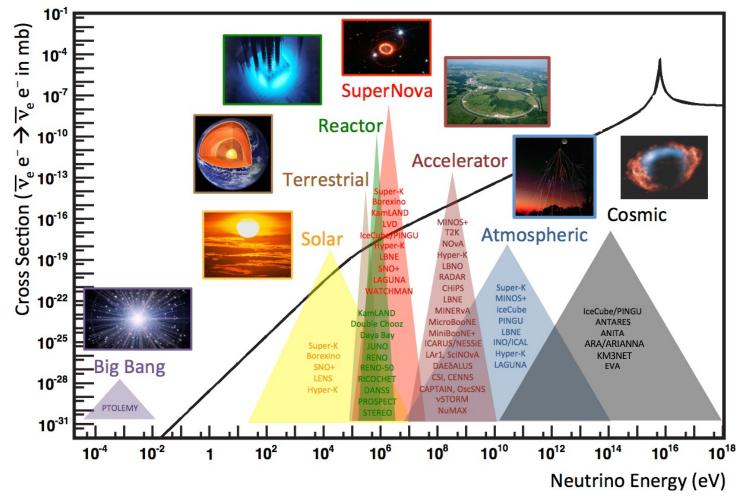
Recent results from COHERENT's inelastic neutrino-nucleus scattering detectors

Samuel Hedges June 27, 2023

Samuel Hedges, LLNL

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

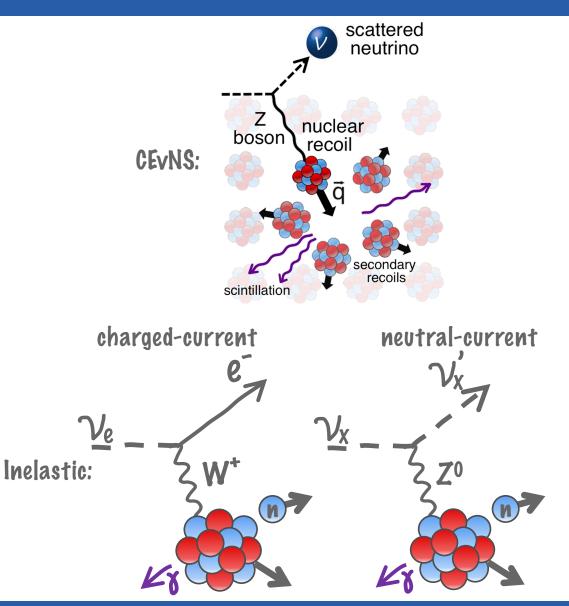
Outline


- Motivation
- The COHERENT collaboration & neutrino production at the SNS
- The COHERENT inelastic program:
 - Lead neutrino cube—neutrino-induced neutrons on lead
 - NalvE-185 detector—inclusive electron-neutrino charged-current measurement on ¹²⁷I
 - Ongoing & future inelastic detectors

Motivation

Samuel Hedges, LLNL MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

Neutrino Sources


- Neutrinos produced across a large range of energies
- Many interesting sources produce exclusively low energy (<100 MeV) neutrinos
 - Neutrinos reveal key information about processes generating them
 - Sources can be used to study fundamental properties of neutrino
- Cross sections tend to scale with E², difficult to observe low energy neutrinos

[A. de Gouvea, et al., arxiv:12104340 (2013)] [J. A. Formaggio & G. P. Zeller, Rev. Mod. Phys **84** (2012)]

Low Energy Neutrino Detection

- Common methods for detecting low-energy neutrinos: inverse-beta decay, elastic neutrinoelectron scattering
 - Typically large deployment of water, liquid scintillator
 - Unique signatures to help reject backgrounds
 - Neutron-positron coincidence for IBD, Cherenkov cone for neutrino-electron scattering
 - Interaction thresholds of 1.8 MeV for IBD, Cherenkov threshold for neutrino-electron scattering
- An alternate channel for studying low-energy neutrinos is neutrino-nucleus interactions
 - Can have larger cross sections, lower interaction thresholds, different detection signatures
 - Can build detectors based off of different detector technology, more dense scattering targets
- Few existing measurements of neutrino-nucleus interactions at these energies!

Samuel Hedges, LLNL

Existing Low-Energy Neutrino-Nucleus Measurements

Testana	Depation Channel	Courses	E-m onim ont	Measurement (10^{-42} cm^2)	Theorem (10^{-42} cm^2)
	Reaction Channel	1	Experiment		Theory (10 - cm ⁻)
² H	$^2\mathrm{H}(u_e,e^-)\mathrm{pp}$	Stopped π/μ	LAMPF	$52 \pm 18(\text{tot})$	54 (IA) (Tatara et al., 1990)
¹² C	${}^{12}{ m C}(u_e,e^-){}^{12}{ m N}_{ m g.s.}$	Stopped π/μ	KARMEN	$9.1\pm0.5(\mathrm{stat})\pm0.8(\mathrm{sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
		Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	9.2 [EPT] (Fukugita et al., 1988).
		Stopped π/μ	LSND	$8.9\pm0.3(\mathrm{stat})\pm0.9(\mathrm{sys})$	8.9 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	12 54 -> 12				
	$^{12}{ m C}(u_e,e^-)^{12}{ m N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6 (\text{stat}) \pm 0.5 (\text{sys})$	5.4-5.6 [CRPA] (Kolbe <i>et al.</i> , 1999b)
		Stopped π/μ	E225	3.6 ± 2.0 (tot)	4.1 [Shell] (Hayes and S, 2000)
		Stopped π/μ	LSND	$4.3\pm0.4(\mathrm{stat})\pm0.6(\mathrm{sys})$	
	$^{12}{ m C}(u_{\mu}, u_{\mu})^{12}{ m C}^{*}$	Stopped π/μ	KARMEN	$3.2 \pm 0.5(\text{stat}) \pm 0.4(\text{sys})$	2.8 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	${}^{12}C(\nu,\nu){}^{12}C^*$	Stopped π/μ	KARMEN		10.5 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	10				
	$^{12}\mathrm{C}(u_{\mu},\mu^{-})\mathrm{X}$	Decay in Flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750-1780 [CRPA] (Kolbe <i>et al.</i> , 1999b)
					1380 [Shell] (Hayes and S, 2000)
					1115 [Green's Function] (Meucci et al., 2004)
	$^{12}C(\nu_{\mu},\mu^{-})^{12}N_{g.s.}$	Decay in Flight	LSND	$56 \pm 8(\text{stat}) \pm 10(\text{sys})$	68-73 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	(ν_{μ},μ) rig.s.	Decity in Flight	Lond	00 ± 0(0000) ± 10(0,0)	56 [Shell] (Hayes and S, 2000)
56 Fe	${ m ^{56}Fe}(u_e,e^-){ m ^{56}Co}$	Stopped π/μ	KARMEN	$256 \pm 108(\text{stat}) \pm 43(\text{sys})$	264 [Shell] (Kolbe <i>et al.</i> , 1999a)
⁷¹ Ga	$^{71}\mathrm{Ga}(u_e,e^-)^{71}\mathrm{Ge}$	⁵¹ Cr source	GALLEX, ave.	$0.0054 \pm 0.0009(tot)$	0.0058 [Shell] (Haxton, 1998)
		⁵¹ Cr	SAGE	$0.0055 \pm 0.0007(tot)$	
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006(tot)$	0.0070 [Shell] (Bahcall, 1997)
¹²⁷ I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ	LSND	$284 \pm 91(\mathrm{stat}) \pm 25(\mathrm{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

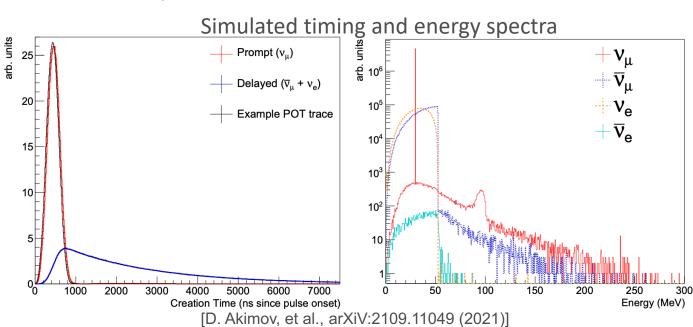
List of <300 MeV neutrino-nucleus measurements with terrestrial sources

[J. A. Formaggio & G. P. Zeller, Rev. Mod. Phys 84 (2012)]


Samuel Hedges, LLNL

The COHERENT collaboration & neutrino production at the SNS

Samuel Hedges, LLNL MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023


The COHERENT Collaboration

- ~80 members, 20 institutions
- Formed to observe CEvNS, study physics in multiple targets, including N² scaling of cross section
- Use neutrinos produced by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL)
- Intense flux of low-energy pulsed neutrinos useful for studying inelastic neutrino-nucleus interactions as well

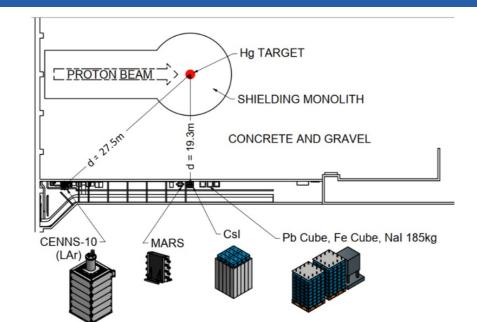
Neutrinos at the SNS

- 1 GeV protons strike Hg target at the SNS at 60Hz
 - 350ns FWHM of proton pulse
- Produces π^- and π^+ (and neutrons)
 - Neutrons are a background for our detectors, we refer to them as beam-related neutrons (**BRNs**)
- $\pi^+ decay$ in ~26ns, leading to prompt ν_μ (~30 MeV) and μ^+
- μ^+ decay with lifetime of 2.2 μ s, producing delayed ν_e and $\bar{\nu}_{\mu}$ (<53 MeV)
 - ν_{μ} roughly in time with beam, ν_{e} and $\bar{\nu}_{\mu}$ largely free from beam-related backgrounds

Samuel Hedges, LLNL

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

~99% capture


Hg

[26 ns]

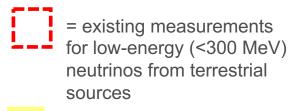
[2.2 µs]

Neutrino Alley

- COHERENT's detectors in "Neutrino Alley" at the SNS
 - 25m long hallway, 20-30m from target
 - Not designed for neutrino detectors
 - Concrete and gravel reduce beam neutrons
- Dedicated detectors for measuring neutrons

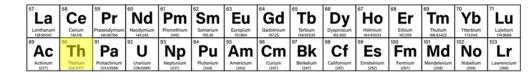
Samuel Hedges, LLNL

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023


Existing Low-Energy Neutrino-Nucleus Measurements

= existing measurements for low-energy (<300 MeV) neutrinos from terrestrial sources

																	18 VIIIA
Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium
Ľi	Be											ືB	°C	'N	°O	° F	Ňe
Lithium 6.94	Beryllium 9.0121831 12											Boron 10.81	Carbon 12,011	Nitrogen 14.007	Oxygen 15.999 16	Fluorine 18.998403163 17	Neon 201797 18
Na Sodium 22.98976928	Mg Magnesium 24.305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.9875385	Silicon	Phosphorus 30.973767998	S Sulfur 32.06	Chlorine	Argon 29.948
¹⁹ K	°Ca	Sc	²² Ti	²³ V	²⁴ Cr	™Mn	Fe	Co	²⁸ Ni	°°Cu	[∞] Zn	Ga	Ge	³³ As	^{³₄} Se	³⁵ Br	³⁶ Kı
Potassium 39.0983 37	Calcium 40.078	Scandium 44.955908 39	Titanium 47,667	Vanadium 50.9415	Chromium 51.9961 42	Manganese 54.938044 43	Iron 55.845 44	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971 52	Bromine 78.904	Kryptor 83.798
[″] Rb	ຶSr	Ϋ́	^T Zr	Nb	Мо	Тс	Ru	Rh	Pd	Âg	Cd	In	Sn	Sb	те		ĨΧe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
[®] Cs	Ba	57 - 71 Lanthanoids	⁷² Hf	⁷³ Ta	⁷⁴ W	⁷⁵ Re	os	" Ir	⁷⁸ Pt	[®] Au	[⊪] Hg	⁸¹ TI	Pb	Bi	^{₿4} Po	Åt	Rr
Caesium 132.90545195	Barium 137.327	Carloianoida	Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Rador (222)
Fr	°₿Ra	89 - 103 Actinoids	¹⁰⁴ Rf	¹⁰⁵ Db	Sg	Bh	Hs	Mt	¹¹⁰ Ds	"Rg	¹¹² Cn	[™] Nh	¹¹⁴ FI	¹¹⁵ Mc	¹¹⁶ Lv	¹¹⁷ Ts	¹¹⁸ OQ
	Radium	Actentionals	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganes

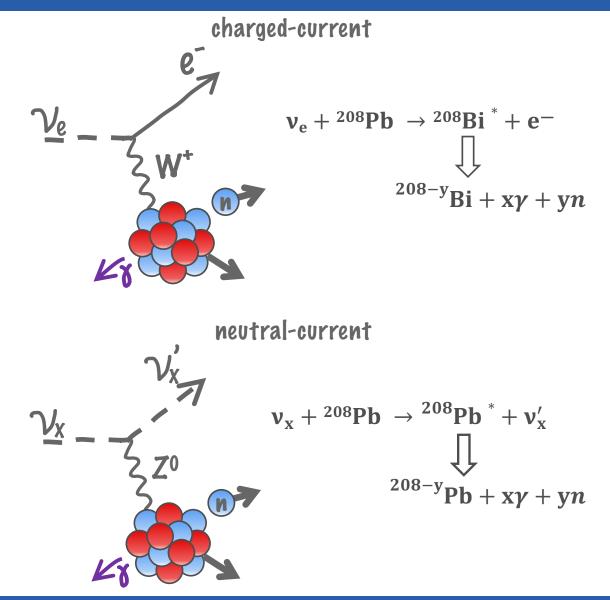

Lanthanum 138.90547	58 Ce Cerium 140,116	59 Pr Praseodymium 540.90766	60 Nd Neodymium 144.242	Promethium	62 Sm Samarium 150.36	63 Eu Europium 151.964	Gadolinium	65 Tb Terbium 158.92535	⁶⁶ Dy Dysprosium 162.500	67 Ho Holmium 164.93033	68 Erbium 167.259	69 Tm Thulium 168.93422	70 Yb Ytterbium 173.045	71 Lu Lutetium 174.9668
Actinium (227)	90 Th Thorium 232.0377	Protactinium 231.03588	92 Uranium 238.02891	93 Np Neptunium (237)	Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)		99 Es Einsteinium (252)	Fermium (257)		Nobelium (259)	Lawrencium

COHERENT's Inelastic Detectors

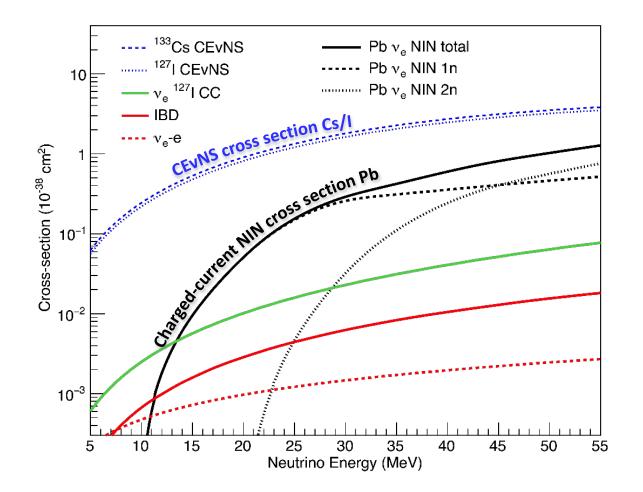
= COHERENT's current & planned detectors

iÅ																	VIIIA
1 H Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 Helium 4.002602
^³ Li	Be											ືΒ	°C	'N	°O	F	ຶNe
Lithium 6.94	Beryllium 9.0121831											Boron 10.81	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998403163	Neon 20.1797
Na	Mg	3	4	5	6	7	8	9	10	11	12	[®] AI	ืSi	¹⁵ P	[®] S	CI	[®] Ar
Sodium 22.98976928	Magnesium 24.305	шв	IVB	VB	VĬB	VIB	VIIIB	VIIIB	VIIIB	IB	IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948
¹⁹ K	°Ca	Sc	²² Ti	²³ V	²⁴ Cr	Mn	Fe	ĈO	²⁸ Ni	°Cu	[∞] Zn	Ga	Ge	³³ As	^³ Se	⁵Br	⁵Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47,667	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
³⁷ Rb	ຶSr	³⁹ Y	[∗] Zr	^⁴ Nb	Mo	⁴³ Tc	[≇] Ru	็Rh	^{**} Pd	ĨAg	[®] Cd	[®] In	ຶSn	⁵Sb	⁵² Te	53	็Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121,760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
⁵℃s	°Ba	57 - 71 Lanthanoids	[™] Hf	⁷³ Ta	⁷⁴ W	°⁵Re	⁷⁶ Os	⁷⁷ lr	⁷⁸ Pt	⁷⁹ Au	в	⁸¹ TI	⁸² Pb	Bi	[₿] Po	[™] At	[®] Rn
Caesium 132.90545196	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
⁸⁷ Fr	°₿Ra	89 - 103 Actinoids	[™] Rf	¹⁰⁵ Db	Sg	Bh	[™] Hs	Mt	¹¹⁰ Ds	"Rg	¹¹² Cn	"Nh	¹¹⁴ FI	™Mc	¹¹⁶ Lv	"Ts	[™] Og
Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

Name	Target	Channel	Deployment Date	
Lead Neutrino Cube	Lead	$Pb(\nu_e, e^- + xn)$	1/2016	
Iron Neutrino Cube	Iron	$\operatorname{Fe}(\nu_e, e^- + xn)$	2/2017	Results presented today!
$NaI\nu E$ (COH-NaI-185)	$^{127}\mathrm{I}$	$^{127}\mathrm{I}(\nu_e, e^- + x)$	6/2016	
CENNS-10 (COH-Ar-10)	Argon	$\operatorname{Ar}(\nu_e, e^- + x)$	2017	
uThor	Thorium	$Th(\nu_e, e^- + x)$	2022	
CENNS-750 (COH-Ar-750)	Argon	$\operatorname{Ar}(\nu_e, e^- + x)$	future	
D_2O	$^{2}\mathrm{H/O}$	$^{2}\mathrm{H/O}(\nu_{e},e^{-}+x)$	future	

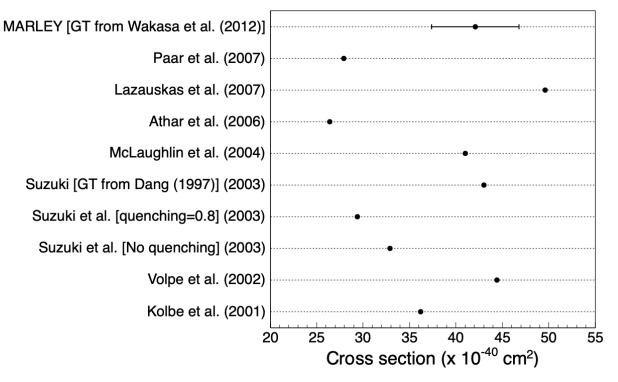

Samuel Hedges, LLNL

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023


The Lead Neutrino Cube

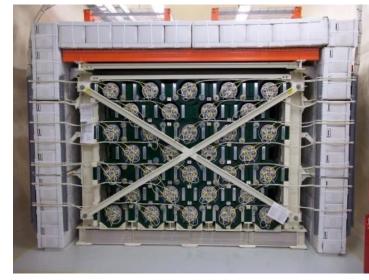
Samuel Hedges, LLNL MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

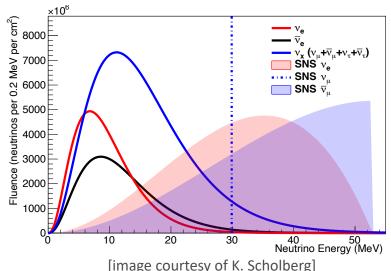
- Neutrino interactions in shielding (mostly lead) of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors



- Neutrino interactions in shielding (mostly lead) of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than CEvNS, but previously unmeasured

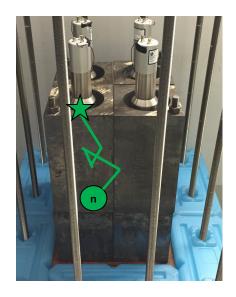
- Neutrino interactions in shielding (mostly lead) of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than $CE\nu NS$, but previously unmeasured
 - Variations in calculations


Inclusive ²⁰⁸Pb Flux-Averaged DAR Cross Sections


- Neutrino interactions in shielding (mostly lead) of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than $CE\nu NS$, but previously unmeasured
 - Variations in calculations
 - Much greater mass of shielding than CEvNS detectors themselves

CEvNS Target	Shielding
14.6 kg CsI[Na]	2,200 kg lead
24 kg liquid argon	11,000 kg lead
16 kg Ge	3,400 kg lead
2,425 kg Nal	17,000 kg iron and lead

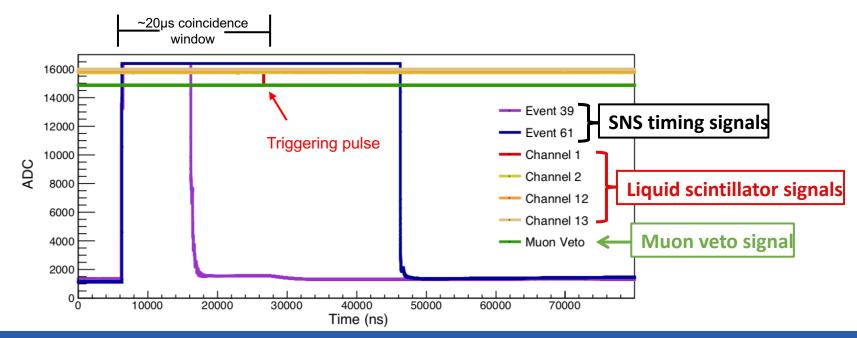
- Neutrino interactions in shielding (mostly lead) of COHERENT's detectors could present beam-related background
 - Neutrino interactions can generate excited nuclei that de-excite by emitting neutrons
 - Produced neutrons follow the timing distribution of the neutrinos, and can produce low energy nuclear recoils in detectors
- Cross section expected to be lower than $CE\nu NS$, but previously unmeasured
 - Variations in calculations
 - Much greater mass of shielding than CEvNS detectors themselves
- Primary mechanism for HALO to detect supernova neutrinos



[https://www.triumf.ca/research-highlights/experimental-result/halo-operational-snolab]

The Lead Neutrino Cube

- 900-kg lead target, cavities for liquid scintillator detectors
- NINs produced in lead have small but nonzero efficiency to make their way to LS cells, identified as neutrons using PSD
- Muon veto panels surround targets to reject muon-induced neutrons
- Water shielding reduces steady-state, beam-related neutrons
- Focus on delayed neutrino window, CC cross section expected to be larger than NC, free of prompt beam-related neutron (BRN) background

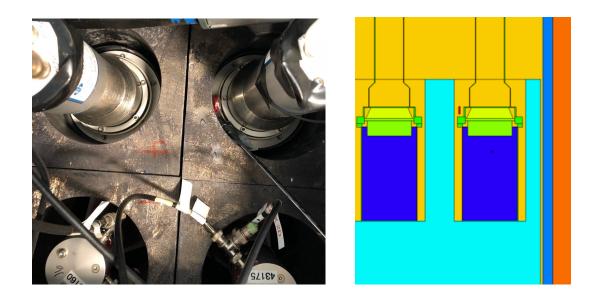


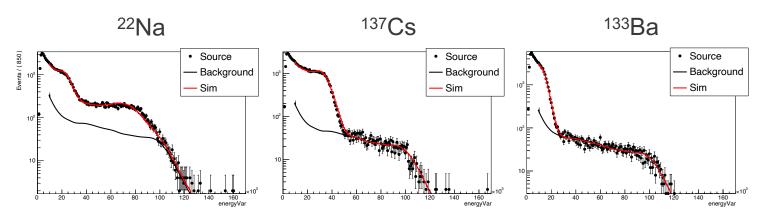
Detector Operation

- DAQ triggers on coincidences between SNS timing signals and liquid scintillator pulses in ~20µs window, record all channels when coincidence observed
- Find onset of LS pulses, integrate for 400ns to determine energy, integrate tail of pulse

 $PSD = \frac{\text{tail integral}}{\text{full integral}}$

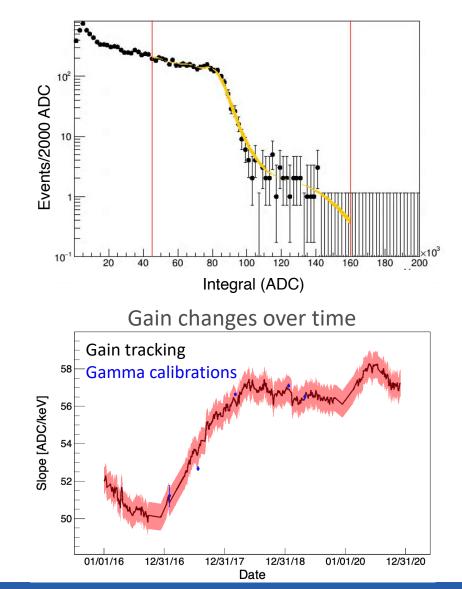
- Correlate liquid scintillator pulses with SNS timing signal, veto in software
- Events within a 14µs window around the SNS timing signal blinded
- Dedicated gamma calibrations to set energy scale of events, neutron calibrations to optimize PSD & develop cut

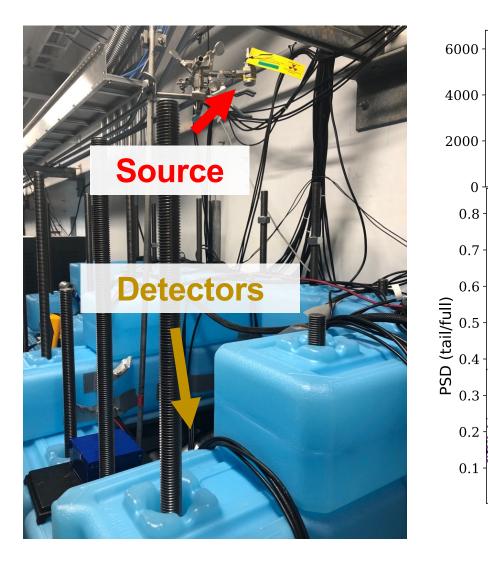



Samuel Hedges, LLNL

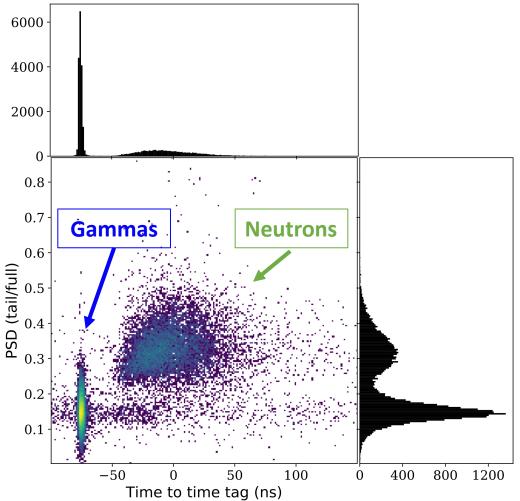
MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

Gamma Calibrations

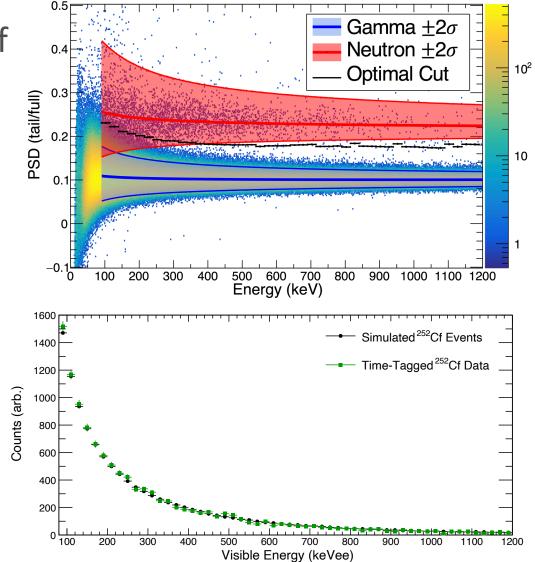

- Calibrated with gamma sources (⁶⁰Co, ²²Na, ¹³⁷Cs, ¹³³Ba) several times throughout lifetime
- Source and detector simulated in MCNP, fit to data allowing energyresolution and ADC-to-keV calibration parameters to float


Gamma Calibrations

- Calibrated with gamma sources (⁶⁰Co, ²²Na, ¹³⁷Cs, ¹³³Ba) several times throughout lifetime
- Source and detector simulated in MCNP, fit to data allowing energyresolution and ADC-to-keV calibration parameters to float
- Between calibrations, background spectrum fit (largely due to ⁴⁰K) to track gain on shorter time scales


Neutron Calibrations

- *in-situ* run performed with time-tagged ²⁵²Cf neutron source
- Time-tagged signal replaced SNS timing signal in DAQ, shielding removed to expose detectors to source, otherwise identical to running configuration


Neutron Calibrations

- *in-situ* run performed with time-tagged ²⁵²Cf neutron source
- Time-tagged signal replaced SNS timing signal in DAQ, shielding removed to expose detectors to source, otherwise identical to running configuration
- Produced clean population of gammas, neutrons for understanding thresholds, optimizing PSD parameter

Neutron Calibrations

- *in-situ* run performed with time-tagged ²⁵²Cf neutron source
- Time-tagged signal replaced SNS timing signal in DAQ, shielding removed to expose detectors to source, otherwise identical to running configuration
- Produced clean population of gammas, neutrons for understanding thresholds, optimizing PSD parameter
- Develop neutron PSD cut
- Compare data to simulation to ensure we understand energy response

MARLEY for ²⁰⁸Pb

- Gamow-Teller strengths obtained from (p,n) measurement
 - Input B(GT⁻) and B(F) values into MARLEY along with electron neutrino DAR spectrum

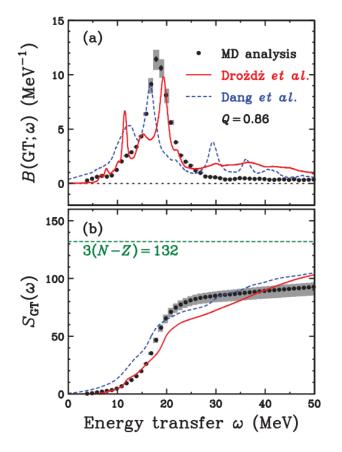
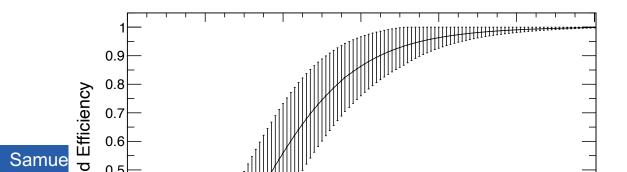
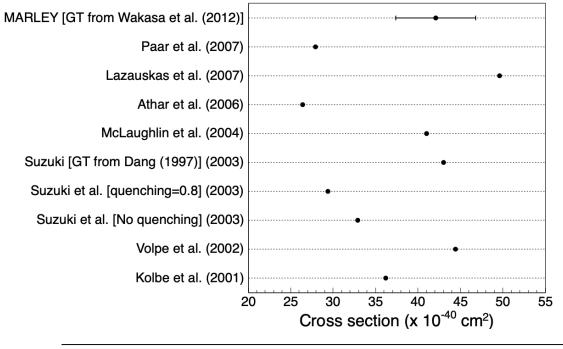



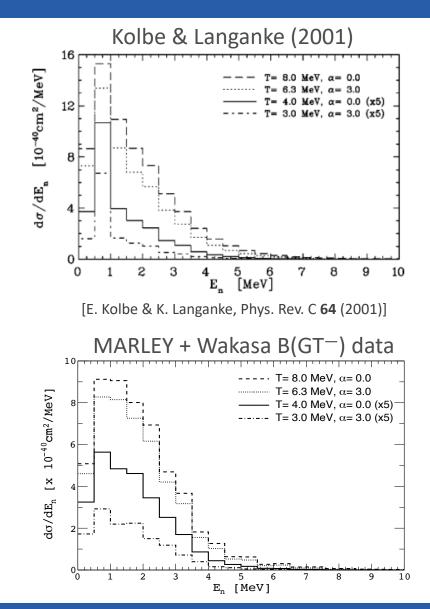
FIG. 16. (Color online) (a) The GT strength $B(\text{GT}; \omega)$ and (b) its integrated $S_{\text{GT}}(\omega)$ distributions obtained by MD analysis of the ²⁰⁸Pb(*p*, *n*) reaction. The bands represent the uncertainties arising from the selection of α in Eq. (18). The solid and dashed curves are the theoretical predictions reported by Drożdż *et al.* [18] and Dang *et al.* [62], respectively, with a quenching factor Q = 0.86 [13].


[T. Wakasa, et al., Phys Rev. C 85 (2012)]

MARLEY for ²⁰⁸Pb

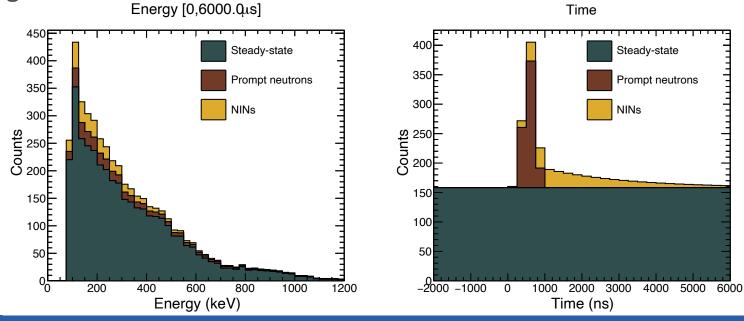
- Gamow-Teller strengths obtained from (p,n) measurement
 - Input B(GT⁻) and B(F) values into MARLEY along with electron neutrino DAR spectrum
- MARLEY outputs cross sections, energies and multiplicities of emitted particles
 - Cross section for lead agrees well with existing theoretical calculations
 - Provides calculations for specific channels

Inclusive ²⁰⁸Pb Flux-Averaged DAR Cross Sections



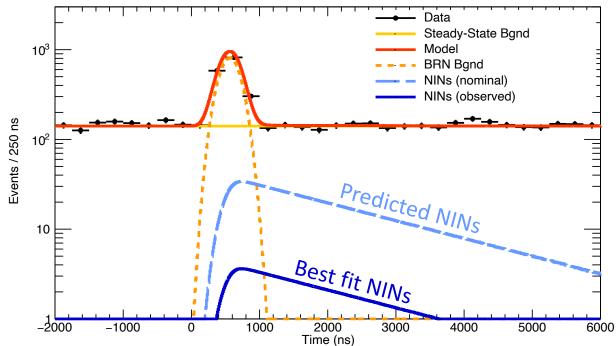
Channel	Cross section $(\times 10^{-40} \text{cm}^2)$
$\frac{1}{208} \operatorname{Pb}(\nu_e, X)$	42.1
208 Pb $(\nu_e, e^- + n)^{207}$ Bi	31.6
208 Pb $(\nu_e, e^- + 2n)^{206}$ Bi	7.7
208 Pb $(\nu_e, e^- + 3n)^{205}$ Bi	0.4

and Intermediate Energies—June 27, 2023


MARLEY for ²⁰⁸Pb

- Gamow-Teller strengths obtained from (p,n) measurement
 - Input B(GT⁻) and B(F) values into MARLEY along with electron neutrino DAR spectrum
- MARLEY outputs cross sections, energies and multiplicities of emitted particles
 - Cross section for lead agrees well with existing theoretical calculations
 - Provides calculations for specific channels
- Similar neutron energy spectrum as E. Kolbe & K. Langanke, Phys. Rev. C 64 (2001) for supernova neutrinos
 - No published neutron spectrum from DAR neutrinos w/o MARLEY

Signal Predictions

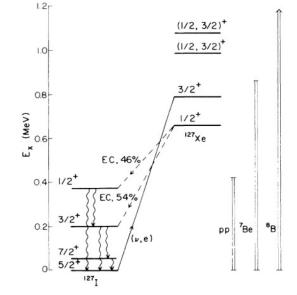

- Simulate signal in MCNP, GEANT4 to determine efficiency for NINs arriving in detector of 18.8%
- Apply measured trigger threshold, energy resolution, PSD cut, to arrive at an efficiency of detecting NINs of 3.3%
- One-dimensional (time-only) fit to data
- Expect 346 charged-current NIN events with cuts
 - Approx. 5σ significance with nominal cross section

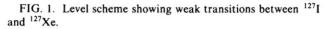
MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

Unblinded Results

- Best fit of 36⁺⁷²₋₃₆ events compared to expected 346 events
 - Cross section much lower than expected
 - See >4 σ discrepancy with model
- Open questions:
 - Is neutron emission channel suppressed?
 - Study inclusive lead charged-current cross section
 - Can do within COHERENT, also external plans (arXiv:2205.11769)
 - Study NIN cross section with different target (Fe neutrino cube)
 - Are emitted neutrons lower in energy than predicted?
 - Study lead NIN cross section with capture-gated detector
 - Is the total cross section suppressed?
 - Can study in the NalvE detector

The NalvE-185 Detector


Samuel Hedges, LLNL MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023


Motivation for Measuring ¹²⁷I CC Interactions

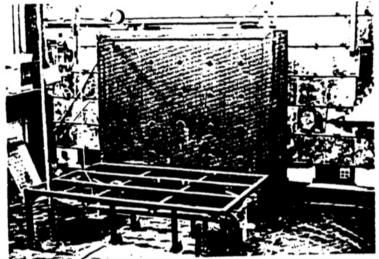
 Initial motivation from W. C. Haxton, Phys. Rev. Lett 60 (1988), proposing radiochemical experiment using ¹²⁷I for solar neutrino detection

$$\nu_e + {}^{127}\mathrm{I} \rightarrow e^- + {}^{127}\mathrm{Xe}^*$$

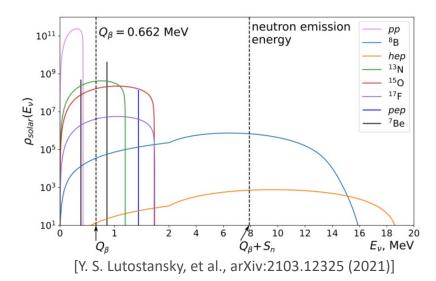
- Low threshold gives access to ⁷Be solar neutrinos, larger cross section than for ³⁷Cl
- Resulting ¹²⁷Xe has long half-life, use similar radiochemical technique as used for ³⁷Cl
- The cross section depends on g_A, weak axialvector coupling constant
 - Suppression of g_A important for $0\nu\beta\beta$ experiments (nEXO, LEGEND, SNO+, CUPID), half-lives
 - Can potentially test quenching at momentum transfer not available through beta-decay experiments

[W. C. Haxton, Phys. Rev. Lett 60 (1988)]

J^{π}	$g_A = -1.0$	$g_A = -1.20$
0^{+}	0.096	0.096
0^{-}	0.00001	0.00002
1+	1.017	1.528
1-	0.006	0.008
2^+	0.155	0.213
2^{-}	0.693	1.055
3^{+}	0.149	0.171
3^{-}	0.017	0.025
total	2.098	3.096


[J. Engel, S. Pittel, & P. Vogel, Phys. Rev. C 50 (1994)]

Motivation for Measuring ¹²⁷I CC Interactions

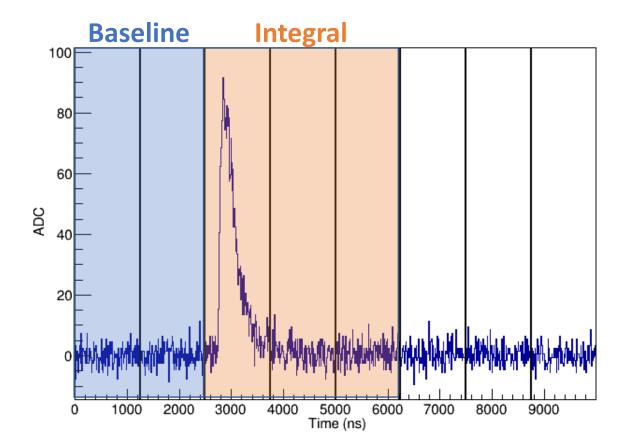

 Exclusive cross section to bound ¹²⁷Xe measured at LAMPF in the 1990s with radiochemical approach

$$\nu_e + {}^{127}\mathrm{I} \rightarrow e^- + {}^{127}\mathrm{X}e_{\mathrm{bound}}$$

- Reported flux-averaged cross section of
- $\sigma = 2.84 \pm 0.91(stat) \pm 0.25(sys) \times 10^{-40} \, \mathrm{cm^2}$
 - Only measured cross section to bound states of ¹²⁷Xe—majority of neutrinos at DAR sources have energy above neutron emission threshold
- Suggested repetition with electronic NaI detector to measure energy-dependence of cross section
- Recently interest in looking at ¹²⁶Xe/¹²⁷Xe ratio for comparing ⁷Be to ⁸B/HEP neutrinos

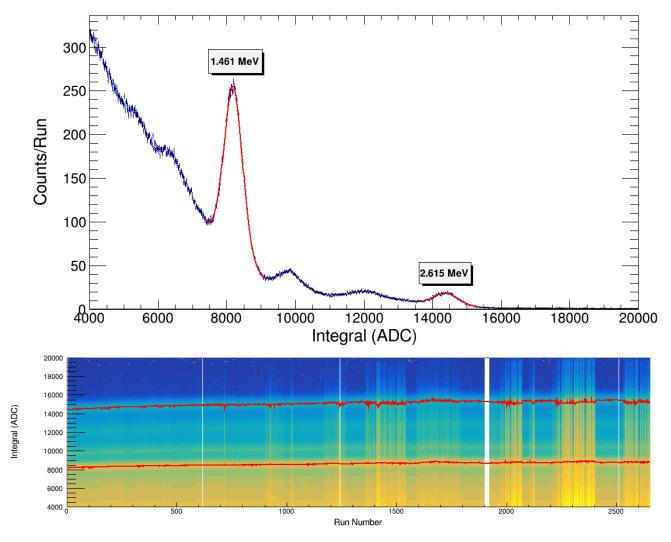
[B. T. Cleveland, et al., 23rd Int. Cosmic Ray Conf. 3 (1993]

NalvE-185 Detector


- Nal neutrino Experiment (NalvE) designed to measure the inclusive charged-current cross section, energy-dependence
- Twenty-four 7.7-kg Nal[Tl] scintillator detectors (185-kg mass), deployed 2016
- Signal is "large-energy" (10-55 MeV) depositions in delayed neutrino window
- Muon veto panels to reduce cosmic muons
 - 1.5" steel between Nal and veto panels to avoid vetoing signal
- Detector also used as prototype for ton-scale Nal CEvNS detector

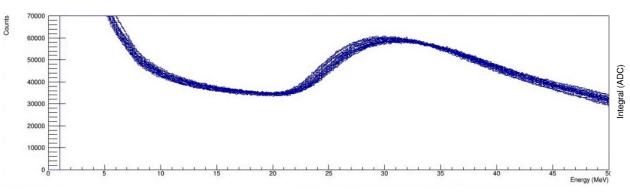
Data Acquisition System

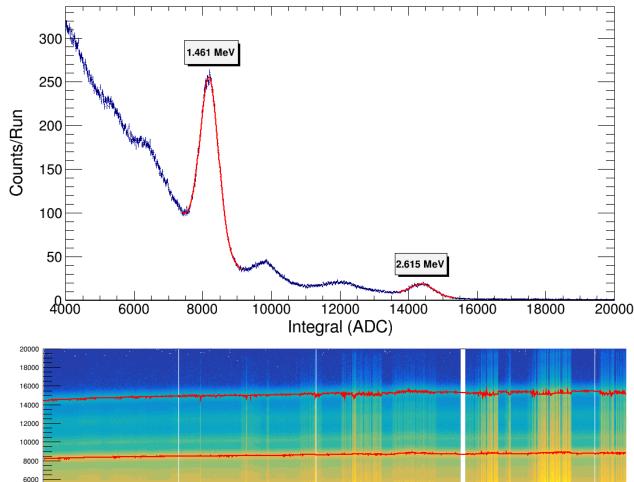
- Detector uses digitizer trigger to record scintillation in any NaI channel above a threshold (500-900 keV)
- Integrated PMT charge recorded in eight timing windows (accumulators) around the pulse to determine baseline, integral
- Muon veto panels, SNS timing pulses trigger independently, timing correlation done in software
 - Data within -2µs to +20µs of SNS timing signal blinded



Intrinsic Background Calibrations

 Calibrate each Nal channel based on ⁴⁰K and ²⁰⁸Tl intrinsic backgrounds

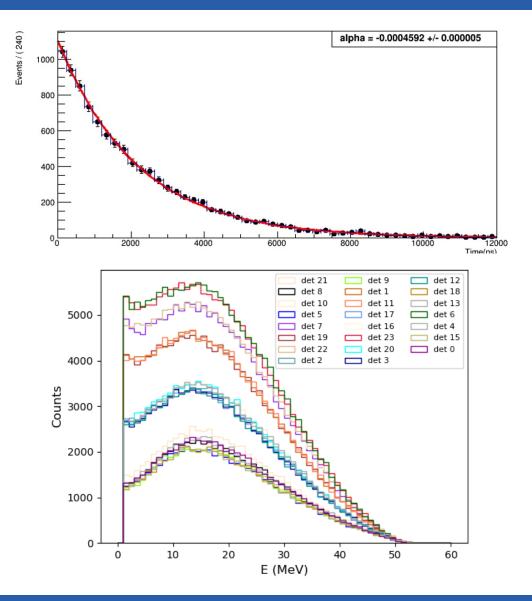

Samuel Hedges, LLNL


• Track gain changes over time, measure energy resolution in crystals

Intrinsic Background Calibrations

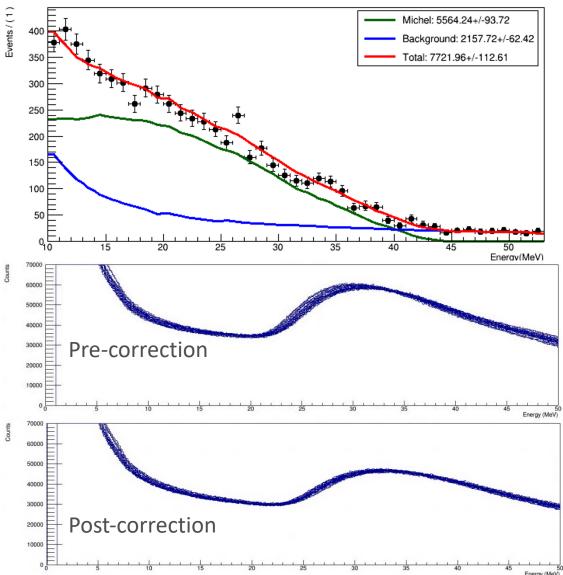
- Calibrate each Nal channel based on ⁴⁰K and ²⁰⁸Tl intrinsic backgrounds
 - Track gain changes over time, measure energy resolution in crystals
- Extending calibration to higherenergies leads to small discrepancies in large energy background (muon) spectrum in each crystal

Run Number

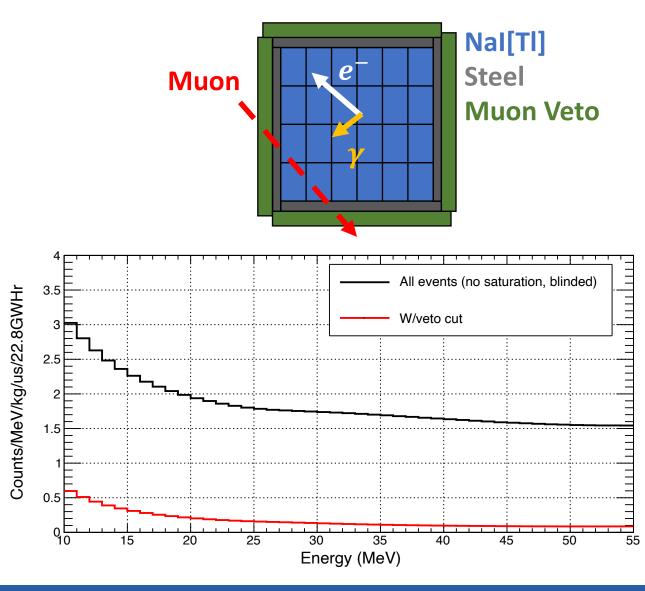

1000

2500

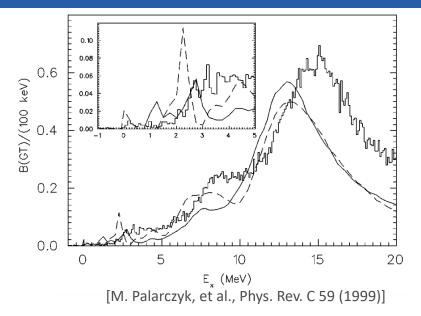
2000


Michel Positron Correction

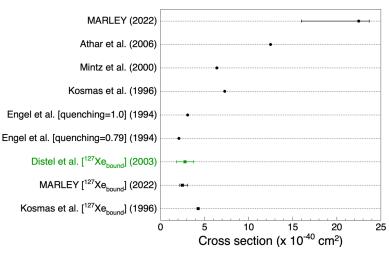
- Use Michel positrons to correct calibration
- Collect population of Michel events by looking for large energy depositions in crystals after a muon event (tagged with veto panels)
 - Fitting data gives anti-muon mean lifetime of 2.172 \pm 0.024 μs
- Simulate positrons in GEANT4, matching data selection criteria
- Fit quadratic calibration function to data that preserves low energy calibrations


Michel Positron Correction

- Use Michel positrons to correct calibration
- Collect population of Michel events by looking for large energy depositions in crystals after a muon event (tagged with veto panels)
 - Fitting data gives anti-muon mean lifetime of $2.172 \pm 0.024 \mu s$
- Simulate positrons in GEANT4, matching data selection criteria
- Fit quadratic calibration function to data that preserves low energy calibrations

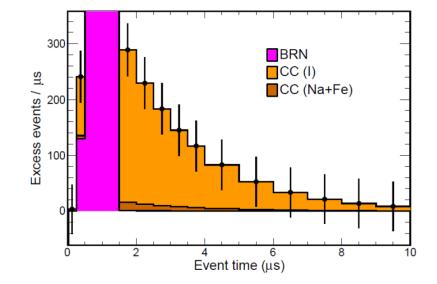

Muon Veto Cut

- Cosmic muons the largest source of backgrounds for charged-current signal
- Tag Nal events close in time to muon veto panel PMT events above threshold
 - 1.5" steel between NaI crystals and veto panels to avoid vetoing signal
 - Systematic incorporated into analysis to account for uncertainty in veto thresholds
- Veto rejects ~93% of cosmic muon backgrounds between 10-55 MeV
 - Additionally benefit from looking in a small (several microsecond) window around SNS timing signal to reduce backgrounds



MARLEY predictions for ¹²⁷I

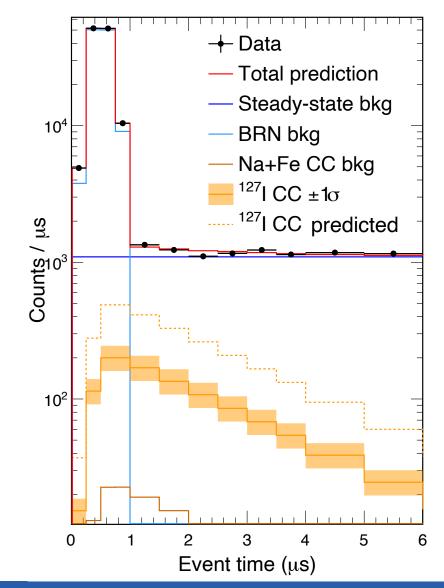
- MARLEY used for ¹²⁷I charged-current predictions along with (p,n) charge-exchange data
- MARLEY's inclusive cross section for DAR neutrinos: $22.5^{+1.2}_{-6.5}\times10^{-40}~\text{cm}^2$
 - Uncertainty from B(GT⁻) normalization uncertainty
- Cross section for exclusive channel to $^{127}\text{Xe}_{\text{bound}}$: $2.5^{+0.3}_{-0.6}\times10^{-40}~\text{cm}^2$
 - Good agreement with LAMPF measured value of $2.84 \pm 0.91(stat) \pm 0.25(sys) \times 10^{-40} \text{ cm}^2$



¹²⁷I Flux-Averaged DAR Cross Sections

Signal Predictions

- Simulate charged-current events in GEANT4, process matching analysis cuts to arrive at signal predictions
 - Restrict to 10-55 MeV where most of signal expected to reside
 - Above neutron capture energy on ²³Na and ¹²⁷I
 - Expect 1,320 CC events on ¹²⁷I
 - ~61 events from CC on sodium, iron shielding
- Three main results:
 - Inclusive cross-section: 1D fit in time
 - Spectrum of charged-current events: 1D fits in time in 5 MeV energy bins
 - On vs. \geq 1n exclusive cross sections

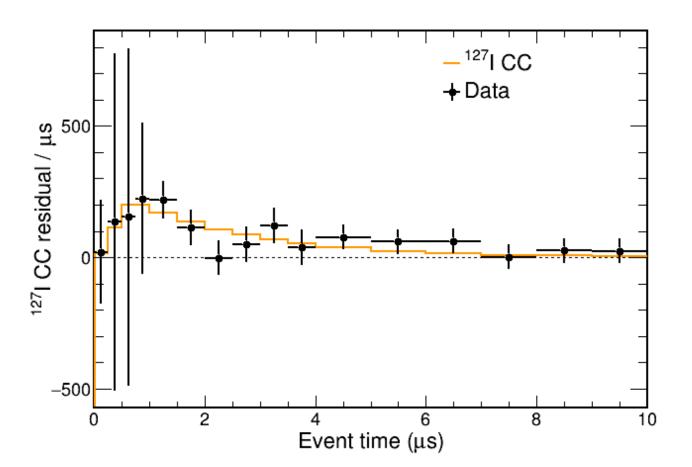


Results: Inclusive Cross Section

- Best fit gives 541^{+121}_{-108} events
 - 5.8 σ evidence of CC events
 - χ² of 13.1, 12 d.o.f.
- Corresponds to cross section of

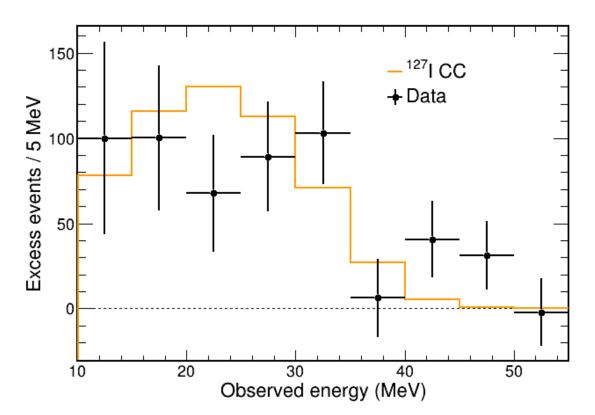
 $9.2^{+2.1}_{-1.8}\times10^{-40}~\text{cm}^{2}$

• 40.9% theoretical cross section

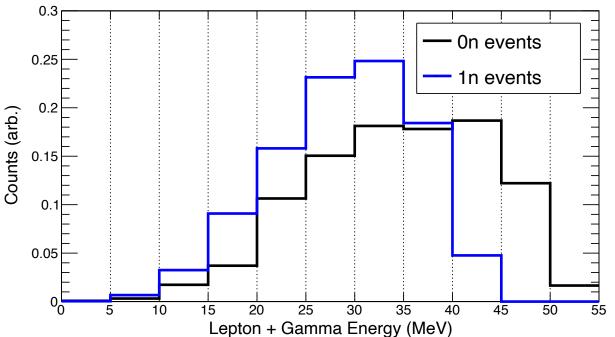


Results: Inclusive Cross Section

- Best fit gives 541^{+121}_{-108} events
 - 5.8 σ evidence of CC events
 - χ² of 13.1, 12 d.o.f.
- Corresponds to cross section of

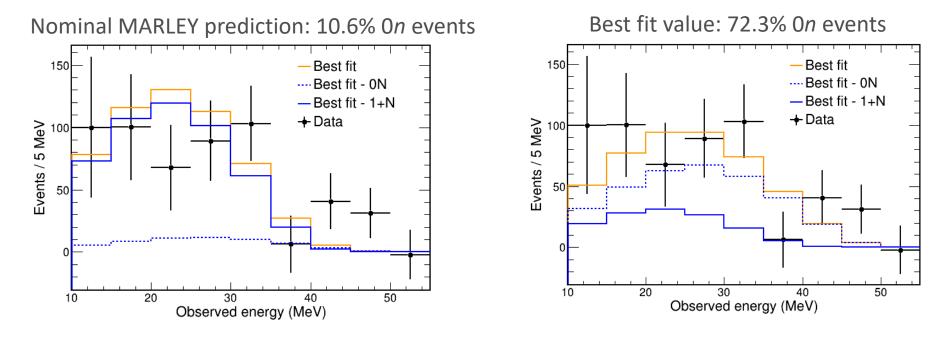

 $9.2^{+2.1}_{-1.8} imes 10^{-40} ext{ cm}^2$

- 40.9% theoretical cross section
- Subtract off steady-state, BRN backgrounds to form signal residuals for 1D timing fit across 10-55 MeV range


Results: ¹²⁷I Charged-Current Spectrum

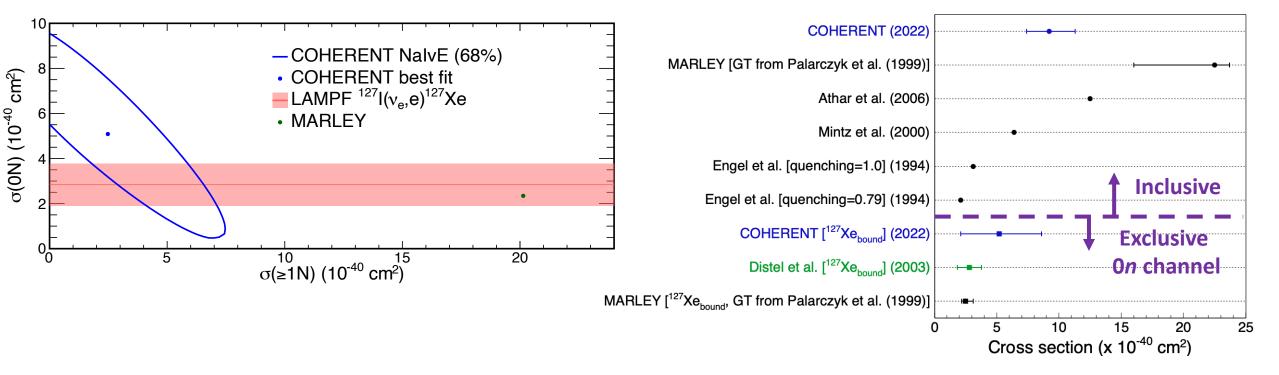
- Fit 1D timing spectrum in 5 MeV bins from 10-55 MeV to generate an energy spectrum
 - In each bin, independent fits to timing to estimate BRN and CC amplitudes
- Does not show great agreement with theoretical model, but two caveats
 - Large error bars on due to low statistics
 - Forbidden transitions not incorporated in predictions

Result: 0n/1n Cross Sections


- Different spectrum of visible energy (gammas + lepton) for events with neutron emission (1*n*) compared to those without (0*n*)
 - Threshold for 1*n* emission events is 7.9 MeV compared to 0*n* threshold of 0.7 MeV
 - Plot intended to demonstrate difference in spectral shape, amplitudes arbitrary

Sum energy of lepton + gamma from MARLEY (no detector effects)

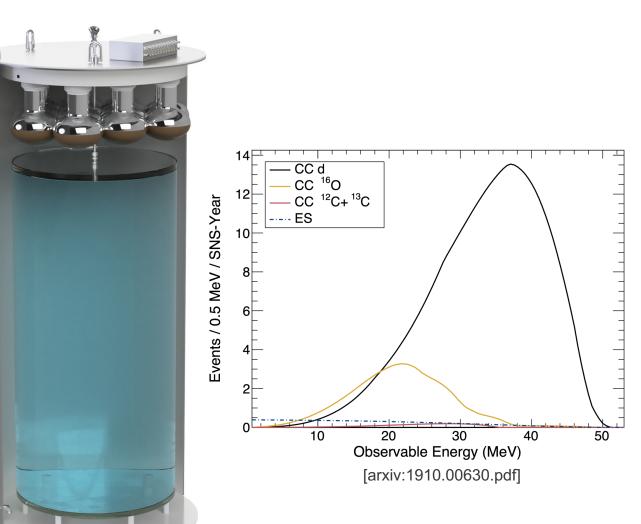
Result: 0n/1n Cross Sections


- After simulating events in detector geometry, 2D fit in energy and time allowing 0n and 1n amplitudes to float freely
- MARLEY predicts 10.6% events are 0*n*, data favors larger fraction (72.3%) of events are 0*n*
- On cross section: $5.2^{+3.4}_{-3.1} \times 10^{-40}$ cm²
 - Compare to LAMPF measured value: $2.84 \pm 0.91(stat) \pm 0.25(sys) \times 10^{-40} \text{ cm}^2$
- 1*n* cross section: $2.4^{+3.3}_{-2.4} \times 10^{-40}$ cm²

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

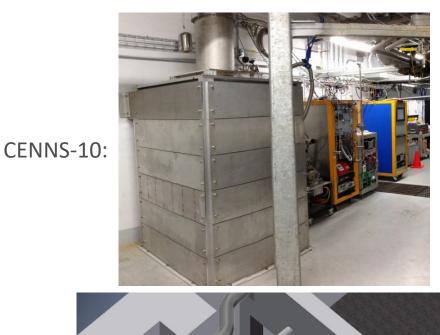
Comparison of Results

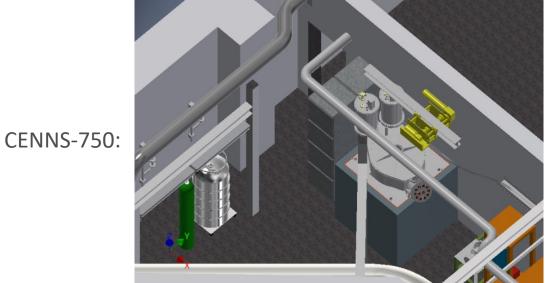
¹²⁷I Flux-Averaged DAR Cross Sections


Samuel Hedges, LLNL

Future Inelastic Neutrino-Nucleus Measurements

Samuel Hedges, LLNL MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023


D₂O for Flux Normalization


- Neutrino flux one of largest uncertainties for neutrino measurements at SNS, ~10%
 - v_e CC cross section on ²H calculated to within 2-3%
- Deploying 600-kg D₂O detector measure flux, reduce uncertainties
 - Signal comes from Cherenkov light from electron interacting in water
- May also be able to measure ¹⁶O charged-current events
 - Potentially useful for understanding supernova neutrinos interacting via this channel in large water detectors

CENNS-10/CENNS-750

- CENNS-10 single-phase liquid argon detector with 24-kg fiducial volume, deployed in 2016
 - Primary goal to measure CEvNS, data being studied to see what can be said about inelastic events on ⁴⁰Ar
- CENNS-750 upgrade in development, increase statistics and go after charged-current interactions on ⁴⁰Ar
 - Recent funding from Korea National Research Foundation (Jun 1, 2022)
 - Will study CE*v*NS, charged-current, and dark matter

NuThor: Neutrino-Induced Fission

- Detector designed to study neutrinoinduced fission, a long-theorized but never observed process
- Studies neutrino interactions on approx.
 50kg ²³²Th
- Looks for neutrons from neutrino-induced fission through capture of gadoliniumdoped water
 - Gd-doped water bricks surrounded by NaI[TI] scintillators
- Initial data collection has started!

NalvETe

- Nal neutrino Experiment TonnE-scale (NalvETe)
- Ton-scale version of NalvE-185, consisting of 315 Nal detectors (2,425 kg)
- Main goal is to measure CEvNS on ²³Na
- Space left in design to implement muon veto panel to enable charged-current measurement
- Better gamma shielding, water shielding, and improved statistics from larger mass, may be able to go after CC on ²³Na/²⁷Al as well

Samuel Hedges, LLNL

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

Summary

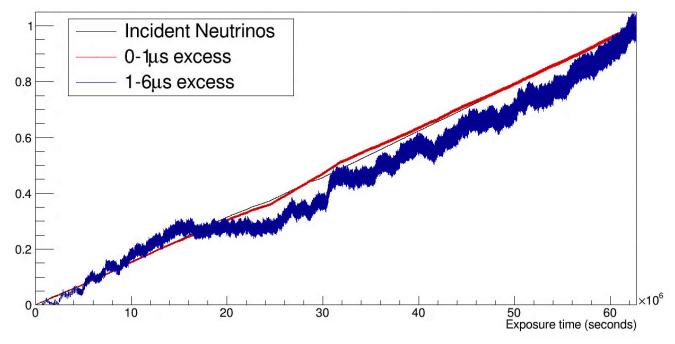
- COHERENT has measured CEvNS on two targets
 - See good agreement with standard model, first measurements already producing physics results
 - More detectors coming online:
 - NalvETe Ton-scale Nal array (partially deployed)
 - Ge-mini 16kg low-background germanium array (collecting first data)
 - CENNS-750 larger version of CENNS-10 detector (in development)
- COHERENT has results from its first searches for inelastic neutrino-nucleus scattering
 - Both detectors see suppression in measured cross section compared to predicted results
 - Suite of new detectors coming online:
 - D₂O for reducing flux uncertainty, ¹⁶O CC events (in development)
 - NuThor for neutrino-induced fission on ²³²Th (collecting first data)
 - NalvETe increase stats on ¹²⁷I CC, potentially ²³Na/²⁷Al CC as well (partially deployed)
 - CENNS-750 for ⁴⁰Ar (in development)

Acknowledgements

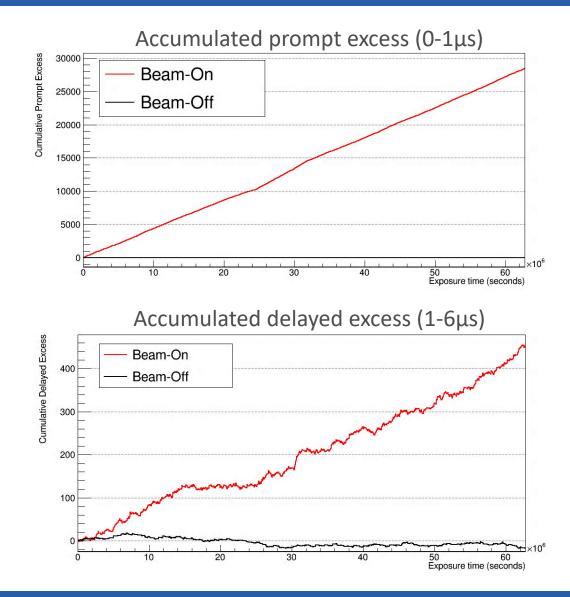
 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Thank you for your attention!

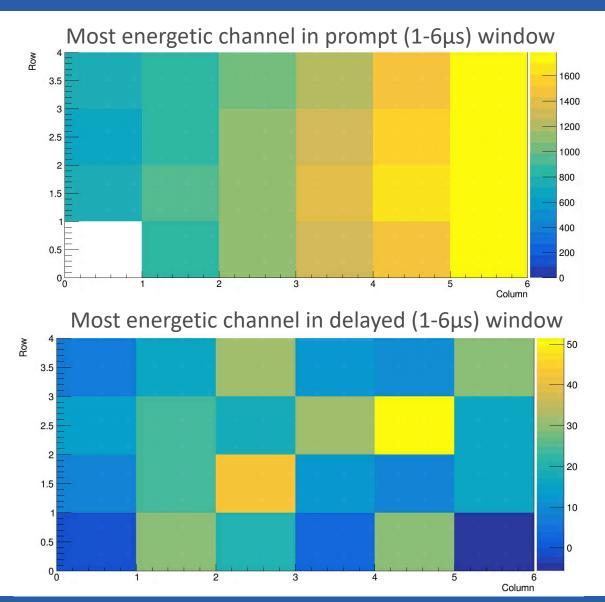
Samuel Hedges, LLNL


MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023

Samuel Hedges, LLNL MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023


NalvE: Post-Unblinding Checks

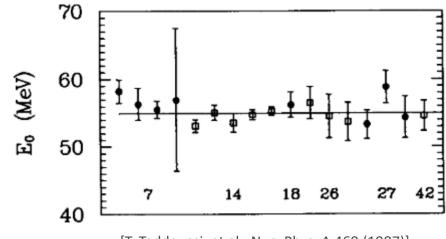
- K-S test shows good agreement between prompt and delayed excesses and delivered beam
 - With 1000 pseudo-experiments, K-S probabilities are 1.000 and 0.987 from prompt and delayed excesses


NalvE: Post-Unblinding Checks

- K-S test shows good agreement between prompt and delayed excesses and delivered beam
 - With 1000 pseudo-experiments, K-S probabilities are 1.000 and 0.987 from prompt and delayed excesses
- No excess observed in prompt/delayed windows when beam not on target

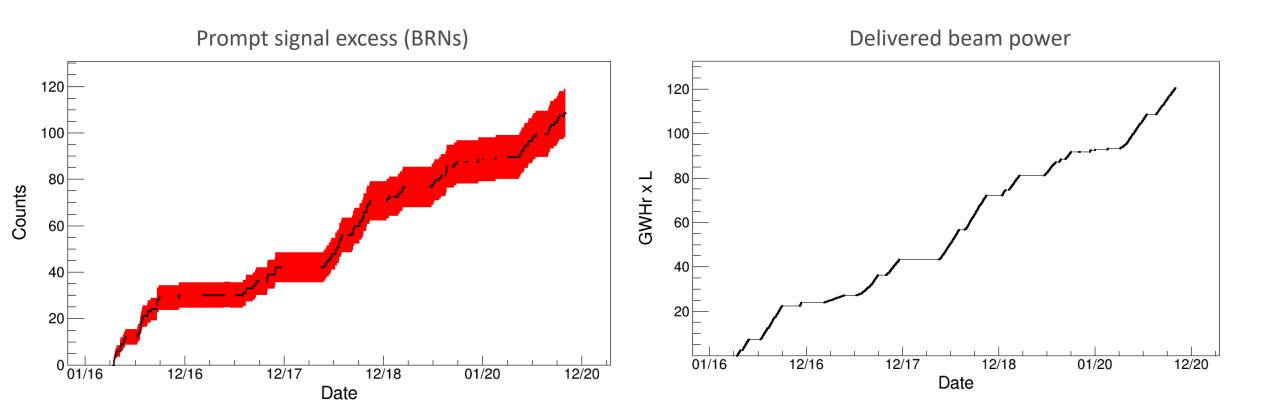
NalvE: Post-Unblinding Checks

- K-S test shows good agreement between prompt and delayed excesses and delivered beam
 - With 1000 pseudo-experiments, K-S probabilities are 1.000 and 0.987 from prompt and delayed excesses
- No excess observed in prompt/delayed windows when beam not on target
- Some initial topology studies show neutrons incident on detector from side, do not see same pattern for delayed events
 - Helps understand BRN background for COHERENT's other detectors

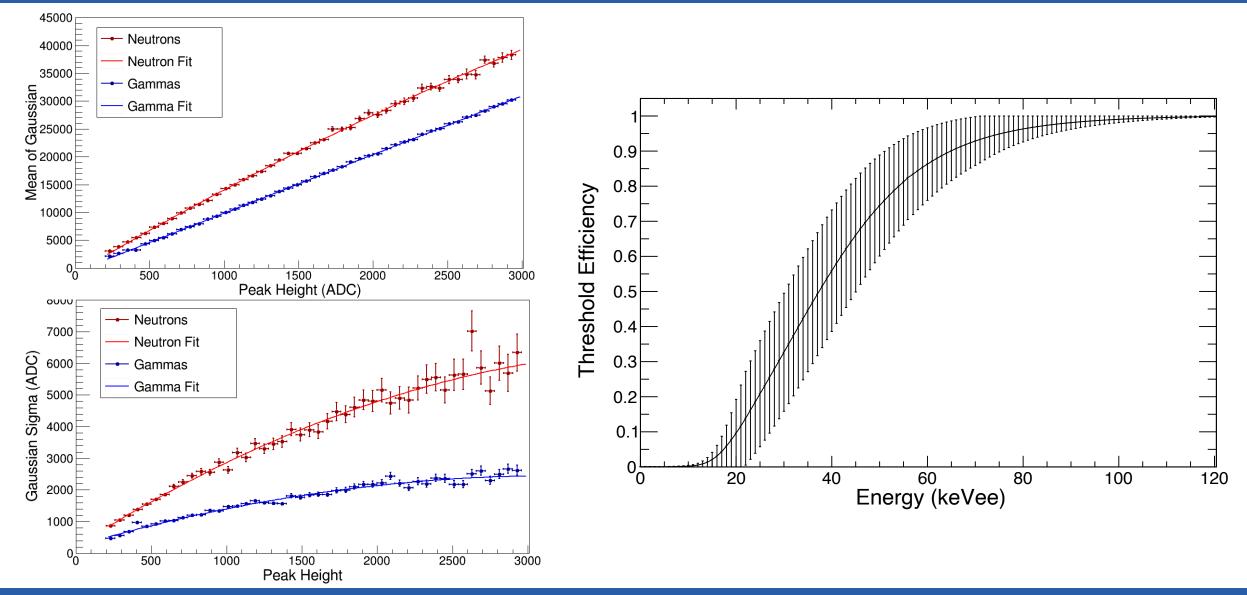


Samuel Hedges, LLNL

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023


NalvE: g_A quenching

- Definition of matrix elements in (p,n) and weak interactions differs by g_A^2
- Cannot determine the value of g_A from cross section
 - Forbidden transitions not included in MARLEY
- Can set limit on maximum value of g_A , with large caveat:
 - Normalization for B(GT) in (p,n) charge-exchange measurements assumes a value for g_A=1.26, compares 0° scattering cross sections with beta-decay half-lives
 - Heaviest element used in normalization has A=42
 - Incorrect normalization for strengths in (p,n) experiments would lead to incorrect value of g_A



[T. Taddeucci, et al., Nuc. Phys. A 469 (1987)]

Lead Neutrino Cube: Prompt Signal vs. Beam Power

Lead Neutrino Cube: Trigger Thresholds

Samuel Hedges, LLNL

MITP Workshop—Neutrino Scattering at Low and Intermediate Energies—June 27, 2023