Probing Dark Matter with Gravitational Waves in the LIGO, LISA and PTA Range

Laura Sagunski

Dark Matter Modified Gravity Gravitational Waves

On Sep 14, 2015, a dramatic event has taken place...

[nature.com/articles/d41586-020-03047-0]

 \rightarrow GW150914: first ever direct detection of GWs!

GWs from binary mergers

= Target of GW detectors such as LIGO and Virgo

The GW era has just begun...

... and a whole new incredible Universe is waiting out there to be explored!

The GW era has just begun...

... and a whole new incredible Universe is waiting out there to be explored!

The GW era has just begun...

... and a whole new incredible Universe is waiting out there to be explored!

[NASA/Swift, Dana Berry]

Example:

DM halos around neutron stars:

 \rightarrow What happens?

DM halos around neutron stars

Neutron star density ρ

Scalar field φ

 $M_1 = M_2 \equiv 1.2 M_{\odot}$

[LS, Zhang, Johnson, Lehner, Sakellariadou, Liebling, Palenzuela, Neilsen, '18] [www.had.liu.edu/][www.lorene.obspm.fr]

DM halos around neutron stars

Neutron star density ρ

Scalar field φ

 $M_1 = M_2 \equiv 1.2 M_{\odot}$

[LS, Zhang, Johnson, Lehner, Sakellariadou, Liebling, Palenzuela, Neilsen, '18] [www.had.liu.edu/][www.lorene.obspm.fr]

DM halos around neutron stars

- Presence of DM halos:
- \rightarrow Dark fifth force
- \rightarrow Drastically affects merger dynamics
- \rightarrow Changes GW signal!

[LS, Zhang, Johnson, Lehner, Sakellariadou, Liebling, Palenzuela, Neilsen, '18]

GW signal

[dcc.ligo.org/LIGO-T0900288/public]

Axions

- = Hypothetical particles beyond SM
- + promising DM candidates
 - → Talks by Géraldine Servant + Tao Liu!
- Axion-mediated dark fifth force
 - \rightarrow Constrain axion parameters (mass m_a + decay constant f_a) with GWs!

[www.symmetrymagazine.org]

Constraining axions with GWs

GW signal

- → Stringent constraints from LIGO/Virgo data!
- → 4th LIGO observing run since May 2023: New data!

[Becker, Diedrichs, Genoud-Prachex, LS, Schaper, Schmitt, Zhang, in prep.]

Self-interacting DM (SIDM)

Images: [ESO/Digitized Sky Survey 2][Daley; smithsonian.com] [NASA, ESA; Richard, Kneib][sdss.org/science/]

Dwarf galaxies

Core-cusp problem: \rightarrow Talk by Tao Liu[Moore, '94][Flores, Primack, '94]DM density profile: core \leftrightarrow cusp (cold, collisionless dark matter)

 \rightarrow Small-scale crisis

19

Self-interacting dark matter (SIDM)

CDM = cold, collisionless dark matter SIDM = cold, collisional dark matter

[Spergel, Steinhardt, '99]

Self-interacting dark matter (SIDM)

SIDM can explain:

- Core-cusp problem
- Diversity of galactic rotation curves

[Kamada, Kaplinghat, Pace, and Yu, '17]

• Origin of supermassive black holes at redshifts $z\sim 6{-7}$

[Feng, Yu, Zhong, '20]

[Outmezguine, Gad-Nasr, Boddy, Kaplinghat, LS, '22]

\rightarrow Very promising DM candidate!

 \rightarrow Constrain self-interaction cross section $\sigma/m!$

Merging black holes + neutron stars

$$M_{\rm BH} = \, 10^3 \, \dots \, 10^6 \, M_\odot$$

 $M_{\rm NS/BH} = 1 \ \dots \ 100 \ M_{\odot}$

 \rightarrow Probe particle nature of DM!

DM spikes in IMRIs

DM spikes

- "Dressed" black hole in DM halo
- Creates DM spike with extremely high density
 - \rightarrow Violent environment
 - \rightarrow Binary dynamics drastically affected

[Gondolo, Silk, '99][Eda et al., '13]

DM spikes in IMRIs

Additional energy loss through dynamical friction:

properties

 \rightarrow Probe DM with GWs: CDM vs. SIDM!

Astrophysical effects \rightarrow Talk by Luke Kelley

Astrophysical effects:

- \checkmark Elliptical orbits
- \checkmark Accretion disks
- ✓ Halo feedback
- ✓ Post-Newtonian corrections to the waveform

Spinning black holes

[Becker, LS, Prinz, Rastgoo, '21] [Becker, LS, '22] [Becker, Dreichner, Montalvo, LS, Smith, Rastgoo, in prep.]

DM effects:

- ✓ Dynamical friction effects of different DM models (CDM, SIDM, ...)
- ✓ Relativistic corrections to the DM density

Astrophysical and DM effects

Can be disentangled by looking at different observables:

- Characteristic strain
- Difference in the number of cycles
- Eccentricity evolution
- Braking index
 - \rightarrow Constrain the particle properties of DM!

[Becker, LS, Prinz, Rastgoo, '21] [Becker, LS, '22] [Becker, Dreichner, Montalvo, LS, Smith, Rastgoo, in prep.]

m

GWs

DM spikes in IMRIs

DM spikes in IMRIs

SMBHBs with DM halos

[Shen et al., '23[

Summary and outlook

Summary and outlook

Gravitational waves

- = powerful probes of new physics:
- Extensions of general relativity
- Particle physics beyond SM = dark matter,

e.g., axions, self-interacting dark matter, ...

 \rightarrow The GW era has just begun!

[NASA/Swift, Dana Berry]

There is a bright future to explore DM with GWs!

36

Thank you for your attention!