(0s +m?) — 2TrIn(Tdy + m?) + 2TrIn(Tg + m?)]

AI® = %[Trln(Dg +m?) — Trin(Oy +m?) + Trin(0; +m?) — 2TrIn(Dg +m?)]
One can prove that in flat space both these quantities are exactly zeros.

We will show that they are exactly zeros in curved space under appropriate
definition of functional determinants of the differential operators.
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Quantum equivalence

Definition of functional determinants

The fields ¢, A,,, B2, B3 are considered as the p -forms (p =0, 1,2, 3).
Euclidean formulation
The operators O, are the Laplacians acting on p -forms

Effective action is defined in terms of generalized (— functions associated
with the operators —O,, + m? in the form

1 00
Cp(s7m) = Z )\;S _ @/ dtts—le—tszr(etDp _ ,Pp)

where P, is the projector operator onto the space of the zero modes of the
operator O, (S. Rosenberg, Laplacians on Riemannian Manifolds, 1977).

Effective action associated with the operator —0,, + m? is written as follows
InDet(—0,, +m?) = —(G;(0,m) + In(1*)G, (0, m))

where p is the arbitrary mass scale parameter. The effective action defined
this way is finite for any p.
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Quantum equivalence

In the framework of the above definition
ATM = (¢5(0,m) = 2¢1(0,m) +2¢5(0,m))

+In(1?)(¢2(0,m) — 2¢1(0,m) + 2¢(0,m))
and
AT = (¢4(0,m) — ¢5(0,m) + ¢1(0,m) — 2¢((0,m))

+In(,u2)(§3(0, m) - CZ(O’ m) + Cl (07 m) - QCO(Oa m))

Hodge duality between p -forms and 4 — p -forms leads to identities between the
operators O, with different p. It allows us to prove the identity

Cp(s, m) = C(4—p)(3a m)

Using this identity one gets
AT® = _ AT,

Therefore it is sufficient to study only AT'(}),
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Quantum equivalence

Applications of the identities for the effective action
o Identity

4
Z )P Gp(s,m) = 2(C2(s,m) — 2¢1(s,m) + 2(o(s,m))
p=0

o AT in terms of this identity

4 4

D (=1)Pp ¢ (0,m) + In(1?) > " (=1)"p G(0,m)]

p=0 p=0

AT =

DO | =

@ Expansion for mass dependent { -function

X . 2\n
Glsm) =Y WCP(S +1,0).
n=0 :
o Identity
4 e} ( nr n—+5 4
S =1 Golsm) = 3 TZ VP Gols +1,0) .
p=0 n=0 p=0
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Quantum equivalence

Ray and Singer identity (D. Ray, |. Singer, 1971, 1973).

4

D (1P G(s) =0

p=0
Identity for mass dependent ( - functions

4

Z(—l)pp Cp(s,m)=0.

p=0

General result
AT =0, Ar® =o.

Effective action for massive second rank antisymmetric field model exactly
coincides with effective action for massive vector field model. These theories are
quantum equivalent.

Effective action for massive third rank antisymmetric field model exactly coincides
with effective action for massive scalar field model with minimal coupling to
gravity. These theories are quantum equivalent.
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Quantum equivalence

Effective action on the base of the another definition of { -function.

Usually the one-loop effective action in quantum field theory is defined with help
of Schwinger-DeWitt technique. It is equivalent to define ¢ -function including the
zero-modes in the form

Co(s,m) = Z A= —F(ls) / dttsfle*tmgTr(etDP)
Ag

0

One can show that the relation AT = —ATM) still takes place. However the
relation Zf,:o(*l)pp ¢p(s,m) =0 is not valid now.

Let I is the effective action defined with help of ¢ -function. Then the
corresponding AT'(!) has the form

AT = |n(i2) L [ o/ Zg@)[bs — m2bs + m—460]
m2’ 1672 2 ’

where
bp = a® — 24V 4240 n=0,1,2

The DeWitt coefficients afqp),n =0,1,2;p=01,1,2 are known from literature.

I.L. Buchbinder (Tomsk) MASSIVE ANTISYMMETRIC TENSOR FIELD MODI Tomsk, 2015



Quantum equivalence

Calculations of the DeWitt coefficients

(] bo =0
("] b]_ =0

Difference of effective actions for classically equivalent theories is mass

independent
° 1

by = i[waAp — 4R’ + R?.
As a result
(1) I
ATM = In(—5)x;

where x is the Gauss-Bonnet topological invariant.

The effective actions of classically equivalent theories, defined in terms of (
-function without zero-modes and in terms of { -function with zero-modes, are
equal to each other up to the topological invariant. The expectation values of the
corresponding energy-momentum tensors coincide
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@ Gauge invariant formulation of massive second and third ranks antisymmetric
tensor field models with Stiickelberg fields.

@ Quantization of the models and structure of the effective actions in terms of
functional determinants of appropriate differential operators acting on p—
forms.

@ Definitions of the effective actions in terms of generalized (— functions.

@ Proof of quantum equivalence of massive second rank antisymmetric tensor
field model to massive vector field model and massive third rank tensor field
model to massive scalar field model with minimal coupling.
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THANK YOU VERY MUCH!
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