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On Sep 14, 2015, a dramatic event has taken place...

[nature.com/articles/d41586-020-03047-0]
— GW150914: first ever direct detection of GWs!



GWs from binary mergers

= Target of GW detectors such as LIGO and Virgo
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[www.ligo.org/science/faq.php] Adapted from: [LIGO-Virgo-KAGRA, Aaron Geller]




The GW era has just begun...

... and a whole new incredible Universe is waiting out there to be explored!

Binary mergers _ GWs
, New physics! _ ,
= cosmic labs = smoking-gun signals
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Probing DM with GWs

Example:

DM halos around neutron stars:

— What happens?

[NASA/Swift, Dana Berry]



DM halos around neutron stars
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[www.had.liu.edu/][www.lorene.obspm.fr]



DM halos around neutron stars
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DM halos around neutron stars

Presence of DM halos:
— Dark fifth force
— Drastically affects merger dynamics

— Changes GW signal!

[LS, Zhang, Johnson, Lehner, Sakellariadou, Liebling, Palenzuela, Neilsen, '18]
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GW signal

Energy emitted in gravitational
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M1 = M2 = 125M@
— Constrain with LIGO data!

[dcc.ligo.org /LIGO-T0900288/public]
12






Axions

= Hypothetical particles beyond SM
+ promising DM candidates

— Talks by Géraldine Servant \&\\\ LEm
+ Tao Liu! ) ELEMENTARY

PARTICLE

e Axion-mediated dark fifth force 4 LITTLE INTERACTION

_ . WITH REGULAR MATTER
— Constrain axion parameters
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[www.symmetrymagazine.org]
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Constraining axions with GWs

[Zhang, Lyu, Huang, Johnson, LS, et al., 21]
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GW signal

— Stringent constraints

from LIGO/Virgo datal

— 4t L|GO observing run since May

[Iscsoft.docs.ligo.org/lalsuite]

[pycbc.org]

2023: New data!

[Becker, Diedrichs, Genoud-Prachex,

t,

X2z X1z ¢c As sy
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Self-interacting

DM




Dwarf
galaxies

Self-interacting DM (SIDM)

MW-sized Galaxy Large-scale
galaxies clusters structure

Images: [ESO/Digitized Sky Survey 2][Daley; smithsonian.com]
[INASA, ESA; Richard, Kneib][sdss.org/science/]
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Dwarf galaxies

Core-cusp problem: — Talk by Tao Liu [Moore, '94][Flores, Primack, '94]

DM density profile: core «» cusp (cold, collisionless dark matter)

— Small-scale crisis
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Adapted from: [Tulin, Yu, '17]
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Self-interacting dark matter (SIDM)

CDM = cold, collisionless dark matter

SIDM = cold, collisional dark matter [Spergel, Steinhardt, '99]
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— DM particles self-interact:
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o/m ~ 1 cm?/g ~ 2 barns/GeV [Tulin, Yu, '17]
[LS et al., "20]
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Self-interacting dark matter (SIDM)

SIDM can explain:
* Core-cusp problem

* Diversity of galactic rotation curves
[Kamada, Kaplinghat, Pace, and Yu, ‘17|

* Origin of supermassive black holes at redshifts z~ 6—7
[Feng, Yu, Zhong, 20]
[Outmezguine, Gad-Nasr, Boddy, Kaplinghat, LS, '22]

— Very promising DM candidate!

— Constrain self-interaction cross section o/m/!
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Probing DM with GWs

Intermediate mass-ratio inspirals

(IMRIs)

My = 103 ... 106 M

— Probe particle nature of DM!

Merging black holes + neutron

stars

g b =

Myg /i = 1 ... 100 M
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DM spikes in IMRIs

DM halo

DM spikes
* “Dressed” black hole in DM halo

* Creates DM spike with extremely high density

— Violent environment

— Binary dynamics drastically affected R
spike

[Gondolo, Silk, '99][Eda et al., "13] ‘
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DM spikes in IMRIs

Additional energy loss through
dynamical friction:

dE . dEGW 4 dEfriction

Cdt dt dt

~ DM density pp(7)

— Depends on DM particle

properties

— Probe DM with GWs:
CDM vs. SIDM!
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Astrophysical effects — Talk by Luke Kelley

Astrophysical effects: DM effects:

v Elliptical orbits v/ Dynamical friction effects of

v Accretion disks different DM models (CDM,
SIDM, ...)

v/ Halo feedback
v/ Relativistic corrections to the

v/ Post-Newtonian corrections to the .
DM density

waveform

s Spinning black holes
WA [T B [Becker, LS, Prinz, Rastgoo, '21]
iy R \ W -

=Ml [Becker, LS, '22]

[Becker, Dreichner, Montalvo, LS, Smith, Rastgoo, in prep.]
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Astrophysical and DM effects

Can be disentangled by looking at different observables:
* Characteristic strain

* Difference in the number of cycles
 Eccentricity evolution

* Braking index

— Constrain the particle properties of DM!

Becker, LS, Prinz, Rastgoo, '21]
Becker, LS, '22]
[Becker, Dreichner, Montalvo, LS, Smith, Rastgoo, in prep.]
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DM spikes in IMRIs
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Rastgoo, in prep.]
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DM spikes in IMRIs

Additional energy loss through

dynamical friction:
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[Becker, Dreichner, Montalvo, LS, Smith,
Rastgoo, in prep.]
29



Probing DM with GWs

Cosmological phase transitions DM spikes in

in models with DM candidates intermediate

DM halos around mass ratio
merging supermassive inspirals
black holes

012 10-10 108
|

Pulsar timing

DM effects

/' In rotatin
g
0/

neutron

Neutron stars

stars with
BL\Y

halos/cores

30



Probing DM with GWs
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Probing DM with GWs

, o , [Daniel, Huhn, BP7S o
Intermediate mass-ratio inspirals . 3 !
Pardo, LS, in prep.] 2584 |

(IMRIs) ‘T

Supermassive black hole binaries
(SMBHB:)

~—
—

— Talk by Frederik Depta
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SMBHBs with DM halos

f (Hz)
10°8

* Fit to PTA data

* Promising first estimates! - IR
== null (w/o DM) . )
 New GW probe of DM, — alt (w/ DM)
1071 - { NANOGrav 15yr
much left to explore! | s S I B
10! 10°
f(yr™)

[Shen et al., 23|
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Summary and outlook




Summary and outlook

Gravitational waves

= powerful probes of new physics:
 Extensions of general relativity

* Particle physics beyond SM
= dark matter,

e.g., axions, self-interacting dark

matter, ...

— The GW era has just begun!

[NASA /Swift,

Dana Berry|
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There is a brlght future to explore DI\/I W|th GWsI
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Thank you for your attention!



