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Overview

o A functional difference operator associated to Fo
o Eigenvalue asumptotics of this operator
o Proof method

o Which other operators can this proof be applied to?
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A conjecture to construct a quantum operator for toric del Pezzo

Calabi-Yau

Construction:

Associated to X is a unique curve
Wx(e*,e’) =0.
The equation be quantised

x—>Q,p—>P:ii
dx

which promotes it to a functional
difference operator H.

Example: Hirzebruch surface Fy

Associated to Fy is
Who(e",e’) =" +e * + e’ +e ",
Quantisation leads to the operator

H=e?+e 94+ +e P

which is a functional difference
operator.

Conjecturelll

The operator G = H™! is trace-class and its spectrum relates to the enumerative

geometry of X.

WA, Grassi, Y. Hatsuda and M. Marifio (2014)
S (Loughborough)
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The Weyl operators
Let P and @ be quantum-mechanical momentum and position operators on L?(R)
(PY)(x) =1t'(x), (QU)(x) =x¥(x), [P,Q]=i.
The corresponding Weyl operators (b > 0) are defined as
U=e ™ V=60 UV=¢W, g=c™
with domains
dom(U) = {¢ € L2(R) : e 2™ (k) € Lz(R)},
dom(V) = {v € ’(R) : ™ Y(x) € L(R)},
with the Fourier transform
00 = (F)) = [ s,
It holds that FUF ! = V! and in coordinate representation

(U)(x) = d(x +ib), (V)(x) =™ %(x).
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The operator Hy
The symmetric operator
Ho = U+ U™" = 2cosh(bP),
acts formally as
(Hoy)(x) = 9(x +1ib) + ¥(x — ib)

on L*(R). We can also interpret Ho as a differential operator of infinite order

S b2n ) > b2n d2n
(HO’(»b (X 2; ’D 1/1( 22 (2n IdX2" )
Since H > 2 it admits a self-adjoint Friedrichs extension.
U'ess(HO)
O'(Ho) I } )
2

0
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The operator H
The symmetric operator
H=U+U"4V+ V' =2cosh(bP) + 2cosh(27bQ),
acts formally as
(HY)(x) = ¢¥(x + ib) + ¢(x — ib) + 2 cosh(2mwbx)y(x) ,

on L(R). Since H > 2 it admits a self-adjoint Friedrichs extension.

Uess(HO)
o(Ho) | l >
0 2
Uess(HO + V)
UBo(Hy + V)  — >
0 2
o(Ho+V+Vv1 | : >
0 2 A2 A3

We write H = Hy + W with the potential W = 2 cosh(2mbx).

R, Kashaev (2001)
Bl A. Takhtajan and L. D. Faddeev (2015)
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Main results

Theorem (A. Laptev, LS and L. A. Takhtajan (2016))
The eigenvalues \j of the operator H have the asymptotic behaviour

TrA—H)e =Y (A - ) _ Alog?A

+ O(AlogA) as A — oo.
2 ) ( )

These are Weyl-type results that link the asymptotical behaviour of quantum mechanical
expressions to classical phase space integrals. Let

o(k,x) = 2 cosh(2mwbk) + 2 cosh(2mbx)

be the total symbol of H. The term Xlog® \/(mb)? is precisely the leading term in

/ (A —o(k,x))+dkdx as X — occ.
R2

Weyl-type asymptotics

. 1 1
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Main results

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))
The number N(\) = # {j € N: \j < A} of eigenvalues of H less than \ satisfies

Ny 1
A—o00 |og2)\ - (7rb)2 '

The term log® \/(wb)? is precisely the leading term of the phase volume of

{(k,x) €R*:o(k,x) <A} as \— oo.

Weyl-type asymptotics

lim N(i\) = lim 12 // 1dkdx.
A=oolog® A A—oo log® A J Jo(k,x)<a
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Main results

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))
The number N(A\) = #{j € N: \; < A} of eigenvalues of H less than X satisfies

N 1
A— 00 |og2)\ - (7Tb)2 ’

This follows by 'differentiating’ the Riesz mean. To argue rigorously note that for h > 0

N(Y) < %(;(A HhoX) =30 A)+)

Using the results of the theorem and the convexity of A — A*log A one can show that

Ny L1
| <
ITasoli,p log? A ~ (mb)?

by choosing h suitably depending on A. A corresponding lower bound follows from

M) 2 7 (0= A) — (- h -4

jz1 jz1

LS (Loughborough) Eigenvalue asymptotics for mirror curves 22/06,/2023



Main results

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))

H™ is trace-class.

This follows immediately from the asymptotics of N(X)

Z/\ dN(A) NE\A) Oo+/2 N 43 < 0o

j>1 2

A2

This provides a simple proof of the trace-class property without explicit computation of
the integral kernel of H™1, as done previouslyll]

R, Kashaev and M. Marifio (2015)
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Proof of the Theorem
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Coherent state transform

a

Consider the normalised Gaussian function g(x) = (a/x)/%e "2
b € L*(R) the classical coherent state transform is given by

X2

Coherent state transform

Blky) = / &2 g (x — y)p(x) dx.

with some a > 0. For

Plancherel’s theorem shows that
J 1tk P k= (0F + 6P)).
[tk Py = (0 ).
Note that ' € L?(R?) with ™ |:(k, y)|?dkdy = ||]|*. We can also write

27ikx

Dlky) = ey ) with ey (x) = 2 g (x — y).
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Coherent state representation: Hy
We are trying to express (¢, Hot)) in terms of LN ideally as
(), Hoh) :/2cosh(27rbk)|$(k)|2dk = //2 h(K)[0: (k. y)|? dkdy .

R R

Since
[ 1Py = (57« 0
we have that
St Pakay = [ (s WL k.
So we need to find h such that
(h*|2)*)(k) = 2 cosh(2mbk) .

This can be solved explicitly, in fact

(2dy cosh(27b -) * |g|*)(k) = 2 cosh(27bk)
with di = e~ (")/a Ag g consequence

(1, Hop) = //RZ 2dy cosh(2mbk)| (k. y) | dkdy .
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Coherent state representation: W

We are trying to express (¢, W) in terms of L~ ideally as

(0. W) = [ 2coshiemby)l ()P dy = [[ wlp)lie ) akay
Since
1k P = (0F « 6)0)
we have that
Jwoni e P akdy = [l Pay.

So we need to find w such that

(w * [g[2)(y) = 2 cosh(2rby)

This can be solved explicitly, in fact

(2d> cosh(27b -) * |g|*)(y) = 2 cosh(27bk)

with d> = e=/4 Asa consequence
(1, Wep) = // 2d cosh(2mby)| (K, v)|? dkdy .
R2
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Coherent state representation: H = Hyp + W

Using the two identities

(2dy cosh(2mb -) * |g|°)(k) = 2 cosh(27wbk), (2dacosh(2mb-) * |g|*)(y) = 2 cosh(2mbk)
we have thus established the following.

Coherent state representation of H

(b, Hep) / (2d; cosh(2mbk) + 2ds cosh(2mby))| (k. y )P dk dy.

This allows to write the operator H in terms of its full symbol o(k,y) up to the two
constants di, d» < 1.
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Upper bound on the Riesz mean
From \; = (¢;, Hi;) and the coherent state representation we obtain

Z(/\ —X\)+ = Z (/\ - // (2ch cosh(2mbk) + 2ds cosh(2by)) | (k. v)[* dk dy)

jz1 jz1 +

Since [z | (k. y)[2dkdy = ||¢;]|> = 1 Jensen’s inequality yields
(=N < // (A — 2d; cosh(2mbk) — 2ds cosh(2mby)) > [v(k. )| dkdy .
j=1 j>1

Using e, (x) = > g(x — y) and the fact that ¢/; form an orthonormal basis in L(R),

Sk P =S ety i) 2 = llecy[P=1 forall ky R,
j>1 j>1

and we arrive at the upper bound
Z()\ Aj) // (X — 2d; cosh(2mbk) — 2d, cosh(27rby)) dkdy
jz1
)\ log® A
(mb)?
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Lower bound on the Riesz mean

From [, [;(k.y)[?dkdy = 1 we obtain

S =) =30 - A)+/ [0k, v dkedly .

j>1 j>1

Using (k. y) = (ex, ;) we can write

S A)+—// SO0 = ) (e [0) (0 lexy) dicdy

j>1 j>1

Since 37,5y (exy|00) (Vilewy) = (exy, exy) = |lgl|* = 1 Jensen's inequality yields

Sa-xez [f (3 - 3 (o)) dkdy = [ (A= (exy. Heuy)), dkay.
1

Using again Plancherel’s theorem we note that

J>

(€., Hoex ) = (2cosh(2rb-) * |g[*)(k) = —2cosh 2mwbk

1
(e, Wery) = (W x|g[)(y) = g, 2 cosh2mby .

LS (Loughborough) Eigenvalue asymptotics for mirror curves 22/06,/2023



Lower bound on the Riesz mean

From [, [;(k.y)[?dkdy = 1 we obtain

SO =A)e = 0= [[ 100 akay.

jz1 jz1

Using (k. y) = (ex,y, ;) we can write

SO =2 = [ 0= M) lens i rlens) dkdy.

Jj>1
Since 32, {6k 112) (15 ]ecs) = (@ ) = llg]l* = 1 Jensen's inequality yields
S0z [[ (A= o nleus o (ko)) akay = [ (3 e Hew,)), dkdy.
2 + 2 +
j>1 R i>1 R

We arrive at the lower bound

Z()\ -\t > // A — 2 cosh(2mbk) — 2 cosh(2wby) | dkdy
R2 dv d>

j>1 +
_ Alog? A
~ (mb)?

+ O(Xlog ).
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Generalisation to X = [y
The proof generalises to
H ) =U+UT+V4+¢v?
with a parameter ¢ > 0.
Theorem (A. Laptev, LS and L. A. Takhtajan (2016))
The eigenvalues \; of the operator H(() have the asymptotic behaviour
e — H)e = S (= X)) = A(';’lg);f GO B e e

jz1

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))
The number N(\) = # {j € N: \; < \} of eigenvalues of H(C) less than X satisfies

N 1

A log? A~ (mb)E

In particular H(¢)™! is trace-class.
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Where can this proof be applied?
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Recap of the proof idea
For the upper bound we derived a coherent state representation. This required to solve
(h*|8)*)(k) = 2cosh(2rbk), (w *|g|*)(y) = 2 cosh(2mby)

which allowed us to obtain the upper bound

So-ansf / (= h(Kk) = wiy)), dkdy .

Jj>1
For the lower bound, we computed
(ks Hoew,y) = (2cosh(2mb-)  [g*)(k),  (ewy, Weky) = (W * |g*)(y)

which allowed us to obtain the lower bound

S (=) // ~ (2cosh(2mb-) + |g1)(K) — (W x[gP)(»)) dkdy.

j>1

LS (Loughborough) Eigenvalue asymptotics for mirror curves 22/06,/2023



Generalisation to Seiberg—Witten curve of N' = 2 Yang—Mills theory
The operatorm
H=U+U"+x*"
is given by the following formal functional-difference expression
(Hi)(x) = 1(x +ib) + ¥(x — ib) + x*"9b(x) .
and its spectrum can be proven to be discrete.
For an upper bound we note that a solution to
(w=lg)y) =y
is given by
w(y) =y*" +aly)
with a polynomial g of order 2N — 2. We thus obtain the

(A =x)s < //Rz (A — 2dh cosh(2mbk) — y*" — q(y)), dkdy

jz1
2 2N

2N+1 2N+1
_ < TN 2N ).
7rb2N—|—1>\ log A+ O(A2v)

WA, Grassi and M. Marifio (2019)
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Generalisation to Seiberg—Witten curve of N' = 2 Yang—Mills theory
The operatorm
H=U+U"+x*"
is given by the following formal functional-difference expression
(HP)(x) = (x +1b) + (x — ib) + x*"9(x).
and its spectrum can be proven to be discrete.

For a lower bound we can compute that

ey) = (1" + lg)) = y™ + p(y)

with a polynomial p of order 2N — 2. We thus obtain

S0z [[ (3= 5 cosantig -y - p(y))+ dkdy

jz1

(e, |- "

2 2N

2N+1 2N+1
= — 2N 2N
7rb2N+1)\ logA+ O(A 2V ).

WA, Grassi and M. Marifio (2019)
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Generalisation to Seiberg—Witten curve of N/ = 2 Yang—Mills theory
The operator
H=U+U"+x" 4 r(x)
with r(x) = O(x*"~¢) is given by the following formal functional-difference expression
(H)(x) = $(x +ib) + 9 (x — ib) + x*"p(x) + r(x)e(x).
and its spectrum can be proven to be discrete.
Theorem (A. Laptev, LS and L. A. Takhtajan (2019))
The eigenvalues \j of the operator H satisfy

. 1 2 2N
i, gy 03 = By

+1
AT NN log A =T

oNp) 2
|Im 17 = —.
A—o00 2N |°g)\ b

Again, these results can be identified as Weyl-type asymptotics and H~! is trace-class.
. B
Recently® the results were extended to potentials W/(x) = |x|Pe/X!" .

My, W. Qiu (2023)
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Generalisation to X =P
The operatorm
H=U+V+q™U"v"
is given by the following formal functional-difference expression
(H)(x) = $(x + ib) + ™ () + g""e 2" y(x — mib)
and its spectrum can be proven to be discrete.
For an upper bound a direct computation yields the coherent state representation

(b, g~ ™ U™V T Y = (VTR uT My TR
_ d{n2d2"2 // e27rb(mk_ny)|2;(k¢y)|2 dk dy
R2

which allows us to obtain the upper bound

D A=) < // (A — die 2™k — ghe?™® _ g (12”2@2”"“"“””)+ dk dy
>t R
_(m+n+ 1)2

2
2mn Alog” A+ O(Alog A).

WA, Grassi, Y. Hatsuda and M. Marifio (2014)
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Generalisation to X =P
The operatorm
H=U+V+q™MU"v™"
is given by the following formal functional-difference expression
(HY)(x) = 9(x + ib) + ™ () + g™ *""4h(x — mib)
and its spectrum can be proven to be discrete.
For a lower bound a direct computation yields

(By, g MUV Mey) = (VT ey, UMV T ey y)

_ 1 27t b(mk—ny)
dird;

which allows us to obtain the lower bound

1 ombk 1 27 by 1 27 b(mk—ny)
“A). > _ = LI L S kd
z()‘ >‘J)+ 2 //R? (A dle dze d{"zdgze dkdy

j>1 +

_ (m+n+1)°

2
5 Alog” A+ O(Alog A).

WA, Grassi, Y. Hatsuda and M. Marifio (2014)
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Generalisation to X =P
The operator
H=U+V+q ™MU"Vv"
is given by the following formal functional-difference expression
(HY)(x) = 9(x + ib) 4+ ™ 9(x) + g™ ™" 9(x — mib)
and its spectrum can be proven to be discrete.

Theorem (A. Laptev, LS and L. A. Takhtajan (2016))
The eigenvalues \; of the operator H satisfy

Z( )e = ﬂ7
Aaoo )\Iog A 4 (7Tb)2
. N(A) _ cmn
)\Il—>moo |Qg2 by o (7Tb)2 ’
2
with o, = N+ 1)
’ 2mn

Again, these results can be identified as Weyl-type asymptotics and H~! is trace-class.
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Further generalisation

Consider the general operator

H= Y amsq ™U"V""

m,n€’Z

with am,, > 0 and am,, = 0 for all but finitely many m, n € Z. If H contains at least one
negative and one positive power of both U and V/, it can be proven to have discrete
spectrum. Furthermore its inverse H™! is trace-class.

Theorem

Under the above assumptions H has discrete spectrum and its Riesz mean and eigenvalue
counting function satisify Weyl-type asymptotics. In particular H=' is trace-class.
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Thank you for your attention!
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