Towards ab initio computations of

neutrino-nucleus cross sections

Bijaya Acharya Neutrino Theory Network Fellow Oak Ridge National Laboratory

Jun 29, 2023

• Joanna E Sobczyk (Mainz) • Sonia **Bacca** (Mainz)

• Gaute Hagen (ORNL, UTK, TRIUMF) • Thomas Papenbrock (UTK, ORNL)

- "Ab initio" computations in low-energy nuclear physics
- Chiral effective field theory (χ EFT)
- Coupled-cluster (CC) theory
- The Lorentz integral transform (LIT) method
- LIT-CC results for the quasielastic electron-scattering responses $R_{L,T}(\omega,q)$
- Quasielastic neutrino-scattering responses with 1-body (1B) currents
- Role of 2-body (2B) currents in magnetic dipole transitions in ^{48}Ca and relevance for $\mathcal{O}(10 \,\text{MeV})$ neutrinos

Outline

- Quantum Chromodynamics (QCD) is intractable at nuclear energies except for the smallest systems
- Phenomenological descriptions employing hadronic degrees of freedom (that antedate the discovery of quarks!) have been highly successful
- This phenomenological approach can be connected to QCD through ideas from Effective Field Theories and Renormalization Group methods
- In this talk, "ab initio" = "systematically improvable approach with controlled uncertainties that maintains closest possible link to the Standard Model interactions while maximizing predictive capabilities"

"Ab initio" nuclear theory

Ekström et al., What is ab initio in nuclear theory?, Front. Phys. 11 (2023) 1129094.

Chiral effective field theory (¿EFT)

Ekström, Piarulli, Baroni, Pastore, Epelbaum, Krebs, Meissner, van Kolck, Schiavilla, Machleidt, Kaplan, Savage, Wise, Weinberg, ...

- Work with *n* and *p* that interact with each other and with e^- , ν through χ EFT interactions
- Order-by-order expansion of Standard Model interactions in powers of Q/Λ
- Valid at low momenta Q below $\Lambda \sim 700~{\rm MeV}$
- Underlying quark-gluon physics shows up as values of low-energy constants, which are fit to data (NN, π N...)
- Theory uncertainty from the neglected higher-order terms can be estimated

Koester, Kümmel, Bartlett, Papenbrock, Dean, Hagen, ...

- Is part of an active community-wide effort to go beyond mean-field approximations at affordable computational cost
- Approaches the exact solution of the many-body Schrödinger equation through particle-hole excitations around a reference (a single Slater determinant)
- Allows us to choose the reference state, go to higher order in the particle-hole expansion ...

Coupled-cluster theory

eA and νA cross sections in the LIT-CC method

- Define an integral transform $I_{\Gamma}(\sigma, q) = \int d\omega$
- $R(\omega, q)$, e.g., by a basis expansion of $R(\omega, q)$ $d\sigma$ $= v_{00}R_{00} - v_{0z}R_{0z} + v_{zz}R_{zz} + v_{xx}R_{xx} \mp v_{xy}R_{xy}$ $\frac{1}{d\Omega dq}$.

Bacca et al., Phys. Rev. Lett. **111** (2013) 122502

We evaluate $R(\omega, q) = \sum \langle \Psi | J^{\dagger}(q) | X_f \rangle \langle X_f | J(q) | \Psi \rangle \delta(E_f + q^2/2M - E - \omega)$ w/o calculating $| X_f \rangle$

$$\omega \frac{\Gamma}{\pi} \frac{1}{(\omega - \sigma)^2 + \Gamma^2} R(\omega, q)$$

• Calculate $I_{\Gamma}(\sigma, q)$ as a ground-state expectation value and invert it to obtain the response

$$\frac{d\sigma}{d\Omega \, dq} \bigg|_{e^{-}} = v_L R_L + v_T R_T$$

Ab initio neutrino-nucleus cross sections

We have overcome several key technical challenges:

 \checkmark Multipole decomposition of 1B and 2B χ EFT electroweak currents BA and Bacca, Phys. Rev. C **101** (2020) 015505

✓ Removal of spurious center-of-mass excitations

 \checkmark Transformation of the matrix elements of the 2B χ EFT electroweak currents to the reference frame and basis used in many-body computations

Sobczyk, BA, Bacca and Hagen, Phys. Rev. C **102** (2020) 064312

BA et al., In Preparation

Longitudinal electron-scattering responses

- Bands reflect the many-body-theory and LIT-inversion uncertainties
- 2B currents do not appear (until we go to much higher orders in the χ EFT expansion)
- Plane-wave impulse approximation (PWIA) misses ^{40}Ca data: final-state interactions important

Sobczyk, BA, Bacca and Hagen, Phys. Rev. Lett. 127 (2021) 072501

Transverse electron-scattering responses (with 1B currents)

- Results for ⁴He are consistent with anticipated size of missing 2B current contributions
- one 2B currents are included

Sobczyk, BA, Bacca and Hagen, In preparation

• Good agreement for ${}^{40}Ca$ already with just 1B currents; possible that we will overshoot data

- interactions with 1B currents
- under control and can be further reduced.

$\nu_{\rho} + {}^{4}\text{He} \rightarrow e^{-} + {}^{4}X$

BA et al., In preparation

11

Two-body electroweak currents in χ EFT

- Many-body currents automatically emerge in χ EFT, just like many-body forces, and must be included if demanded by power-counting
- Current conservation relates the 2B vector currents to the strong interaction Hamiltonian: $q^{\mu} \langle \psi_f | J_{\mu} | \psi_i \rangle = 0 \Leftrightarrow [H, \rho] = \mathbf{q} \cdot \mathbf{J}$
- Even the 2B axial current is directly connected to H in χ EFT:

2B currents, magnetic dipole (M1) and Gamow-Teller (GT) transitions, and neutrinos

• The 1B M1 operator bears strong resemblance to the 1B GT operator:

$$\boldsymbol{\mu}_{1\mathrm{B}} = \frac{1}{2} \sum_{i=1}^{A} \mu_n \boldsymbol{\sigma}_i [1 - 1] \boldsymbol{\sigma}_i [1$$

 This resemblance is often invoked to relate the experimental data on $B(M1) \propto \left| \langle \psi_f | | \mu | | \psi_i \rangle \right|^2$ to B(GT) from which $\mathcal{O}(10 \,\text{MeV})$ inelastic

 νA cross sections are estimated [see, e.g., Langanke et al., Phys. Rev. Lett. 93 (2004) 202501]

• What will happen to the M1-GT connection when 2B current effects are included?

 $+ \tau_{i}^{(z)}] + (\ell_{i} + \mu_{p}\sigma_{i})[1 - \tau_{i}^{(z)}],$

M1 transition in 48 Ca: the quenching puzzle

- Large $B(M1: 0^+ \rightarrow 1^+)$ is expected in ${}^{48}Ca$ due to strong $\nu 1 f_{7/2} \rightarrow \nu 1 f_{5/2}$ excitation
- Darmstadt group's experiments have found a large $B(M1: 0^+ \rightarrow 1^+)$ but much smaller than expected, suggesting a strong quenching.
- Quenching of B(GT), which is used by traditional nuclear theory to absorb beyond-mean-field and 2B-current contributions to β decay rates, offered as explanation for the strong B(M1) quenching found in Darmstadt group's experiments
- A TUNL experiment at $HI\gamma S$ found a larger value

 ^{48}Ca $\mathbf{7}$ $HI\gamma s *$ 6 Darmstadt $B({
m M1}) \; (\mu_{
m N}^2)$ 295 MeV lee

*Figure adapted from PRC 93 (2016) 041302(R)

M1 moments in the Ca isotopic chain

BA et al., In preparation

Overall, 2B currents lead to improved description of magnetic moments

B(M1) in ⁴⁸Ca

BA et al., In preparation

Instead of quenching, 2B currents lead to 10% enhancement in B(M1)!

Conclusions and Outlook

- Accomplished the first *ab initio* computation of longitudinal response in e^- scattering off a medium-mass nucleus
- Theory is closer to TUNL (γ , n) than with Darmstadt (e, e') experiment for M1 transition in ⁴⁸Ca; we are working on uncertainty estimates
- Obtained preliminary results for neutrino-nucleus cross sections with 1B currents; inclusion of 2B currents is well underway

Thank you!