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INTRODUCTION
Accurate neutrino-nucleus scattering calculations critical for the success of the experimental program
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INTRODUCTION
If observed, 0!"" would show that lepton number is not conserved and that the neutrino mass has a 
Majorana component;

• Provide crucial information about neutrino mass generation;

• Suggest that the matter-antimatter asymmetry in the universe originated in leptogenesis;
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INTRODUCTION
The nuclear matrix elements is needed to extract the effective light-neutrino Majorana mass  
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An accurate understanding of nuclear dynamics is critical for multi-messenger astronomy
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INTRODUCTION

A. Sabatucci, O. Benhar PRC 101, 045807 



THE NUCLEAR MANY-BODY PROBLEM
In the low-energy regime, quark and gluons are confined within hadrons and the relevant degrees 
of freedoms are protons, neutrons, and pions

Effective field theories are the link between QCD and nuclear observables.
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Chiral EFT exploits the broken chiral symmetry of QCD to construct potentials and consistent currents

Additional Δ-fullΔ-less
LO

<latexit sha1_base64="gW09JZJXrYbHa1YvWg3wjMi0hN8="></latexit>

(p/⇤b)
0

<latexit sha1_base64="NZWIbrTJeT98JZqiIkKUQ3gCgkw=">AAACf3icdZFNT9tAEIY3pi00/SDAsZcVUVV6cW1AIrkh9cKBA5UIRIrdaLyeJCv2w9pdU0WWf0mv7Y/qv2HtBKmBdqSVXr3zvJrRbFYIbl0U/ekEWy9evtreed198/bd+93e3v6N1aVhOGJaaDPOwKLgCkeOO4HjwiDITOBtdve16d/eo7Fcq2u3LDCVMFd8xhk4b017u0fFl+TS8zlMs8/fo2mvH4XHw0F0MqTPRRxGbfXJuq6me51xkmtWSlSOCbB2EkeFSyswjjOBdTcpLRbA7mCOEy8VSLRp1W5e04/eyelMG/+Uo637d6ICae1SZp6U4Bb2aa8x/9WblG42SCuuitKhYqtBs1JQp2lzBppzg8yJpRfADPe7UrYAA8z5Y21MmaNqN9gwm4FOa2HrbjdR+INpKUHlVZLdI6snceqVFnkT1IJW/biun3ALcC23CSbeXuE+4P/i8eD0/+LmOIxPw+G30/75YP0rO+QDOSRHJCZn5JxckCsyIoyU5Cf5RX4HneBTEAbRCg0668wB2ahg+AD4KMPi</latexit>

(p/⇤b)
2

<latexit sha1_base64="bpzE/sKGq3c35FEAu0EGBBBOOwU=">AAACf3icdZFNa9tAEIbXatqm7kec9tjLEhOaXlTJCdS+BXLpoYcU6sRgqWa0GttL9kPsrhKM0C/Jtf1R+TddyQ7UaTKw8PLO8zLDbFYIbl0U3XWCZzvPX7zcfdV9/ebtu73e/vsLq0vDcMy00GaSgUXBFY4ddwInhUGQmcDL7Oqs6V9eo7Fcq59uVWAqYaH4nDNw3pr19o6KL8l3z+cwyz7/Gsx6/SgcjIbR8Yj+L+IwaqtPNnU+2+9MklyzUqJyTIC10zgqXFqBcZwJrLtJabEAdgULnHqpQKJNq3bzmh56J6dzbfxTjrbuv4kKpLUrmXlSglvah73GfKw3Ld18mFZcFaVDxdaD5qWgTtPmDDTnBpkTKy+AGe53pWwJBpjzx9qaskDVbrBlNgOd1sLW3W6i8IZpKUHlVZJdI6unceqVFnkT1IJW/biuH3BLcC23DSbeXuM+4P/i/uD0aXExCOOTcPTjpH863PzKLvlIDsgRiclXckq+kXMyJoyU5Jb8Jn+CTvApCINojQadTeYD2apg9Bf8PsPk</latexit>

(p/⇤b)
3

<latexit sha1_base64="/1Lnulb2J531xavajr2PxetgVWc=">AAACf3icdZFNT9tAEIY37hcEWkJ75LIiqqAX1wakJjekXnroAaQGIsUmWq8nyYr9sHbHVJHlX9Jr+6P6b7p2gkQojLTSq3eeVzOazQopHEbR307w4uWr12+2trs7u2/f7fX23185U1oOI26kseOMOZBCwwgFShgXFpjKJFxnt1+b/vUdWCeM/oHLAlLF5lrMBGforWlv77j4nHz3fM6m2aeb02mvH4Unw0F0OqT/iziM2uqTdV1M9zvjJDe8VKCRS+bcJI4KTCtmUXAJdTcpHRSM37I5TLzUTIFLq3bzmn70Tk5nxvqnkbbuw0TFlHNLlXlSMVy4x73GfKo3KXE2SCuhixJB89WgWSkpGtqcgebCAke59IJxK/yulC+YZRz9sTamzEG3G2yYzUA0Rrq62000/ORGKabzKsnugNeTOPXKyLwJGkmrflzXj7gFw5bbBBNvr3Af8H9xf3D6vLg6CeOzcHh51j8frH9lixyQQ3JMYvKFnJNv5IKMCCcl+UV+kz9BJzgKwiBaoUFnnflANioY/gP+ScPl</latexit>

NLO

<latexit sha1_base64="FG9b6g50fFE/Ez1jKVj7v/QLBzE="></latexit>

N
2
LO

<latexit sha1_base64="r2n2Qf4G9uDIaan3/HBZj0vmI7A="></latexit>

Δ-less Additional Δ-full

R. Machleidt et al., Phys. Scripta 91, 083007 (2016) M. Piarulli et al., Front.in Phys. 7, 245 (2020) 8

THE NUCLEAR MANY-BODY PROBLEM
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Non relativistic many body theory aims at solving the many-body Schrödinger equation

• Nucleons are fermions, so the wave function must be anti-symmetric

• Nuclear potentials are non-perturbative and spin-isospin dependent
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THE NUCLEAR MANY-BODY PROBLEM



FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.
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QUANTUM MONTE CARLO
The Green’s function Monte Carlo uses imaginary-time projection techniques to extract the ground-state 
of the system from the trial wave function 
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final state
��Y f

↵
with momentum Pµ

f = (E f ,P f ), and momentum conservation implies qµ =

pµ
e � pe

0µ = Pµ
f �Pµ

i . Furthermore, the interaction proceeds through the exchange of a space-
like virtual photon, for which q2

µ = w2 �q2 < 0†. In electron-induced reactions w and q can
vary independently (provided that |q| > w), as opposed to reactions induced by real photons
where |q|= w . In elastic reactions w = 0 (neglecting the recoil of the nucleus), which implies
|Yii =

��Y f
↵
. Reactions in which w 6= 0 are instead called inelastic. To different values of

w = E f �Ei, correspond different excitation energies of the nucleus. As w increases to a
few MeV, low-lying (discrete) nuclear excited states can be accessed. For energies transferred
of the order of ⇠ 10� 30 MeV, giant resonance modes in the continuum spectrum of the
nucleus are excited, while for values of wq.e. ⇠ q2/(2m) quasi-elastic effects dominate, in
which the reaction is in first approximation well described as if electrons were scattered off
single nucleons. Beyond the quasi-elastic energy region, meson production can be observed.
A schematic representation of the double differential cross section for electron scattering at a
fixed value of momentum transfer q is provided in Figure 7.

Because in inelastic electron scattering w and q can vary independently, for each value
of excitation energy w , one can study the matrix elements’ behavior as a function of the
momentum transfer. In particular, by varying q one changes the spatial resolution of the
electron probe, which is µ 1/|q|. At low values of momentum transfer, electron scattering
reactions probe long ranged dynamics, while at higher values of momentum transfer shorter
distance phenomena are tested, where dynamics from heavier mesons and baryons become
relevant.

Figure 7. (Color online) Schematic representation of the double differential cross section at
fixed value of momentum transfer.

Cross sections for elastic scattering and scattering to discrete excited states, for which
the transferred energy w is fixed, are expressed in terms of longitudinal (or charge) and
transverse (or magnetic) form factors, which are functions of the momentum transferred
q = |q|, and provide information on the e.m. charge and current spatial distributions inside
the nucleus. The double differential cross section for inclusive processes, in which only
the scattered electron is detected, is expressed in terms of the longitudinal and transverse

† The four-vector squared qµ qµ is here denoted with q2
µ .

NEUTRINO-NUCLEUS SCATTERING
The inclusive cross section is characterized by a variety of reaction mechanisms 

The response functions contain all nuclear-dynamics information 

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

Courtesy of S. Pastore
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EUCLIDEAN RESPONSES
Our GFMC calculations rely on the Laplace kernel

At finite imaginary time the contributions from 
large energy transfer are quickly suppressed

E↵�(⌧,q) ⌘
Z

d!e�!⌧R↵�(!,q)

y
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(J
2o

≠
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Ê(J2o)

RxxUÊ, [V
· 4 yXyyR J2o≠R

· 4 yXyR J2o≠R

· 4 yXy8 J2o≠R

Quantum Monte Carlo

Zero Temperature

 0 = exp [�H⌧ ]  T

H =
X

i

p
2
i

2m
+

X

i<j

V0 �(rij)

Diffusion Branching
In nuclear physics, we have a
set of amplitudes for each spin 
and isospin

Brownian motion

 =
X

�(�)

X

�(⌧)

a(�(�),�(⌧)) |��i |�⌧ i

E↵�(⌧,q) = h 0|J†
↵
(q)e�(H�E0)⌧J�(q)| 0i

X

f

| f ih f |
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The system is first heated up by the transition 
operator. Its cooling determines the Euclidean 
response of the system



EUCLIDEAN RESPONSES
The integral transform of the response function is defined as

13

E↵�(�,q) ⌘
Z

d!K(�,!)R↵�(!,q)

<latexit sha1_base64="1AgycJCAs5eG/vCbYwJCtuvbUz8="></latexit>

=
X

f

Z
d!K(�,!)h 0|J†

↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

Using the completeness of the final states, it is expressed as a ground-state expectation value

E↵�(�,q) = h 0|J†
↵(q)K(�, H � E0)J�(q)| 0i

K



Inverting the Euclidean response is an ill posed problem: any set of observations is limited and 
noisy and the situation is even worse since the kernel is a smoothing operator.
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We find Maximum-entropy techniques to be reliable enough for quasi-elastic responses

BEYOND 12C: AFDMC AND MACHINE LEARNING



VALIDATION WITH ELECTRON SCATTERING
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!
+
el

d! e�!⌧
R↵(q,!)

[Gp

E
(q,!)]2

, (2)

where Gp

E
(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!el is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵
(q)e�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,

(3)
where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E
(q,!) [15]. The

calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E0) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?

f
� E0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

 Two-body currents generate additional strength in over the whole quasi-elastic region

 Correlations redistribute strength from the quasi-elastic peak to high-energy transfer regions 
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to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

12C, q=570 MeV
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MINIBOONE CROSS SECTIONS
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [41]. The additional 10.7% normalization uncertainty is not shown here.

the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-
crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ⌫ case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as ✓µ changes from 0� to about 90�, the ⌫ cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
e↵ects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [41]. The additional 10.7% normalization uncertainty is not shown here.

the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-
crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ⌫ case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as ✓µ changes from 0� to about 90�, the ⌫ cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
e↵ects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
are from Ref. [41]. The additional 10.7% normalization uncertainty is not shown here.

the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-
crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ⌫ case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as ✓µ changes from 0� to about 90�, the ⌫ cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
e↵ects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
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FIG. 4. MiniBooNE flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties
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the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-
crease produced by two-body currents in the GFMC cal-
culations (di↵erence between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ⌫ case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as ✓µ changes from 0� to about 90�, the ⌫ cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
e↵ects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-� electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
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FIG. 6. T2K flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties are
from Ref. [43].

view of the large errors and large normalization uncer-
tainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis.

Of course, many challenges lie ahead, to mention just
three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [66], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the �-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal e↵ectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [24, 67] or on
the short-time approximation of the nuclear many-body

propagator [63] for relativity and pion production, and
auxiliary-field-di↵usion Monte Carlo methods [68] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.
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FIG. 6. T2K flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties are
from Ref. [43].

view of the large errors and large normalization uncer-
tainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis.

Of course, many challenges lie ahead, to mention just
three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [66], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the �-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal e↵ectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [24, 67] or on
the short-time approximation of the nuclear many-body

propagator [63] for relativity and pion production, and
auxiliary-field-di↵usion Monte Carlo methods [68] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.
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view of the large errors and large normalization uncer-
tainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis.

Of course, many challenges lie ahead, to mention just
three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [66], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the �-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal e↵ectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [24, 67] or on
the short-time approximation of the nuclear many-body

propagator [63] for relativity and pion production, and
auxiliary-field-di↵usion Monte Carlo methods [68] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.
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FIG. 6. T2K flux-folded double di↵erential cross sections per target neutron for ⌫µ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for di↵erent ranges of cos ✓µ. The experimental data and their shape uncertainties are
from Ref. [43].

view of the large errors and large normalization uncer-
tainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis.

Of course, many challenges lie ahead, to mention just
three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [66], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the �-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal e↵ectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [24, 67] or on
the short-time approximation of the nuclear many-body

propagator [63] for relativity and pion production, and
auxiliary-field-di↵usion Monte Carlo methods [68] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.
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A precise knowledge of the nucleon's axial-current form factors is crucial for modeling 
neutrino-nucleus interactions;

AXIAL FORM FACTOR

Scarce (old) experimental data available 

Lattice-QCD calculations are essential

A. Meyer et al., arXiv:2201.01839 
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos ✓µ, obtained by replacing in the dipole parametrization
the cuto↵ ⇤A ⇡ 1 GeV with the value e⇤A ⇡ 1.15 GeV, more in line with a current LQCD determination [47]. The first two rows
correspond to the MiniBooNE flux-folded ⌫µ and ⌫µ CCQE cross sections, respectively; the last row corresponds to the T2K
⌫µ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

which are of course quite accurate. These calculations
suggest a larger value of ⇤A may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos ✓µ), obtained by replacing in the
dipole parametrization the cuto↵ ⇤A ⇡ 1 GeV with the
value e⇤A ⇡ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for ⌫µ, the magnitude of
the increase turns out to be more pronounced for ⌫µ than
for ⌫µ—as a matter of fact, the ⌫µ cross sections are re-
duced at backward angles (0.1  cos ✓µ  0.2). Overall,
it appears that the harder cuto↵ implied by the LQCD

calculation of GA(Q2) improves the accord of theory with
experiment, marginally for ⌫µ and more substantially for
⌫µ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we
caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [81], could conceiv-

We have considered a value of the axial mass 
more in line with recent LQCD determinations 

<latexit sha1_base64="uDgyLUyq8IoANBSOzcJKTI4D4B4="></latexit>

⇤̃A = 1.15GeV

AL et al., PRX 10, 031068 (2020)
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We employed z-expansion parameterizations of axial form factors, consistent with experimental or 
LQCD data

AXIAL FORM FACTOR, CAREFUL ANALYSIS

D. Simons, et al, arXiv:2210.02455
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FIG. 2. The nucleon axial form factor FA(Q
2) determined us-

ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
Djukanovic et al., purple). Bands show combined statistical
and systematic uncertainties in all cases, see the main text
for more details. A dipole parameterization with MA = 1.0
GeV and a 1.4% uncertainty [107] is also shown for compari-
son (black). The lower panel shows the absolute value of the
di↵erence between D2 Meyer et al. and LQCD Bali et al.
results divided by their uncertainties added in quadrature,
denoted �FA/�; very similar results are obtained using the
other LQCD results.

factor results determined from experimental neutrino-
deuteron scattering data in Ref. [65]. Fits were performed
using results with Q

2
 1 GeV2 in Refs. [30, 34, 65] and

with Q
2
 0.7 GeV2 in Ref. [35] with the parameteri-

zation provided by the z expansion used to extrapolate
form factor results to larger Q

2. Clear agreement be-
tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q

2 & 0.3 GeV2. The e↵ects of
this form factor tension on neutrino-nucleus cross section
predictions is studied using nuclear many-body calcula-
tions with the GFMC and SF methods in Sec. IV below.
The LQCD results of Refs. [30, 34] lead to nearly in-
distinguishable cross-section results that will be denoted
“LQCD Bali et al./Park et al.” or “LQCD” below and
used for comparison with the deuterium bubble-chamber
analysis of Ref. [65], denoted “D2 Meyer et al.” or “D2”
below.

IV. FLUX-AVERAGED CROSS SECTION
RESULTS

To evaluate both the nuclear model and nucleon axial
form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
ment [114]. Muon neutrino flux-averaged cross sections
were calculated from

d�

dTµd cos ✓µ

=

Z
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, (43)

where �(E⌫) are the normalized ⌫µ fluxes from Mini-
BooNE and T2K. Details on the neutrino fluxes for
each experiment can be found in the references above.

d�(E⌫)
dTµd cos ✓µ

are the corresponding inclusive cross sections

computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
ward region. The agreement between GFMC and SF
predictions is better at more forward angles but a 5-10%
di↵erence persists.
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9

13

MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9

13

MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9



2020

EXPONENTIAL SCALING
Green’s function Monte Carlo uses all spin-isospin components of the wave function
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HOW TO TACKLE LARGER NUCLEI? 



The auxiliary-field diffusion Monte Carlo method can treat 16O sampling the spin-isospin

BEYOND 12C: AFDMC AND MACHINE LEARNING

We developed the AFDMC to allow for the calculation of Euclidean response functions

4He 16O

N. Rocco, AL et al., in preparation
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BEYOND 12C: AFDMC AND MACHINE LEARNING

K. Raghavan, AL, al., PRC 103, 035502 (2021)
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8

FIG. 6: Comparison between the Phys-NN and MaxEnt reconstructions for the one-peak dataset. The top row
displays the response functions and the bottom row the corresponding Euclidean responses.

FIG. 7: Same as Fig. 6 for the two-peaks dataset.

possible to the original ones, we observe a much smaller
spread of 1�R

2
R

and SR values compared with MaxEnt.
This behavior, which is exhibited across the one-peak,
two-peak, and combined datasets, provides additional
support for Phys-NN’s reconstruction performance.

Because the historic MaxEnt algorithm is based on �
2
E

minimization, the resulting distributions of �
2
E

for both
the one-peak dataset and the two-peak dataset are nar-
row and centered on one. The spread associated with
the Phys-NN results is larger. To investigate correlations
between �

2
E

and SR, in Fig. 5 we show scatter plots for
the one-peak and two-peak datasets. Some correlation is
visible in the Phys-NN results, displayed in the top two
panels, especially for the two-peak dataset. Conversely,

the MaxEnt scatter plots show no correlation between
�

2
E

and SR, since the �
2
E

values are relatively constant
around one, even for widely di↵erent SR. The correla-
tions between �

2
E

and 1�R
2
R

exhibit an almost identical
pattern and are thus not included here.

Direct comparison of Phys-NN and MaxEnt outputs
is presented in Fig. 6, where we display the Phys-NN
best (left panels), average (central panels), and worst
(right panels) reconstructed response functions, accord-
ing to the SR values of the Phys-NN results, and the
corresponding Euclidean responses from the one-peak
dataset. Here, the training is performed on the com-
bined dataset, to better test whether Phys-NN is able
to learn how to simultaneously reconstruct one-peak and

24K. Raghavan, AL, al., PRC 103, 035502 (2021)



We developed an artificial-neural network approach suitable to invert the Laplace transform that:

BEYOND 12C: AFDMC AND MACHINE LEARNING

• Provides robust estimates of the uncertainty of the inversion; 

K. Raghavan, AL, in preparation)25
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HOW TO TACKLE (EVEN) LARGER NUCLEI? 
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NEURAL NETWORK QUANTUM STATES
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The majority of quantum states of physical interest 
have distinctive features and intrinsic structures

Hilbert Space

Physical States

Mean-field

NEURAL-NETWORK QUANTUM STATES
 Artificial neural networks can compactly 
represent complex high-dimensional functions;
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• ANNs trained minimizing the energy

• MCMC used to sample the Hilbert space
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 The ANN variational state is a product of mean-field state modulated by a flexible correlator factor 

• The mean-field part is a Slater 
determinants of single-particle orbitals 

NEURAL SLATER-JASTROW ANSATZ
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• Each orbital is a FFNN that takes as 
input

• The Jastrow is a permutation-invariant 
function of the single-particle coordinates
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Abstract

Recent work on the representation of functions
on sets has considered the use of summation in
a latent space to enforce permutation invariance.
In particular, it has been conjectured that the di-
mension of this latent space may remain fixed
as the cardinality of the sets under consideration
increases. However, we demonstrate that the ana-
lysis leading to this conjecture requires mappings
which are highly discontinuous and argue that this
is only of limited practical use. Motivated by this
observation, we prove that an implementation of
this model via continuous mappings (as provided
by e.g. neural networks or Gaussian processes)
actually imposes a constraint on the dimensional-
ity of the latent space. Practical universal function
representation for set inputs can only be achieved
with a latent dimension at least the size of the
maximum number of input elements.

1. Introduction

Machine learning models have had great success in taking
advantage of structure in their input spaces: recurrent neural
networks are popular models for sequential data (Sutskever
et al., 2014) and convolutional neural networks are the state-
of-the-art for many image-based problems (He et al., 2016).
Recently, however, models for unstructured inputs in the
form of sets have rapidly gained attention (Ravanbakhsh
et al., 2016; Zaheer et al., 2017; Qi et al., 2017a; Lee et al.,
2018; Murphy et al., 2018; Korshunova et al., 2018).

Importantly, a range of machine learning problems can nat-
urally be formulated in terms of sets; e.g. parsing a scene
composed of a set of objects (Eslami et al., 2016; Kosiorek
et al., 2018), making predictions from a set of points form-
ing a 3D point cloud (Qi et al., 2017a;b), or training a set
of agents in reinforcement learning (Sunehag et al., 2017).

*Equal contribution 1Department of Engineering Science, Uni-
versity of Oxford, Oxford, United Kingdom. Correspondence to:
<{ed, fabian, martin}@robots.ox.ac.uk>.

Proceedings of the 36 th
International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).
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Figure 1: Illustration of the model structure proposed in
several works (Zaheer et al., 2017; Qi et al., 2017a) for
representing permutation-invariant functions. The sum op-
eration enforces permutation invariance for the model as a
whole. � and ⇢ can be implemented by e.g. neural networks.

Furthermore, attention-based models perform a weighted
summation of a set of features (Vaswani et al., 2017; Lee
et al., 2018). Hence, understanding the mathematical prop-
erties of set-based models is valuable both in terms of set-
structured applications as well as better understanding the
capabilities and limitations of attention-based models.

Many popular machine learning models, including neural
networks and Gaussian processes, are fundamentally based
on vector inputs1 rather than set inputs. In order to adapt
these models for use with sets, we must enforce the property
of permutation invariance, i.e. the output of the model must
not change if the inputs are reordered. Multiple authors, in-
cluding Ravanbakhsh et al. (2016), Zaheer et al. (2017) and
Qi et al. (2017a), have considered enforcing this property
using a technique which we term sum-decomposition, illus-
trated in Figure 1. Mathematically speaking, we say that a
function f defined on sets of size M is sum-decomposable

via Z if there are functions � : R ! Z and ⇢ : Z ! R such
that2

f(X) = ⇢
�
⌃x2X�(x)

�
(1)

We refer to Z here as the latent space. Since summa-
tion is permutation-invariant, a sum-decomposition is also
permutation-invariant. Ravanbakhsh et al. (2016), Zaheer
et al. (2017) and Qi et al. (2017b) have also considered
the idea of enforcing permutation invariance using other
operations, e.g. max(·). In this paper we concentrate on a
detailed analysis of sum-decomposition, but some of the lim-
itations we discuss also apply when max(·) is used instead
of summation.

1Or inputs of higher rank, i.e. matrices and tensors.
2We use R here for brevity – see Definition 2.2 for the fully

general definition.
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STOCHASTIC RECONFIGURATION
The ANN is trained by performing an imaginary-time evolution in the variational manifold

30

During the optimization, then parameter are updated as
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The gradient is supplemented by the quantum Fisher Information pre-conditioner

S. Sorella, Phys. Rev. B 64, 024512 (2001)
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ADAPTIVE STOCHASTIC RECONFIGURATION
We use an adaptive learning rate with 10-7 < η < 10-2 . It yields robust convergence patterns for all the 
nuclei and regulator choices that we have analyzed 

31

C. Adams, AL, et al, PRL 127, 022502 (2021)



To further elucidate the quality of the ANN wave function we consider the point-nucleon density

32
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COMPARISON WITH QUANTUM MONTE CARLO
• The ANN Slater Jastrow ansatz outperforms conventional Jastrow correlations

33

• Remaining differences with the GFMC are due to deficiencies in the Slater-Jastrow ansatz

C. Adams, AL, et al, PRL 127, 022502 (2021)
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Visible orbitals on visible coordinates Visible orbitals on hidden coordinates

Hidden orbitals on visible coordinates Hidden orbitals on hidden coordinates

HIDDEN NUCLEONS
The “hidden fermion” approach was recently introduced to model fermion wave functions
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J. R. Moreno, et al., PNAS 119, 2122059119(2022)
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HIDDEN NUCLEONS
The “hidden fermion” approach was recently introduced to model fermion wave functions
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HIDDEN NUCLEONS

4

FIG. 1. Convergence of the SR algorithm for 3He (upper
panel) and 3H (lower panel) with the original (blue solid cir-
cles) and RMSProp-like (orange solid circles) diagonal shifts.
The ANN-SJ and the HH energies of Ref. [29] are displayed
by the purple dashed and solid green lines, respectively.

III. RESULTS

We begin our analysis comparing the performances of
the original SR method with the version that includes
the RMSProp-inspired diagonal shift in the Fisher-
information matrix. In Fig. 1, we show the convergence
of the ground-state energy of 3He (upper panel) and 3H
(lower panel) as obtained with Ah = 3 hidden nucle-
ons — the minimal number that guarantees an exact an-
swer for this nucleus — and the positive-parity ansatz of
Eq. (5). The blue solid circles, corresponding to the en-
ergies obtained using the RMSProp-like regularization,
are noticeably closer to the numerically-exact HH result
of Ref. [28] than those obtained with the original version
of the SR algorithm. The fact that the SR-RMSProp
estimates are less scattered that the SR ones is another
indication of the better minima found by new version of
the algorithm. Most notably, independent of the particu-
lar regularization choice, both the SR and SR-RMSProp
energies are appreciably lower than the ANN-SJ value
reported in Ref. [29].

Because of its superior training performances with re-
spect to the original version of the algorithm, in the re-
mainder of the paper we will only show results obtained
with the SR-RMSProp minimizer. The convergence of
the 4He ground-state energy computed with Ah = 4
hidden nucleons is in displayed in Fig. 2. The parity-
conserving wave function  P

HN
(R,S) is outperformed

by  PT

HN
(R,S), which additionally preserves the time-

reversal symmetry. Both of them provide significantly
better energies than the original ANN-SJ model, as
they can improve the nodal surface of the single-particle
Slater determinant. More importantly,  PT

HN
(R,S) pro-

vides a variational energy that is consistent with the
numerically-exact HH estimate of Ref. [29]. It has to
be noted that  P

HN
(R,S) can in principle converge to

the exact energy, even with Ah = 4 hidden nucleons,
but it requires wider (or deeper) ANN architectures. To
prove this point, in the lower panel of Fig. 2 we show the
training of  P

HN
(R,S) with Ah = 4 in which the num-

FIG. 2. Upper panel: 4He ground-state energy convergence
with the ansatz that conserves parity (blue solid circles) and
parity plus time reversal (orange solid circles). The ANN-SJ
and the HH ground-state energies of Ref. [29] are displayed by
the purple dashed and solid green lines, respectively. Lower
panel: Convergence of the parity-conserving ansatz utilizing
a wider ANN than in the upper panel.

4He

AL, et al., Phys.Rev.Res. 4 (2022) 4, 043178
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ber of nodes in the hidden layers in �F and ⇢F has been
increased from 16 to 24. After about 4800 optimization
steps, the parity-conserving ansatz yields energies that
are consistent with the HH method. Nevertheless, our
results indicate that enforcing time-reversal symmetry is
e↵ective in reducing the training time and augment the
expressivity of the hidden-nucleon ANN architecture.

Neural-network quantum states applications to nuclear
systems have so far been limited to light nuclei, with
up to A = 6 nucleons [26, 28, 29]. Here, we signifi-
cantly extend the reach of this methods by computing the
ground-state of 16O utilizing the hidden-nucleon ansatz.
In Ref. [31], the AFDMC method has been employed to
study this nucleus using as input the LO pionless-EFT
Hamiltonian of Eq. (1). The AFDMC trial wave function
takes the factorized form  T (R,S) ⌘ hRS|F|�i. The
Slater determinant of single-particle orbitals �(R,S) de-
termines the long-range behavior of the wave function.
The correlation operator is expressed as

F =
⇣ Y

i<j<k

F c

ijk

⌘⇣Y

i<j

F c

ij

⌘⇣
1 +

X

i<j

F op

ij

⌘
(8)

The spin-isospin independent three-body correlations
F c

ijk
act on all triplets of nucleons. Similarly, the cen-

tral two-body Jastrow F c

ij
is applied to all nucleon pairs,

while the spin-isospin dependent term, F op

ij
, appears in

a linearized form [47]. This approximation reduces the
computational cost of evaluating  T (R,S) from expo-
nential to polynomial in A but makes the trial wave func-
tion non extensive: if the system is split in two (or more)
subsets of particles that are separated from each other,
the F does not factorize into a product of two factors
in such a way that only particles belonging to the same
subset are correlated. As a consequence, the correlation
operator of Eq. (8) becomes less e↵ective for nuclei larger
than 16O, preventing the applicability of the AFDMC
method to medium-mass nuclei.

The AFDMC projects out the ground-state of the sys-
tem from the starting trial wave function performing an
evolution in imaginary time ⌧

| 0i / lim
⌧!1

| (⌧)i = e�H⌧ | T i . (9)

The fermion-sign problem is mitigated by means of the
constrained-path approximation, which essentially lim-
its the imaginary-time propagation to regions where the
propagated and trial wave functions have a positive over-
lap [16]. Contrary to the fixed-node approximation, the
constrained-path approximation does provide an upper
bound to the true ground-state energy of the system [48].
The accuracy of the trial wave function is critical to re-
duce this bias, as the constrained-path approximation
becomes exact when the trial wave function is coincides
with the ground-state one.

In Fig. 3, we display the ground-state energy of 16O as
a function of the number of hidden nucleons Ah for the
parity and time-reversal conserving ansatz of Eq. (6). For
comparison, the VMC energy of 16O obtained with the

FIG. 3. Ground-state energy of 16O as a function of the num-
ber of hidden nucleons Ah (solid blue points). The VMC
and AFDMC energies — the latter taken from Ref. [31] —
are shown by the green-dashed and orange solid lines. The
shaded areas represent the Monte Carlo statistical uncertain-
ties.

correlation operator of Eq. (8) is represented in Fig. 3
by the dashed green line, while the shaded area is the
Monte Carlo statistical uncertainty. The solid horizontal
line and the shaded area indicate the constrained-path
AFDMC energy and its statistical uncertainty as listed
in Ref. [31]. Already for Ah = 2, the hidden-nucleon wave
function matches the VMC value. By further increasing
Ah, the variational energy lowers until it becomes consis-
tent with the AFDMC value, within error bars, demon-
strating the accuracy of the hidden-nucleon ansatz even
in the p-shell region.

Unless a forward-walk propagation is used [49, 50],
within di↵usion Monte Carlo methods, expectation val-

FIG. 4. Point nucleon density of 16O as obtained with the
hidden nucleon ansatz (solid blue circles) compared with the
perturbatively-corrected AFDMC estimates of Eq. (10).

16O 16O

AL, et al., Phys.Rev.Res. 4 (2022) 4, 043178

We extend the reach of neural quantum states to 16O

In addition to its ground-state energy, we evaluate the point-nucleon density of 16O with Ah=16

HIDDEN NUCLEONS



DILUTE NEUTRON MATTER
We have introduced a periodic hidden-nucleons ansatz to model low-density neutron matter

B. Fore, J. Kim, AL, arXiv:2212.04436 [nucl-th]38
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slightly larger than the experimental value of �18.9(4)
fm, see [41] and references therein, while the e↵ective
range is well reproduced. The Hamiltonian also contains
a repulsive three-body force that ensures the stability of
nuclei.

We approximate the ground-state solution of the nu-
clear many-body problem with an NQS ansatz that be-
longs to the hidden-fermion family [42], recently general-
ized to continuum Hilbert spaces and applied to atomic
nuclei in Ref. [29]. In addition to the visible spatial and
spin coordinates of the A neutrons, R = {r1 . . . rA} and
S = {sz1 . . . szA}, the Hilbert space contains fictitious Ah

hidden-nucleon degrees of freedom. In this work we use
Ah = A = 14 so that the system is as flexible as possi-
ble, but in practice we have also found using as few as
8 hidden nucleons gives very similar results. The wave
function can be conveniently expressed in a block matrix
form as

 HN (R,S) ⌘ det


�v(R,S) �v(Rh, Sh)
�h(R,S) �h(Rh, Sh)

�
. (1)

As in Ref. [29], �v(R,S) is the A ⇥ A matrix represent-
ing visible single-particle orbitals computed on the visible
coordinates while the Ah ⇥ Ah matrix �h(Rh, Sh) yields
the amplitudes of hidden orbitals evaluated on the co-
ordinates of the Ah hidden nucleons. Finally, �h(R,S)
and �v(Rh, Sh) are Ah ⇥ A and A ⇥ Ah matrices giving
the amplitudes of hidden orbitals on visible coordinates
and visible orbitals on hidden coordinates, respectively.
All the above matrices are expressed in terms of deep
neural networks with di↵erentiable activation functions
— see Ref. [29] for additional details. To respect the
Pauli principle, the coordinates of the hidden nucleons
must be permutation-invariant functions of the visible
ones. We enforce this symmetry by using a Deep-Sets
architecture [43, 44] with logsumexp pooling. Addition-
ally, the discrete parity and time reversal symmetries, are
enforced in the same manner as Ref. [29].

Inspired by the success of quantum-chemistry NQS [32,
33], we augment the flexibility of the ansatz by perform-
ing a generalized backflow transformation to the visi-
ble coordinates of the hidden-nucleon matrix: (R,S) !
(R̃, S̃). We use the Deep-Sets architecture again to en-
force fermion anti-symmetry

(r̃i, s̃
z

i
) = ⇢bf

⇣
ri, s

z

i
, log

⇣X

j

exp(�bf(rj , s
z

j
)
⌘⌘

. (2)

To further augment the expressivity, separate ⇢bf and
�bf neural networks are used for each of the A visible
coordinates.

We simulate infinite neutron matter using 14 particles
in a box with periodic boundary conditions. Following
Ref. [45], the latter are imposed by mapping the spatial
coordinates onto periodic functions by

ri !
✓
sin

✓
2⇡ri
L

◆
, cos

✓
2⇡ri
L

◆◆
(3)

which ensures the wave function is continuous and di↵er-
entiable at the box boundary. Here L is the size of the
simulation periodic box, and the sin and cos functions
are applied element-wise to ri. Finite-size e↵ects due
to the tail corrections of two- and three-body potentials
are accounted for by summing the contributions given by
neighboring cells to the simulation box [46].

Evaluating the expectation values of quantum mechan-
ical operators, including the Hamiltonian, requires car-
rying out multi-dimensional integration over the spatial
and spin coordinates of the neutrons. To this aim, we
exploit Monte Carlo quadrature and sample R and S
from | HN (R,S)|2 using the Metropolis-Hastings algo-
rithm [47] — additional details can be found in the sup-
plemental material of Ref. [27]. The best variational
parameters defining the NQS are found by minimiz-
ing the system’s energy, which we carry out using the
R(oot)M(ean)S(quared)Prop(agation)-enhanced version
of the stochastic-reconfiguration optimization method in-
troduced in Ref. [29].

Results and discussion. We first benchmark the ex-
pressivity of the hidden-nucleon NQS for periodic sys-
tems by comparing the energy per particle of infinite
neutron matter against “conventional” variational Monte
Carlo (VMC), and both constrained-path and AFDMC
results. The variational wave function used in state-of-
the-art neutron-matter studies, see for example [7, 21],
contains a spin-independent Jastrow factor that multi-
plies a Slater determinant augmented by spin-dependent
backflow correlations. The constrained-path approxi-
mation, commonly employed to alleviate the AFDMC
fermion-sign problem [19], brings about a bias in the
ground-state energy estimate [6, 21]. Exact results can be
obtained by performing unconstrained propagations, but
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FIG. 1. NQS training data in neutron matter at ⇢ = 0.04
fm�3 (data points) compared with Hartree-Fock (dotted line),
conventional VMC (dashed line), constrained-path ADMC
(dash-dotted line) and unconstrained-path ADMC results
(solid line).

The NQS ansatz converges to the 
unconstrained AFDMC energy, using a 
fraction of the computing time

• NQS: 100 hours on NVIDIA-A100 

• AFDMC: 1.2 million hours on Intel-
KNL 

The hidden-nucleon ansatz captures 
the overwhelming majority of the 
correlation energy
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Figure 1. Schematic illustration of the backflow transformation, which transforms single-particle coordinates ri 2 Rd (black
dots, top left) to quasi-particle coordinates �ri 2 Cd via the MPNN (black/white dots for real/imaginary part, top right).
The MPNN constructs an initial graph that consists of an initial feature vector (dark grey) and a hidden state (green). This
graph is then transformed via messages, defined in Eq. 7, to another graph consisting of the initial feature vectors and an
updated hidden state (indicated by di↵erent coloring). After the final iteration, the node states are linearly transformed to

the quasi-particle positions �ri = W · h(T )
i , which now contain information about all particles (D is the dimension of the last

graph’s nodes).

orbitals are a natural choice: �k(r) = exp [ik · r] with
k = 2⇡

L
n where n 2 Zd. To take into account spin, we use

the spin-orbitals �µ(r, s) = �kµ(r)�sµ,s, where s denotes
the spin of the particle at position r, and each spin-orbital
is characterized by the quantum numbers µ = (kµ, sµ).
This choice of orbitals allows us to fix the total momen-
tum of the system ktot =

P
N

i=1 ki. Furthermore, the
choice of orbitals allows us to factorize the determinant
into a product of determinants of up and down spin or-
bitals.

D. MP-NQS for the Electron Gas

To specialize the MP-NQS architecture to the HEG,
we only need to define the initial feature vectors. Since
the HEG is invariant under continuous translations and
spin inversion, we do not input single-particle informa-
tion (single-particle positions/spins) to the initial node
features. Instead, we use a learnable embedding vector
e 2 RD1 , that does not depend on the particle index i.
For the edge features, we use the translation invariant
particle-distances rij = ri � rj and their norm. To dis-
tinguish same- and opposite-spin pairs without breaking
the spin-inversion symmetry of the problem, we input
products of the form si · sj = ±1 to the edge features.

Overall, we get the following initial feature vectors:

x(0)
i

= e (15)

x(0)
ij

= [rij , krijk, si · sj ]. (16)

Notice that with this choice, the resulting backflow coor-
dinate yi preserves the spin quantum number si of the
particle i exactly.

To respect the PBCs of the simulation box, we apply
the method introduced in Ref. [21]. The components of
a vector r 2 Rd (where r can represent a single-particle
position vector ri or a distance vector rij) are mapped
to a Fourier basis r 7!

⇥
sin

�
2⇡
L
r
�
, cos

�
2⇡
L
r
�⇤

2 R2d and
the norm of the distance between two particles krijk is
replaced with a periodic surrogate krijk 7!

��sin
�
⇡

L
rij

���.
In sum, our Ansatz allows us to fix the total momen-

tum ktot, while being translation invariant and respecting
spin-inversion symmetry. Furthermore, the MP-NQS can
change the nodal surface with a number of variational pa-
rameters independent of the system size. The variational
Ansatz for the HEG uses around ⇠ 19000 variational pa-
rameters and can be trained within O(103) optimization
steps while reaching state-of-the-art accuracy. A detailed
comparison to other existing NQS approaches is given in
Appendix C.

G. Pescia, et al., 2305.08831 [cond-mat.quant-gas]
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In addition to energies and single-particle densities, we can compute electroweak properties

6Li

A. Gnech, AL, in preparation
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In addition to energies and single-particle densities, we can compute electroweak properties
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Even with just one hidden-nucleon we do better than AFDMC for medium-mass nuclei

40Ca

NUCLEI WITH MPNN



CONCLUSIONS
Neural network quantum states are extending the reach of conventional QMC methods

• Favorable scaling with the number of fermions;

• Universal and accurate approximations for fermion wave functions; 

• Suitable for confined and periodic systems; 

44

• Scalable to leadership-class hybrid CPU/GPU computers 
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• Relevant for: lepton-nucleus scattering, fusion, and collective neutrino oscillation; 

• Access “real-time” dynamics: the prototypal exponentially-hard problem in many-body theory
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