Electrons for Neutrinos

Adi Ashkenazi

adishka@tauex.tau.ac.il

The challenge - next generation high precision

The challenge - next generation high precision

The challenge - next generation high precision

$$N(E_{rec},L) \propto \int \Phi(E,L)\sigma(E)f_{\sigma}(E,E_{rec})dE$$

Measurement

Incoming true flux Modelling input

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions
 (vector vs. vector + axial)

Useful to constrain model uncertainties

e

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions
 (vector vs. vector + axial)

Useful to constrain model uncertainties

Electrons have known energies

Useful to test incoming energy reconstruction methods,

E Reconstruction Requires Interaction Modelling

E Reconstruction Requires Interaction Modelling

v Experiments Fluxes Challenge our Understanding

Improving the Modelling Input

Our goal is to leverage neutrino and electron scattering data to constrain exiting models, and improve simulation environment

Improving the Modelling Input

Our goal is to leverage neutrino and electron scattering data to constrain exiting models, and improve simulation environment

Improving the Modelling Input

Our goal is to leverage neutrino and electron scattering data to constrain exiting models, and improve simulation environment

- $1p0\pi$ Results

Today:

Complementary efforts

Collaborations	Kinematics	Targets	Scattering	Publications
E12-14-012 (JLab)	$E_e = 2.222 \mathrm{GeV}$	Ar, Ti	(e, e')	Phys Rev C 99 054608
(Data collected: 2017)	$ heta_e=$ 15.5, 17.5,	AI, C	(e, e'p)	Phys.Rev.D 105 112002
	20.0, 21.5			•
lofforcon Lab	$ heta_p=$ -39.0, -44.0,			
Jerrer Son Lab	-44.5, -47.0			
	-50.0			
e4nu/CLAS (JLab)	$E_e =$ 1, 2, 4, 6 GeV	H, D, He,	(e, e')	
(Data collected: 1999, 2022)	$ heta_e > 5$	C, Ar, ⁴⁰ Ca,	e,p,n,π,γ	Nature 599 , 565
		⁴⁸ Ca, Fe, Sn	in the final state	Phys.Rev.D 103 113003
Jefferson Lab				
A1 (MAMI)	$E_e=$ 1.6 GeV	H, D, He	(e,e')	
(Data collected:2020)		C, O, Al	2 additional	
(More data planned)		Ca, Ar, Xe	charged particles	
LDMX (SLAC)	$E_e = 4.0 { m GeV}$		(e,e')	
(Planned)	$ heta_e <$ 40		e,p,n,π	
JLAC			in the final state	
eALBA	$E_e=$ 500 MeV	C, CH	(e, e')	
(Planned) ALBA	- few GeV	Be, Ca		

Adaptation from Proceedings of the US Community Snowmass2021 arXiv:2203.06853v1 [hep-ex]

e4nu and DUNE

arXiv:2203.06853v1 [hep-ex] A NF06 Contributed White Paper

CLAS Detector

Electron beam with energies up to 6 GeV

Open Trigger

New Data from @LAS12

Acceptance down to 5° $Q^2 > 0.04 \text{ GeV}^2$ x10 luminosity $[10^{35} \text{ cm}^2 \text{s}^{-1}]$ Keep low threshold, better neutron coverage Targets: ²D, ⁴He, ¹²C, ¹⁶O, ⁴⁰Ar, ⁴⁰Ca (1,) 2, 4, 6 GeV (relevant for DUNE)

Overwhelming support from:

CLAS A(e,e'p) Data

First test of neutrino energy reconstruction with exclusive data!

- Targets: H, D, ⁴He, ¹²C, TZK (H₂O), K (CH), DK (Ar) ⁴⁰Ar, ⁴⁰Ca, ⁵⁶Fe

Inclusive e data and generators

Ar(e,e') E = 2 GeV θ = 8 14000 preliminary 12000 10000 S000 6000 4000 2000 0^L 0 2.2 0.2 0.8 1.2 2 0.4 0.6 1.4 1.6 1.8 1 ω [GeV]

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 9

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 10 12000 preliminary 10000 counts 6000 4000 2000 0^L 0 2.2 1.6 0.2 0.6 1.2 1.8 2 0.4 0.8 1 1.4 ω [GeV]

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 11 12000 preliminary 10000 8000 counts 4000 2000 0^L 0 2.2 1.6 0.2 1.8 2 0.4 0.6 0.8 1.2 1 1.4 ω [GeV]

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 12

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 13 8000 Preliminary 7000 6000 \$5000 4000 3000 2000 1000 0^L 0 1.6 2.2 0.2 1.8 2 0.6 0.8 1.2 0.4 1 1.4 ω [GeV]

Matan Goldenberg

Ar(e,e') $E = 2 \text{ GeV } \theta = 14$

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 15

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 16

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 17

Matan Goldenberg

Ar(e,e') $E = 2 \text{ GeV } \theta = 18$

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 19

Matan Goldenberg

Ar(e,e') E = 2 GeV θ = 20 1800 Preliminary 1600 1400 1200 counts 800 600 400 200 0^L 0 1.6 2.2 0.2 1.8 2 0.4 0.6 0.8 1.2 1 1.4 ω [GeV]

Matan Goldenberg

The probability that a struck proton leaves the nucleus without significant rescattering

$$T_A = N(e,e'p)_{0\pi} / N(e,e')$$

at Quasielastic regions (X_B around 1) Using MC to determine QE dominated regions low P₁, high P_p, low θ_{pq}

> Useful to constrain the FSI models Better model independency

Noah Steinberg Fermilab

Noah Steinberg Fermilab

Data to MC differences Larger at small momentum, Grow with A

Noah Steinberg Fermilab

Less model dependent measurement Consistent with previous results on C, Fe First measurement on He

Noah Steinberg Fermilab

$\overrightarrow{\mathcal{C4V}}$ 1p0 π Event Selection

Focus on Quasi Elastic events:

1 proton above 300 MeV/c

no additional hadrons above detection threshold:

150 MeV/c for $P_{\pi^{+/-}}$

500 MeV/c for P_{π^0}

Incoming Energy Reconstruction

Cherenkov detectors:

Assuming QE interaction

Using lepton only

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta_l)}$$

Tracking detectors: Calorimetric sum Using All detected particles

$$E_{\text{cal}} = E_l + E_p^{\text{kin}} + \epsilon$$
[1p0 π]

 ϵ is the nucleon separation energy ~ 20 MeV

Inclusive (e,e')_{0π} Energy Reconstruction

Inclusive (e,e')_{0π} Energy Reconstruction

Reconstructed (e,e'p)_{1p0π} Calorimetric Energy

40 Nature **599**, 565 (2021)

Reconstructed (e,e'p)_{1p0π} Calorimetric Energy

⁴¹ Nature **599**, 565 (2021)

Reconstructed (e,e'p)_{1p0π} Calorimetric Energy

⁴² Nature **599**, 565 (2021)

Focusing on different reaction mechanisms Standard Transverse Variables

Sensitive to

hit nucleon momentum

δα_T Sensitive to Final State Interactions

δp_T

-p^µ

 $\delta \alpha_{T}$

p^p_T

Transverse missing momentum

Nature 599, 565 (2021)

p_T sensitivity to interaction mechanisms

MC vs. (e,e'p) Transverse Variables

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

First Look at Multi hadrons final state

Implementing different 2N final state in MEC SuSA

Alon Sportes

Julia Tena Vidal

First Look at Multi hadrons final state

Implementing different 2N final state in MEC SuSA

Alon

Sportes

Julia Tena Vidal

(e,e'1p1 π) - coming soon

DIVEPRISM Basic Idea

Some parts of the DUNE near detector can move

Each position will be exposed to a different flux

DIVEPRISM Leveraged to $\tilde{\mathcal{C4V}}$

Broad band fluxes are responsible for almost all of the degeneracies we have between different nuclear effects.

Amir Gruber Co-advisory w. Stephen Dolan

Using PRISM to build a quasi mono energetic flux

Amir Gruber Co-advisory w. Stephen Dolan

DUE PRISM Leveraged to EU

The best solution can have large uncertainties

Thin enough flux is satisfactory

- employ regularization to penalize solution with large coefficients

DIVEPRISM Leveraged to $\hat{\mathcal{C4V}}$

Measurable: $\omega_{reco} = \langle E_v \rangle - E_l$ a proxy to ω smeared by flux width

If we assume CS change negligibly across flux we can assume all smearing comes from flux and unfold

Co-advisory w. Stephen Dolan

Amir Gruber

First proof-of-concept, works for many energies

Will be part of DUNE TDR

57

Summary

vA interaction uncertainties limit oscillation parameters extraction

Use of semi-exclusive eA data to explore v vA uncertainties

- Energy reconstruction
- Comparison to event generators

Data/model disagreement even for electron QE-like events

Muon, Electron and neutrino scattering data is on the way to constrain models

Thank you for your attention