PBH bounds on scalar-induced GWs

in the PTA band

Valerie Domcke CERN

@ MITP workshop on PTAs 14.-18.08.2023

based on 2302.07901 with Virgile Dandoy and Fabrizio Rompineve

Valerie Domcke - CERN

probes of scalar power spectrum

CMB:
$$P_{\zeta}(k) \simeq 10^{-9}$$
 @ $k \sim 0.05 \text{ Mpc}^{-1}$

at smaller scales much weaker constrained:

• scalar induced GWs (SIGWs) $\zeta + \zeta \rightarrow h$

$$f = k/(2\pi) \sim 10^{-9} \text{ Hz } (k \text{ pc})$$

• primordial black holes (PBHs) $\zeta \sim \delta \rho \rightarrow PBH$

$$M_H = \frac{4}{3}\pi H^{-3}\rho = 4\pi M_P^2 H^{-1} \simeq 20 M_{\odot} (k \text{ pc})^{-2}$$

see also Fabrizio's

talk yesterday

large scalar perturbations at pc scale (re-entered 15 – 20 e-fold after CMB) \rightarrow GWs at PTA scales and PBHs around ~ solar mass

scalar induced GWs

model for scalar power spectrum

$$P_{\zeta}(k) = \frac{A_{\zeta}}{\sqrt{2\pi}\Delta} \exp\left[-\frac{\ln^2(k/k_*)}{2\Delta^2}\right]$$

- k_* peak position
- A_{ζ} amplitude
- Δ width

Bayesian search in PTA data

2023 data release

Nanograv 15 New Physics Paper

primordial black holes

• fraction of PBH dark matter:

$$f_{\rm PBH} = \frac{1}{\Omega_{\rm DM}} \int d\ln M \int d\ln k \ \beta_k(M) \ \frac{\rho_\gamma(T_k)}{\rho_c^0} \frac{s^0}{s(T_k)}$$

radiation component

fraction of radiation collapsed to PBH of mass M at horizon re-entry

primordial black holes

• fraction of PBH dark matter:

$$f_{\rm PBH} = \frac{1}{\Omega_{\rm DM}} \int d\ln M \int d\ln k \ \beta_k(M) \ \frac{\rho_\gamma(T_k)}{\rho_c^0} \frac{s^0}{s(T_k)}$$

radiation component

fraction of radiation collapsed to PBH of mass M at horizon re-entry

• Press-Schechter formalism for spherical collapse:

$$\beta_k(M) = \int_{\delta_c}^{\infty} d\delta \underbrace{\mathcal{P}_k(\delta)}_{\frac{\exp(-\delta^2/(2\sigma_k^2))}{\sqrt{2\pi\sigma_k}}} \underbrace{\frac{M(\delta)}{M_H(k)}}_{\simeq 1} \underbrace{\frac{\delta_D \left[\ln \frac{M}{M(\delta)}\right]}{M(\delta) = M}}_{M(\delta) = M}$$

probability distribution

$$\delta_c \sim c_s^2 = 1/3$$
 $\sigma_k^2 \sim P_\delta(k) \sim P_\zeta(k)$

primordial black holes

• fraction of PBH dark matter:

$$f_{\rm PBH} = \frac{1}{\Omega_{\rm DM}} \int d\ln M \int d\ln k \ \beta_k(M) \ \frac{\rho_{\gamma}(T_k)}{\rho_c^0} \frac{s^0}{s(T_k)}$$

radiation component

 $\mathcal{D}_{1}(\delta)$

fraction of radiation collapsed to PBH of mass M at horizon re-entry

• Press-Schechter formalism for spherical collapse:

$$\delta_c \sim c_s^2 = 1/3$$
 $\sigma_k^2 \sim P_\delta(k) \sim P_\zeta(k)$

- Bounds on PBH abundance from $f_{PBH} < 1$, microlensing, LIGO/VIRGO
 - \rightarrow constraints on power spectrum $P_{\zeta}(k)$

6 / 20

Valerie Domcke - CERN

The devil is in the detail (1)

$$\beta_{k}(M) = \int_{\delta_{c}}^{\infty} d\delta \underbrace{\mathcal{P}_{k}(\delta)}_{\frac{\exp(-\delta^{2}/(2\sigma_{k}^{2}))}{\sqrt{2\pi}\sigma_{k}}} \frac{M(\delta)}{M_{H}(k)} \delta_{D} \left[\ln \frac{M}{M(\delta)} \right]$$

$$gaussian \qquad M(\delta) = \kappa M_{H}(k)(\delta - \delta_{c})^{\gamma}, \quad \gamma = 0.36, \ \kappa = 1..10$$

The devil is in the detail (1)

$$\beta_{k}(M) = \int_{\delta_{c}}^{\infty} d\delta \underbrace{\mathcal{P}_{k}(\delta)}_{\frac{\exp(-\delta^{2}/(2\sigma_{k}^{2}))}{\sqrt{2\pi}\sigma_{k}}} \frac{M(\delta)}{M_{H}(k)} \delta_{D} \left[\ln \frac{M}{M(\delta)} \right] \qquad \delta_{c} \mapsto \delta_{c}(W)$$

$$\underbrace{\uparrow}_{gaussian} \qquad M(\delta) = \kappa M_{H}(k)(\delta - \delta_{c})^{\gamma}, \quad \gamma = 0.36, \ \kappa = 1..10$$

smoothed density contrast:
$$\delta_m = \frac{1}{V} \int dR \, 4\pi R^2 \, \frac{\delta \rho}{\bar{\rho}}(R, t_H) \, W(R, R_m)$$

non-linear relation $\delta \rho(\zeta) \mapsto \delta_m(\delta_l)$ depends on choice of window function
 $\delta_l \equiv \text{ linearized smooth density contrast}$ Young `19

The devil is in the detail (1)

$$\beta_{k}(M) = \int_{\delta_{c}}^{\infty} d\delta \underbrace{\mathcal{P}_{k}(\delta)}_{\frac{\exp(-\delta^{2}/(2\sigma_{k}^{2}))}{\sqrt{2\pi}\sigma_{k}}} \frac{M(\delta)}{M_{H}(k)} \delta_{D} \left[\ln \frac{M}{M(\delta)} \right] \qquad \begin{array}{l} \delta \mapsto \delta_{l} \\ \delta_{c} \mapsto \delta_{c}(W) \\ \delta_{c} \mapsto \delta_{c}(W) \\ \delta_{c} \mapsto \delta_{c}(W, \Delta) \end{array}$$

$$gaussian \qquad M(\delta) = \kappa M_{H}(k)(\delta - \delta_{c})^{\gamma}, \quad \gamma = 0.36, \ \kappa = 1..10$$

smoothed density contrast: $\delta_m = \frac{1}{V} \int dR \, 4\pi R^2 \, \frac{\delta \rho}{\bar{\rho}}(R, t_H) \, W(R, R_m)$ non-linear relation $\delta \rho(\zeta) \mapsto \delta_m(\delta_l)$ depends on choice of window function $\delta_l \equiv \text{ linearized smooth density contrast}$ Young `19

shape parameter: $P_{\zeta}(k)$ broader \rightarrow more modes involved in collapse \rightarrow lower δ_c

The devil is in the detail (2)

The devil is in the detail (2)

The devil is in the detail (2)

The devil is in the detail (summary)

Most important are exponential factors :

critical density $\delta_c \rightarrow$ shape parameter, window function, non-linear relation variance $\sigma_k \rightarrow$ window function, non-linear relation (?)

GWs vs PBHs

Dandoy, VD, Rompineve `23

IPTA DR2 (~ DR `23) preferred region excluded by PBH constraints.

Exponential sensitivity of f_{PBH} to A_{ζ} :

$$f_{\rm PBH} \to A_{\zeta} \quad : \quad \checkmark$$

 $A_{\zeta} \to f_{\rm PBH}$: **X**

10 / 20

constraints on scalar power spectrum

Dandoy, VD, Rompineve `23

Valerie Domcke - CERN

Conclusions

PBH bounds make a SIGW interpretation of PTA data difficult at best

some uncertainties and model dependence in PBH calculation remain, but a lot of progress in recent years!

PTAs are powerful probe of scalar power spectrum at ~ pc scale

One slide on metastable cosmic strings

 $G_{SM} \times U(1)_{B-L} \subset SO(10)$

$$\Gamma_d \sim \mu \exp(-\pi \kappa^2), \quad \kappa^2 = m^2/\mu$$

 $\mu \sim v_{B-L}^2$ string tension $m \sim v_{GUT}$ monopole mass

13/20

 $G_{SM} \times U(1)_{B-L} \to G_{SM}$

(One) slide on metastable cosmic strings

GUT-scale U(1) phase transition can be tested with GWs

... and (one) advertisement

CERN TH visitor program

https://theory.cern/visitor-info

short-term visits typically O(week)

long term visits (> 3 months, usually sabbaticals)

CERN fellowship program

https://theory.cern/jobs

deadline September 3rd (!!) for CERN member state nationals

consider applying!

backup

SMBHB + SIGW analysis

constraints on scalar power spectrum

Valerie Domcke - CERN

GWs vs PTAs (2023 DR)

Franciolini, Iovino, Vaskonen, Veermäe `23

metastable cosmic strings : spectal tilt

