# What can we learn about axions with PTAs ?

Géraldine SERVANT DESY/U.Hamburg Peera Simakachorn CSIC/U.Valencia

MITP PTA workshop 2023 Mainz, 15-08-2023



CLUSTER OF EXCELLENCE QUANTUM UNIVERSE



Rather than interpreting the PTA GW signal in terms of new physics, can we use this measurement to derive constraints on new physics, and in particular, on axion physics? Which axion physics in the early universe produces GWs at NanoHz frequencies today?

-1- Axionic strings (*= global strings*): this talk

-2- Axion fragmentation

### Axions

Among the most hunted particles.

Axions = Pseudo- Nambu Goldstone bosons (PNGBs) from spontaneous breaking of global symmetry which is not exact but broken weakly.

Axion mass is proportional to this breaking.

Very general context.

Historically: QCD axion. Strong dynamics from QCD provides breaking of symmetry.

Axion-like-particles (ALPs): other axions whose mass is not affected by QCD. They get their mass from other sources.

Ubiquitous in many extensions of the Standard Model (in particular in string theory)

### **Axion-Like-Particles (ALPs).**

**Consider complex scalar field** 

$$\Phi = \phi e^{i\theta}$$

charged under anomalous U(1) global symmetry (Peccei-Quinn symmetry)

Spontaneously broken at scale f<sub>a</sub>

$$V(\varphi) = \lambda \left( |\varphi|^2 - \frac{f_a^2}{2} \right)^2$$

$$\langle \boldsymbol{\varphi} \rangle = f_a / \sqrt{2}$$



Axion as Goldstone boson

 $\theta \rightarrow \theta + \text{const.}$ 

$$\theta = a / f_a$$

#### ALPs.

Non-perturbative effects at energy  $\Lambda_b \ll f_a$  break the shift symmetry and generate a potential/mass for the axion

$$\mathbf{V} = m_{\mathbf{a}}^{2}(T)f_{\mathbf{a}}^{2}\left[1 - \cos\left(\theta\right)\right]$$

 $m_a = \Lambda_b^2 / f_a$ 

**QCD** axion

**Generic ALP** 

m<sub>a</sub><sup>2</sup>f<sub>a</sub><sup>2</sup> ≈ (76 MeV)<sup>4</sup>

ma and fa : free parameters

### The hunt for axions.

Mainly through Axion-photon coupling



 ${{\rm a} F_{\mu
u}} { ilde F}^{\mu
u} {
m f}_{{\rm a}}$ 

In a background magnetic field: axion<->photon conversion



If long-lived: Dark Matter candidate

### Three main ways to search for ALPs.

#### All rely on ALP-photon mixing in magnetic field



Haloscopes

looking for dark matter constituents, microwaves

Helioscopes Axions emitted by the sun, X-rays

Purely laboratory experiments "light-shining-through-walls", microwaves, optical photons

### The Axion-Like-Particle (ALP) parameter space.

If axions are given an interaction to photons then a long list of constraints from ALP searches apply



#### The hunt for axions.



## A whole set of experimental constraints.

#### All data can be found here:

C. O'Hare, *cajohare/axionlimits: Axionlimits*, https://cajohare.github.io/AxionLimits/ (2020) [10.5281/zenodo.3932430].

#### All experiments also listed in tables 1 and 2 of 2206.14259:

| Experiment:           | Principle                                    | DM?    | Ref.                           |
|-----------------------|----------------------------------------------|--------|--------------------------------|
| Haloscope constraints |                                              |        |                                |
| ABRACADABRA-10cm      | Haloscope                                    | DM     | [76]                           |
| ADMX                  | Haloscope                                    | DM     | [77-83]                        |
| BASE                  | Haloscope (Cryogenic Penning Trap)           | DM     | [84]                           |
| CAPP                  | Haloscope                                    | DM     | [85-87]                        |
| CAST-RADES            | Haloscope                                    | DM     | [88]                           |
| DANCE                 | Haloscope (Optical cavity polarization)      | DM     | [89]                           |
| Grenoble Haloscope    | Haloscope                                    | DM     | [90]                           |
| HAYSTAC               | Haloscope                                    | DM     | [91, 92]                       |
| ORGAN                 | Haloscope                                    | DM     | [93]                           |
| QUAX                  | Haloscope                                    | DM     | [94, 95]                       |
| RBF                   | Haloscope                                    | DM     | [96]                           |
| SHAFT                 | Haloscope                                    | DM     | [97]                           |
| SuperMAG              | Haloscope (Using terrestrial magnetic field) | DM     | [98]                           |
| UF                    | Haloscope                                    | DM     | [99]                           |
| Upload                | Haloscope                                    | DM     | [100]                          |
| Haloscope projections | -                                            |        |                                |
| Abta                  | Haloscope                                    | DM     | [101]                          |
| ADMX                  | Haloscope                                    | DM     | [102]                          |
| aLIGO                 | Haloscope                                    | DM     | [103]                          |
| ALPHA                 | Haloscope (Plasma haloscope)                 | DM     | [104]                          |
| BRASS                 | Haloscope                                    | DM     | [105]                          |
| BREAD                 | Haloscope (Parabolic reflector)              | DM     | [106]                          |
| DANCE                 | Haloscope (Optical cavity polarization)      | DM     | [107]                          |
| DMRadio               | Haloscope (All stages: 50L $m^3$ and GUT)    | DM     | [108 109]                      |
| FLASH                 | Haloscope (Formerly KLASH)                   | DM     | [110, 111]                     |
| Heterodyne SRF        | Haloscope (Superconduct, Resonant Freq.)     | DM     | [112, 113]                     |
| LAMPOST               | Haloscope (Dielectric)                       | DM     | [114]                          |
| MADMAX                | Haloscope (Dielectric)                       | DM     | [115]                          |
| ORGAN                 | Haloscope                                    | DM     | [93]                           |
| QUAX                  | Haloscope                                    | DM     | [116]                          |
| TOORAD                | Haloscope (Topological anti-ferromagnets)    | DM     | [117, 118]                     |
| WISPLC                | Haloscope (Tunable LC circuit)               | DM     | [119]                          |
| I CHI and and the     |                                              |        | []                             |
| LSW and optics        | Light-shining-through wall                   | Any    | [120]                          |
| ALPS II               | Light-shining-through wall (projection)      | Any    | [120]                          |
| CROWS                 | Light-shining-through wall (microwave)       | Δnv    | [122]                          |
| OSOAB                 | Light-shining-through wall                   | Any    | [122]                          |
| PVLAS                 | Vacuum magnetic birefringence                | Any    | [124]                          |
|                       | vacuum magnetic siteringenee                 | illy   | [121]                          |
| Helioscopes           | Halioscopa                                   | Any    | [125 126]                      |
| babyIAXO              | Helioscope (projection)                      | Any    | [120, 120]<br>[1 107 108]      |
| IAXO                  | Helioscope (projection)                      | Any    | [1, 127, 120]<br>[1, 127, 128] |
| IAXO+                 | Helioscope (projection)                      | Any    | [1, 127, 120]<br>[1, 127, 128] |
|                       | Tenescope (projection)                       | 7 11 Y | [1, 121, 120]                  |

**Table 1**. List of experimental searches for axions and ALPs. The table is continued in table 2. All experiments here rely on the axion-photon coupling.

| Experiment:                 | Principle                                                                                        | DM?  | Reference                                      |
|-----------------------------|--------------------------------------------------------------------------------------------------|------|------------------------------------------------|
| Astrophysical constraint    |                                                                                                  |      |                                                |
| Astrophysical constraint    | Photon ALP oscillation on the c rays from blazars                                                | Any  | [190]                                          |
| Brookthough Liston          | ALP $\rightarrow$ radio $\alpha$ in neutron star magn. fields                                    | DM   | [120]                                          |
| Bullot Cluster              | $ALP \rightarrow fault \gamma$ in neutron star magn. neutron<br>Badia signal from ALP DM decay   | DM   | [130]                                          |
| Chandra                     | ACN X ray prod in cosmic magn field                                                              | Any  | [131]<br>[132_135]                             |
| BBN $\pm N \sigma$          | ALP thermal relic perturbing BBN and $N_{cr}$                                                    | Any  | [136]                                          |
| $DDN + N_{eff}$             | X roug from Magnetia White Dwarf ALP prod                                                        | Any  | [130]                                          |
| CODE /EID AS                | CMD spectral distantians from DM rolis docor                                                     | DM   | [107]<br>[190]                                 |
| Distance ledden             | ALD () a portuning luminosity distances                                                          | Am   | [100]                                          |
| Energi LAT                  | ALP $\leftrightarrow \gamma$ perturbing luminosity distances                                     | Any  | [139]                                          |
| Fermi-LAI                   | SN ALP product. $\rightarrow \gamma$ -rays in cosmic magn. neur                                  | Any  | [140-142]                                      |
| Fermi-LAI                   | AGN A-ray production $\rightarrow$ ALP in cosmic magn. neid                                      | Any  | [143]                                          |
| Haystack Telescope          | ALP DM decay $\rightarrow$ microwave photons                                                     | DM   | [144]                                          |
| HAWC TeV Blazars            | $\gamma \rightarrow \text{ALP} \rightarrow \gamma$ conversion reducing $\gamma$ -ray attenuation | Any  | [145]                                          |
| H.E.S.S.                    | AGN X-ray production $\rightarrow$ ALP in cosmic magn. field                                     | Any  | [146]                                          |
| Horizontal branch stars     | stellar metabolism and evolution                                                                 | Any  | [147]                                          |
| LeoT dwarf galaxy           | Heating of gas-rich dwarf galaxies by ALP decay                                                  | DM   | [148]                                          |
| Magnetic white dwarf pol.   | $\gamma \rightarrow ALP$ conversion polarizing light from MWD stars                              | Any  | [149]                                          |
| MUSE                        | ALP DM decay $\rightarrow$ optical photons                                                       | DM   | [150]                                          |
| Mrk 421                     | Blazar $\gamma$ -ray $\rightarrow$ ALP $\rightarrow \gamma$ -ray in cosmic magn. field           | Any  | [151]                                          |
| NuStar                      | Stellar ALP production $\rightarrow \gamma$ in cosmic magn. fields                               | Any  | [152, 153]                                     |
| NuStar, Super star clusters | Stellar ALP production $\rightarrow \gamma$ in cosmic magn. fields                               | Any  | [153]                                          |
| Solar neutrinos             | ALP energy loss $\rightarrow$ changes in neutrino production                                     | Any  | [154]                                          |
| SN1987A ALP decay           | SN ALP production $\rightarrow \gamma$ decay                                                     | Any  | [155]                                          |
| SN1987A gamma rays          | SN ALP production $\rightarrow \gamma$ in cosmic magnetic field                                  | Any  | [156, 157]                                     |
| SN1987A neutrinos           | SN ALP luminosity less than neutrino flux                                                        | Any  | [157,  158]                                    |
| Thermal relic compilation   | Decay and BBN constraints from ALP thermal relic                                                 | Any  | [159]                                          |
| VIMOS                       | Thermal relic ALP decay $\rightarrow$ optical photons                                            | Any  | [160]                                          |
| White dwarf mass relation   | Stellar ALP production perturbing WD metabolism                                                  | Any  | [161]                                          |
| XMM-Newton                  | Decay of ALP relic                                                                               | DM   | [162]                                          |
| Astrophysical projections   |                                                                                                  |      |                                                |
| Astrophysical projections   | Y ray signal from ALP DM docay                                                                   | DM   | [162]                                          |
| Formi I AT                  | SN ALP production $\rightarrow \alpha$ in cosmic magnetic field                                  | Any  | [164]                                          |
|                             | Halioscope detection of supernova axions                                                         | Any  | [165]                                          |
| THESEUS                     | ALP DM decay $\rightarrow$ x ray photons                                                         | DM   | [166]                                          |
| THESEOS                     | ALL DM decay $\rightarrow$ x-ray photons                                                         | DM   | [100]                                          |
| Neutron coupling:           |                                                                                                  |      |                                                |
| CASPEr-wind                 | NMR from oscillating EDM (projection)                                                            | DM   | [167,  168]                                    |
| CASPEr-ZULF-Comag.          | NMR from oscillating EDM                                                                         | DM   | [168,  169]                                    |
| CASPEr-ZULF-Sidechain       | NMR (constraint & projection)                                                                    | DM   | [168, 170]                                     |
| NASDUCK                     | ALP DM perturbing atomic spins                                                                   | DM   | [171]                                          |
| nEDM                        | Spin-precession in ultracold neutrons and Hg                                                     | DM   | [168, 172]                                     |
| K-3He                       | Comagnetometer                                                                                   | DM   | [173]                                          |
| Old comagnetometers         | New analysis of old comagnetometers                                                              | DM   | [174]                                          |
| Future comagnetometers      | Comagnetometers                                                                                  | DM   | [174]                                          |
| SNO                         | Solar ALP flux from deuterium dissociation                                                       | Any  | [175]                                          |
| Proton storage ring         | EDM signature from ALP DM                                                                        | DŇ   | [176]                                          |
| Neutron Star Cooling        | ALP production modifies cooling rate                                                             | Any  | [177]                                          |
| SN1987 Cooling              | ALP production modifies cooling rate                                                             | Any  | [178]                                          |
| Compliant in the state      | - 0                                                                                              | v    |                                                |
| Coupling independent:       | Supervisiones for stellor mass black hales                                                       | 4    | [79 74]                                        |
| Lamon o                     | Medifaction of small goals starting                                                              | Any  | $\begin{bmatrix} 1 & 2^{-1} & 4 \end{bmatrix}$ |
| $Lyman = \alpha$            | mounication of sman-scale structure                                                              | DIVI |                                                |

## Do PTAs have anything more to add on this plot ?

#### Based on arXiv 2307.03121

with Peera Simakachorn



## Pre- and post-inflationary scenarios.



#### Post-inflationary scenario

- Different initial angle in each Hubble patch.
- Inhomogeneous including topological defects.

## GLOBAL (axionic) COSMIC STRINGS



#### Pre-inflationary scenario

- Random initial angle in the observable universe.
- Initially homogeneous w/o topological defects.

## Primordial Gravitational Waves

#### **Benchmark Primordial Sources of GWs.**



#### the history of the universe.



**10**<sup>12</sup>

10<sup>15</sup> GeV

 $\lambda_{\rm GW}^{\rm inf} = H^{-1}$ 

**10**<sup>9</sup>



## Loop formation & scaling regime.

String intercommutation: loop formation dependence energy from the network.

II. String intercommutation: loop formation depletes energy from the network. II. String intercommutation: loop formation depletes energy from the network



GW emission (particle production for global str(ipgsticle production for global strings)

Cosmic strings do not overclose the universe.

## Gravitational Waves from Cosmic strings.







#### Gravitational Waves from cosmic strings.





#### Gravitational Waves from cosmic strings.



LOCAL STRINGS vs GLOBAL STRINGS.



No analysis of global strings in the other PTA papers either.

## LOCAL STRINGS vs GLOBAL STRINGS.

See comparison in Appendix F of [1912.02569] .

Loops from global strings : short-lived

Loops from local strings : long-lived.

-> different GW spectra in both frequency and amplitude.

#### LOCAL STRINGS vs GLOBAL STRINGS.

Global strings: no gauge field, instead massless Goldstone mode, with logarithmically-divergent gradient energy.

Loops quickly decay into axion particles.

GW are mainly produced at the time of the loop production.





#### spectral shape changes with η

local loops live longer before decaying (& lifetime depends on η)

#### global loops decay fast.

To reach the same amplitude as the local strings, global strings need a larger η since GW production is not the leading energy loss.

#### **Temperature-frequency relation.**

A loop population produced at temperature T quickly decays into GW of frequency

$$f_{\rm GW}^{\rm cs}(T) \simeq 63 \text{ nHz}\left(\frac{\alpha}{0.1}\right) \left(\frac{T}{10 \text{ MeV}}\right) \left[\frac{g_*(T)}{10.75}\right]^{\frac{1}{4}},$$

**α: typical loop** size in units of Hubble horizon

#### IR cutoff of GW spectrum fixed by axion mass.

Network decays when H ~ m<sub>a</sub>

$$f_{\rm GW}^{\rm cs}(m_a) \simeq 9.4 \text{ nHz}\left(\frac{\alpha}{0.1}\right) \left(\frac{m_a}{10^{-15} \text{eV}}\right)^{\frac{1}{2}}$$



#### Analysis of 15 year-NANOGrav data .

#### [Servant, Simakachorn, 2307.03121



**Best-fitted spectra to PTA data:** 

{fa, ma}  $\simeq$  {9.9 · 10<sup>15</sup> GeV, 4.8 · 10<sup>-15</sup> eV})



 $\log_{10}[f_a/\text{GeV}] \qquad \qquad \log_{10}[T_{\text{dec}}/\text{GeV}] \qquad \qquad _0[\alpha_{\star}]$ 

#### WITHOUT THE SWIBHBS

#### **Best-fit does** not change much $\{f_a, m_a\} = \{9.55 \cdot 10^{15} \text{ GeV}, 3.89 \cdot 10^{-15} \text{ eV}\}$







No analysis of global strings in the other PTA papers either.



same SMBHB model as in the NG15 paper.

#### e (m<sub>a</sub>,f<sub>a</sub>) plane .



#### Lab bounds .



#### Adding astro bounds .



#### Theoretical bound from ALP abundance .



#### N<sub>eff</sub> bound from ALP abundance .







**New PTA constraint** 

#### **Domain Wall contribution**.

#### Scalar potential.

 $\Phi \equiv \phi \exp(i\theta)$  with  $\phi$  the radial partner



For  $N_{DW} > 1$ : Domain wall contribution to the GW bgd.



#### String-wall system collapses at temperature

$$T_{\star} \simeq 53 \text{MeV} \left[ \frac{10.75}{g_{\star}(T_{\star})} \right]^{\frac{1}{4}} \left[ \frac{V_{\text{bias}}^{\frac{1}{4}}}{10 \text{MeV}} \right]^{2} \left[ \frac{\text{GeV}}{m_{a}} \right]^{\frac{1}{2}} \left[ \frac{10^{6} \text{GeV}}{f_{a}/N_{\text{DM}}} \right].$$



BF ~ 23.4 without SMBHB

#### BF ~ 44.7 with SMBHB

|                   |             |   | 4 |
|-------------------|-------------|---|---|
| Ē                 |             |   |   |
| 10-5 <sup>[</sup> | Best_fitted | 1 |   |

#### [2307.03121



### Constraining post-inflationary axions with Pulsar Timing Arrays.

#### [2307.03121



## GWs from axion fragmentation.

The transfer of energy in the early universe from the homogeneous axion field into axion quantum fluctuations, e.g. axion fragmentation, inevitably produces a stochastic background of gravitational waves of primordial origin with a peak frequency controlled by the axion mass.

$$\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{\Delta h_{ij}}{a^2} = \frac{16\pi}{M_{\rm pl}^2}\Pi_{ij}^{\rm TT},$$

$$\Pi_{ij}^{\rm TT}(t,\vec{x}) = \frac{1}{a^2} \left[ \partial_i \phi(t,\vec{x}) \partial_j \phi(t,\vec{x}) - \frac{1}{3} \delta_{ij} (\partial_k \phi(t,\vec{x}) \partial_k \phi(t,\vec{x})) \right]$$

## **Examples**.

## Machado et al, 1811.01950



## Chatrchyan, Jaeckel 2004.07844



The signal is generally suppressed when imposing the upper bounds from either the axion dark matter abundance or the axion dark radiation.

Schwaller et al, 2012.11584 (from coupling to dark photon) Eroncel et al, 2206.14259 Geller et al, 2307.03724

—>Dilution of ALP energy density needed

#### Achieved dilution factor of ALP energy density



Ratzinger, Schwaller, Stefanek, 2012.11584

### Z = needed dilution factor of ALP energy density



#### Eroncel et al, 2206.14259



Chatrchyan & al, in prep.



#### Chatrchyan & al, in prep.

## Extra material.

#### SOME REFERENCES

#### GW from GLOBAL CS:

Chang & Cui, [1910.04781], [2106.09746]. Gouttenoire et al,[1912.02569]. Gorghetto, Hardy & Nicolaescu, [2101.11007]. Ramberg & Visinelli, [1904.05707], [2012.06882].

#### GW from DW:

T. Hiramatsu, M. Kawasaki and K. Saikawa, On the estimation of gravitational wave spectrum from cosmic domain walls, JCAP 02 (2014) 031 [1309.5001].

R. Zambujal Ferreira, A. Notari, O. Pujolas & F. Rompineve, High Quality QCD Axion at Gravitational Wave Observatories, Phys. Rev. Lett. 128 (2022) 141101 [2107.07542].

K. Saikawa, Gravitational waves from cosmic domain walls: a mini-review, J. Phys. Conf. Ser. 1586 (2020) 012039.

R. Z. Ferreira, A. Notari, O. Pujolas and F. Rompineve, Gravitational waves from domain walls in Pulsar Timing Array datasets, JCAP 02 (2023) 001 [2204.04228].

E. Madge, E. Morgante, C. P. Iba´n<sup>~</sup>ez, N. Ramberg and S. Schenk, Primordial gravitational waves in the nano-Hertz regime and PTA data – towards solving the GW inverse problem, 2306.14856.

## GW from cosmic strings.



$$f \approx H_* \left(\frac{a_*}{a_0}\right) \xrightarrow{\text{standard cosmo.}} f \approx (19 \text{ mHz}) \left(\frac{T_*}{100 \text{ TeV}}\right)$$

$$\begin{array}{c} \text{cosmic string (local)} \\ \text{loop production @ } t_i & \text{loop emission @ } t_* \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

## With respect to local strings, the GW spectrum from global strings in standard radiation cosmology is:

- suppressed by the shorter Hubble time  $\tilde{t}_M$  at the time of GW emission: factor  $\tilde{t}_M^{\text{global}} / \tilde{t}_M^{\text{local}} \propto G\mu_{\text{local}} \propto (\eta / M_{\text{pl}})^2$ ,
- suppressed by the larger GW redshift factor since emission occurs earlier: factor  $\left[\frac{a(\tilde{t}_{M}^{global})}{a(\tilde{t}_{M}^{local})}\right]^{4} \propto (\eta/M_{\rm pl})^{4}$ ,
- enhanced by the lower loop redshift factor since GW emission occurs right after loop production: factor  $\left(a\left(\tilde{t}_{\rm M}^{\rm local}\right)/a\left(\tilde{t}_{\rm M}^{\rm global}\right)\right)^3 \propto \left(\eta/M_{\rm pl}\right)^{-3}$ ,
- increased by the logarithmically-enhanced GW power emission rate: factor  $\log^2(\eta t_i)$ ,
- increased by the logarithmically-enhanced loop lifetime: factor  $log(\eta t_i)$ .

## Which of these axions can make Dark Matter ?

### Axions from the misalignment mechanism.

Start with ALP lagrangian 
$$\mathcal{L} = -\frac{f^2}{2}g^{\mu\nu}\partial_{\mu}\theta\partial_{\nu}\theta - V(\theta) = -\frac{f^2}{2}g^{\mu\nu}\partial_{\mu}\theta\partial_{\nu}\theta - m_{a}^2f^2(1-\cos\theta).$$

#### Neglecting fluctuations, the homogeneous zero-mode satisfies



 $T_{osc} \sim \sqrt{m_a M_{Pl}}$ 

#### ALP DM parameter space.



## Conventional misalignement makes too little DM for low fa



A way out: switch on initial velocity for the axion Co, Harigaya et al '19 Chang, Cui'19 Eroncel et al, '22