

Neutrino related nuclear scattering experiments at MAMI

Miha Mihovilovič

Mainz, 28. 6. 2023

NSL 2023

Motivation – E12-14-012

- Successful experiment performed at Jefferson Lab.
- Inclusive (and exclusive) data collected for C, Al, Ar, Ti targets at 2.2 GeV and 15.5°.

Experiment confirmed approximate scaling.

Motivation - Neutrino experiments

 Provide new input to competing models employed to interpret signals detected in accelerator-based neutrino experiments.

A.M. Ankowski, C. Mariani (arXiv:1609.00258)

Coulomb Sum Rule – ¹⁶O

Study the nuclear structure and validate existing theories.

- Coulomb sum rule for Oxygen using coupled cluster theory (J. E. Sobczyk).
- Theory extendable to ab-initio studies of neutrino-nucleus cross-sections.
- No data exist!

A1 Setup

• Momentum acceptance: 25 %

Existing inclusive data

The Mainz program

- **2019** First test measurements on ¹²C.
- 2020 Full experimental agenda on ¹²C (see talk of L. Doria).
- 2021 Experiment on ⁴⁰Ar with Jet target (see talk of L. Doria).

Today

2025 – Experiment on ¹⁶O?

Results of Pilot Carbon Experiment

- Proof-of-principle measurement at 855 MeV (70°)
- Comparison with the full calculations (QE+Δ+MEC)
- Comparison with QE calculations.

How precise are the existing calculations?

- Precision of neutrino generators ~ 30%.
- SUSAv2 precise to 10% (RPWIA regime).
- Ankowski et al. precise to 30% (RFG model).

New experiment on ¹⁶O

- Precision electron-induced scattering experiment on oxygen and carbon.
- Measurement of inclusive cross-sections in quasi-elastic and delta resonance.
- Quenching of the Coulomb sum rule.
- Test models used in neutrino experiments.
- Kinematics most relevant for T2K.

Target

- Waterfall target is established equipment of A1.
- Measurement without background from target walls.
- Hydrogen background subtracted using sophisticated simulations.
- Luminosity of 4·10³⁵/cm²/s at 20μA.

Kinematics

- Data will cover both QE and DR regime.
- R_L and R_T could be separated and individually studied.
- Coulomb sum for 0.3 GeV \leq IqI \leq 0.8 GeV could be determined.
- <u>Hypothesis</u>: Deviations between theory and data at large scattering angles are expected.

Experimental Rates

- With beam current of ~20µA rates between 20Hz and 500Hz are expected.
- 50 days to complete experimental agenda.

Future A(e,e') experiments at MAGIX

- Accessing R_L (charge) and R_T (EM currents).
- Much higher rates.
- New precise measurements at low Q^2 and small ω .
- This is interesting for 10s MeV neutrino physics.

⁴⁰Ar(e,e'p) experiment

$$\frac{d\sigma}{dE_{e'}d\Omega_{e'}dE_pd\Omega_p} = K\sigma_{ep}S(E_m, p_m)$$

- The spectral function combines the <u>complete response</u> of a nucleus.
- Experimental data validate the predictions of the many-body theories.
- First measurements done at Jefferson Lab @ 2.2 GeV.

⁴⁰Ar(e,e'p) experiment at MAMI

- JLab's E12-14-012 provided data only for $p_m > 0$.
- Experiment at A1 complements JLab experiment with measurements at p_m < 0 for complete picture of nuclear response.

F . • 600 Me\	/
Ebeam. 000 Mick	
E': 450 Me\	/
θ _e : 50° – 10	0°
p _p : 512 Me\	//c
θ _{p:} : 33° – 49°	0
Target: 4cm gas	cell
L: 4•10 ³⁵ c	m ⁻² s ⁻¹

⁴⁰Ar(e,e'p) experiment at MAMI

- Exclusive coincidence experiment required two spectrometers (A & C).
- Including third spectrometer to the measurement, the p_m > 0 data can be obtained for free (with A & B) to double check the JLab data.

Kinematics:	
E _{beam} :	600 MeV
E':	450 MeV
θ _{e:} :	15° – 50°
p _p :	512 MeV/c
θ _{p:} :	38° – 50°
Target:	4cm gas cell
L:	4•10 ³⁵ cm ⁻² s ⁻¹
Target: L:	4cm gas cell 4•10 ³⁵ cm ⁻² s ⁻¹

⁴⁰Ar(e,e'p) experiment at Magix

- The experimental program could be extended with measurements at Magix @ MESA.
- Capacity to provide data without background in the most interesting region.

Kinematics:	
E _{beam} :	100 MeV
E':	80 MeV
θ _{e:} :	20° – 120°
p _p :	122 MeV/c
θ _{p:} :	25° – 50°
Target:	Jet gas
L:	9•10 ³⁴ cm ⁻² s ⁻¹
L:	9•10 ³⁴ cm ⁻² s ⁻¹

Missing Momentum [MeV/c]

Low Q² data

- Relevant for the studies of models of nuclear structure and dynamics.
- Accessible at A1(MAMI) and MAGIX (MESA).
- ¹²C(e,e') cross-section at 315 MeV and 36°:

Data contaminated with elastic data (and nuclear excited states).

Going beyond peaking approximation

$$\frac{d \sigma_a}{d \Delta E'} = \sigma_{elastic} \frac{t}{\Delta E'} e^{\delta(\Delta E')}$$

Peaking approximations insufficient for the interpretation of such experiment.

 A detailed description of radiative corrections required considering angular dependence of emitted photons, and full energy range of emitted photons.

Comparison of radiative tail simulations

• The radiative tail can contribute significant part of collected statistics.

Comparison extd.

Elastic vs. excited states

The contributions of excited states increase with the increasing Q².

Contributions of excited states

- Contamination of QE data with contributions of excited states and corresponding radiative tails.
- Background subtraction using models for ¹²C (e, e')¹²C^{*} and simulation.

Background-free cross-section

Systematic uncertainty governed by the error of the radiative corrections.

ISR experiment @ MAMI

• Beam energy of 195 MeV and scattering angle of 15.3°.

¹²C inclusive cross-section @ Q²=0.0025 GeV²

Conclusions

- MAMI perfect setup for nuclear cross-section measurements at ~1GeV.
- New data sets for ¹²C, ⁴⁰Ar and ⁴⁰Ca targets:
 - Several "parasitic" measurements.
 - Two full experimental agendas.
- Approved experiment on ¹⁶O is pending.
- Precise description of radiative correction crucial for the reliable interpretation of e-N scattering data. Improvements are needed.
- Investigation of exclusive channels and polarization degrees of freedom also possible.

Thank you!