

credits: Aurore Simonnet / NANOGrav

PTAs: where we are and where we are going

Andrea Mitridate MITP | Aug. 14, 2023

where we are

EVIDENCE FOR GWB

Agazie et al. [2306.16213]

NANOGrav: 68 pulsars, 16yr of data ~3-4 σ significance

EPTA + InPTA: 25 pulsars, 24yr of data $\sim 3\sigma$ significance

32 pulsars, 18yr of data $\sim 2\sigma$ significance

SPECTRUM

EPTA + InPTA

SPECTRUM

EPTA + InPTA

for $P_k = \text{const}$, Γ_{ab} reduces to the HD overlap reduction function

for $P_k = \text{const}$, Γ_{ab} reduces to the HD overlap reduction function

for $P_k = \text{const}$, Γ_{ab} reduces to the HD overlap reduction function

$$P_k = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\hat{\Omega}_k) \qquad C_l = \frac{1}{2l+1} \sum_{m=-l}^{l} |c_l|$$

$|m|^2$

CONTENDER #1

CONTENDER #1

 $h_{\rm c}^2(f) = \int dM dq dz \, \frac{\partial^4 N}{\partial M \, \partial q \, \partial z \, \partial \ln f_p} \, h_{\rm s}^2(f_p)$

Phinney 2001, Wyithe & Loeb 2003

ONTENDFR #1

 $h_{\rm c}^2(f) = \int dM dq dz \, \frac{\partial^4 N}{\partial M \, \partial q \, \partial z \, \partial \ln f_p} \, h_{\rm s}^2(f_p)$

averaged strain for a circular SMBHB

$$h_{\rm s}^2(f) = \frac{32}{5} \, \frac{(G\mathcal{M})^{10/3}}{d_c^2} \Big(2\pi f_p\Big)^{4/3}$$

Finn & Thorne 2000

GW signal from individual SMBHB

Phinney 2001, Wyithe & Loeb 2003

CONTENDER #1

averaged strain for a circular SMBHB

$$h_{\rm s}^2(f) = \frac{32}{5} \, \frac{(G\mathcal{M})^{10/3}}{d_c^2} \Big(2\pi f_p\Big)^{4/3}$$

Finn & Thorne 2000

GW signal from individual SMBHB

Phinney 2001, Wyithe & Loeb 2003

number density of SMBHB binaries

the SMBHB density depends on

- galaxies merger rate 1.
- SMBHB galaxy mass relation 2.
- 3. SMBHB binary evolution

EXPECTATIONS

HD-w/MP+ HD-w/MP+ HD-DMGP	DP+CURN DP+CURN ($\gamma = 13/3$	3)
HD-DMGP	$(\gamma = 13/3)$	
-17.0	-16.5	-16.0

14

ADJUSTING EXPECTATIONS

see Luke's talk tomorrow for

more on this

ADJUSTING EXPECTATIONS

see Luke's talk tomorrow for

more on this

COSMOLOGICAL SIGNALS

scalar induced GW

phase transitions

cosmic strings

domain walls

COSMOLOGICAL SIGNALS

cosmic strings

inflation

scalar induced GW

phase transitions

cosmic strings

domain walls

$h^2 \Omega_{\rm GW} \propto \frac{A^2}{H_0^2} \left(\frac{f}{{\rm yr}^{-1}}\right)^{5-\gamma} {\rm yr}^{-2}$

inflation

scalar induced GW

phase transitions

cosmic strings

domain walls

free parameters

 $h^2 \Omega_{\rm GW} \propto \frac{A^2}{H_0^2} \left(\frac{f}{{\rm yr}^{-1}}\right)^{5-\gamma} {\rm yr}^{-2}$

inflation

scalar induced GW

phase transitions

cosmic strings

domain walls

free parameters

 $h^2 \Omega_{\rm GW} \propto \frac{A^2}{H_0^2} \left(\frac{f}{{\rm yr}^{-1}}\right)^{5-\gamma} {\rm yr}^{-2}$

 $\mathcal{B} = rac{\mathcal{Z}_{\mathrm{NP}}}{\mathcal{Z}_{\mathrm{BHB}}}$

 $\mathcal{Z} = \int d\Theta \ P(\mathcal{D}|\Theta, \mathcal{H}) \times P(\Theta|\mathcal{H})$

 $\mathcal{B} = rac{\mathcal{Z}_{\mathrm{NP}}}{\mathcal{Z}_{\mathrm{BHB}}}$

$\mathcal{Z} = \int d\Theta \ P(\mathcal{D}|\Theta, \mathcal{H}) \times P(\Theta|\mathcal{H})$

likelihood function

 $\mathcal{B} = rac{\mathcal{Z}_{\mathrm{NP}}}{\mathcal{Z}_{\mathrm{BHB}}}$

$\mathcal{Z} = \int d\Theta \ P(\mathcal{D}|\Theta, \mathcal{H}) \times P(\Theta|\mathcal{H})$ \uparrow likelihood function

prior distributions

 $\mathcal{B} = rac{\mathcal{Z}_{\mathrm{NP}}}{\mathcal{Z}_{\mathrm{BHB}}}$

prior distributions

29

Step 1

Step 2

Step 3

toy model $h^2 \Omega_{\rm GW}(f) = \frac{A_*}{f/f_* + f_*/f}$

Step 2

Step 3

toy model ---- $h^2 \Omega_{\rm GW}(f) = \frac{A_*}{f/f_* + f_*/f}$

Step 2

```
from ptarcade.models_utils import prior
parameters = {
            'log_A_star' : prior("Uniform", -14, -6),
            'log_f_star' : prior("Uniform", -10, -6)
def S(x):
    return 1 / (1/x + x)
def spectrum(f, log_A_star, log_f_star):
    A_star = 10**log_A_star
    f_star = 10**log_f_star
    return A_star * S(f/f_star)
```

Step 3

Step 2

```
from ptarcade.models_utils import prior
parameters = {
            'log_A_star' : prior("Uniform", -14, -6),
            'log_f_star' : prior("Uniform", -10, -6)
def S(x):
    return 1 / (1/x + x)
def spectrum(f, log_A_star, log_f_star):
    A_star = 10**log_A_star
    f_star = 10**log_f_star
    return A_star * S(f/f_star)
```

Step 3

Step 1

where we are going

SMBHB or NEW PHYSICS?

SMBHB or NEW PHYSICS?

Agazie et al. [2306.16222]

f_{GW} [Hz]

Agazie et al. [2306.16222]

f_{GW} [Hz]

SINGLE SOURCE EXPECTATIONS

SMBHB or NEW PHYSICS?

what if it's not new physics

 $\left(\phi(\vec{x},t) = \frac{\sqrt{2\rho_{\phi}}}{m_{\phi}} \hat{\phi} \right)$

$$\hat{\phi}(\vec{x})\cos\left(m_{\phi}t+\gamma(\vec{x})\right)$$

DM density

 $\begin{cases} \phi(\vec{x},t) = \frac{\sqrt{2\rho_{\phi}}}{m_{\phi}} \hat{\phi}(t) \end{cases}$

DM mass

$$\hat{\phi}(\vec{x})\cos\left(m_{\phi}t+\gamma(\vec{x})\right)$$

$$\phi(\vec{x},t) = \frac{\sqrt{2\rho_{\phi}}}{m_{\phi}} \hat{\phi}(\vec{x}) \cos\left(m_{\phi}t + \gamma(\vec{x})\right)$$

Khmelnitsky, Rubakov [1309.5888]

<u>Afzal et al. [2306.16219]</u>

Khmelnitsky, Rubakov [1309.5888]

$$\hat{\phi}(\vec{x})\cos\left(m_{\phi}t + \gamma(\vec{x})\right)$$

direct coupling signals
 $s(t) \sim d\frac{\sqrt{\rho_{\phi}}}{m_{\phi}^{2}\Lambda}\sin(m_{\phi}t)$
Kaplan, AM, Trickle [2205.06817]

strong evidence for a GWB in the nHz band

- strong evidence for a GWB in the nHz band
- SMBH or cosmological signal? still unclear

- strong evidence for a GWB in the nHz band
- SMBH or cosmological signal? still unclear
- anisotropies and CW searches will help discriminating

- strong evidence for a GWB in the nHz band
- SMBH or cosmological signal? still unclear
- anisotropies and CW searches will help discriminating
- precise estimates of detection probabilities are needed

- strong evidence for a GWB in the nHz band
- SMBH or cosmological signal? still unclear
- anisotropies and CW searches will help discriminating
- precise estimates of detection probabilities are needed
- PTAs can be used to set tight constraints on NP models