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Overview

A functional difference operator associated to F0

Eigenvalue asumptotics of this operator

Proof method

Which other operators can this proof be applied to?
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A conjecture to construct a quantum operator for toric del Pezzo
Calabi–Yau

Construction:

Associated to X is a unique curve

WX (ex , ep) = 0 .

The equation be quantised

x → Q, p → P = i
d

dx

which promotes it to a functional
difference operator H.

Example: Hirzebruch surface F0

Associated to F0 is

WF0(ex , ep) = ex + e−x + ep + e−p.

Quantisation leads to the operator

H = eQ + e−Q + eP + e−P

which is a functional difference
operator.

Conjecture[1]

The operator G = H−1 is trace-class and its spectrum relates to the enumerative
geometry of X .

[1]A. Grassi, Y. Hatsuda and M. Mariño (2014)
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The Weyl operators

Let P and Q be quantum-mechanical momentum and position operators on L2(R)

(Pψ)(x) = iψ′(x) , (Qψ)(x) = xψ(x) , [P,Q] = i .

The corresponding Weyl operators (b > 0) are defined as

U = e−bP , V = e2πbQ , UV = q2VU , q = eiπb
2

with domains

dom(U) =
{
ψ ∈ L2(R) : e−2πbk ψ̂(k) ∈ L2(R)

}
,

dom(V ) =
{
ψ ∈ L2(R) : e2πbxψ(x) ∈ L2(R)

}
,

with the Fourier transform

ψ̂(k) = (Fψ)(k) =

∫
R
e−2πikxψ(x) dx .

It holds that FUF−1 = V−1 and in coordinate representation

(Uψ)(x) = ψ(x + ib) , (Vψ)(x) = e2πbxψ(x) .
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The operator H0

The symmetric operator

H0 = U + U−1 = 2 cosh(bP) ,

acts formally as

(H0ψ)(x) = ψ(x + ib) + ψ(x − ib)

on L2(R). We can also interpret H0 as a differential operator of infinite order

(H0ψ)(x) = 2
∞∑
n=0

b2n

(2n)!
P2nψ(x) = −2

∞∑
n=0

b2n

(2n)!

d2n

dx2n
ψ(x).

Since H ≥ 2 it admits a self-adjoint Friedrichs extension.

0 2
σ(H0)

σess(H0)
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The operator H

The symmetric operator

H = U + U−1 + V + V−1 = 2 cosh(bP) + 2 cosh(2πbQ) ,

acts formally as

(Hψ)(x) = ψ(x + ib) + ψ(x − ib) + 2 cosh(2πbx)ψ(x) ,

on L2(R). Since H ≥ 2 it admits a self-adjoint Friedrichs extension.

0 2
σ(H0)

σess(H0)

0 2

[1],[2]σ(H0 + V )
σess(H0 + V )

0 2
σ(H0 + V + V−1)

λ1 λ2 λ3

We write H = H0 + W with the potential W = 2 cosh(2πbx).

[1]R. Kashaev (2001)
[2]L. A. Takhtajan and L. D. Faddeev (2015)
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Main results

Theorem (A. Laptev, LS and L. A. Takhtajan (2016))

The eigenvalues λj of the operator H have the asymptotic behaviour

Tr(λ− H)+ =
∑
j≥1

(λ− λj)+ =
λ log2 λ

(πb)2
+ O(λ log λ) as λ→∞.

These are Weyl-type results that link the asymptotical behaviour of quantum mechanical
expressions to classical phase space integrals. Let

σ(k, x) = 2 cosh(2πbk) + 2 cosh(2πbx)

be the total symbol of H. The term λ log2 λ/(πb)2 is precisely the leading term in∫∫
R2

(λ− σ(k, x))+ dk dx as λ→∞.

Weyl-type asymptotics

lim
λ→∞

1

λ log2 λ

∑
j≥1

(λ− λj)+ = lim
λ→∞

1

λ log2 λ

∫∫
R2

(λ− σ(x , k))+ dk dx .

LS (Loughborough) Eigenvalue asymptotics for mirror curves 22/06/2023



Main results

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))

The number N(λ) = # {j ∈ N : λj < λ} of eigenvalues of H less than λ satisfies

lim
λ→∞

N(λ)

log2 λ
=

1

(πb)2
.

The term log2 λ/(πb)2 is precisely the leading term of the phase volume of

{(k, x) ∈ R2 : σ(k, x) ≤ λ} as λ→∞ .

Weyl-type asymptotics

lim
λ→∞

N(λ)

log2 λ
= lim
λ→∞

1

log2 λ

∫∫
σ(k,x)≤λ

1dk dx .
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Main results

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))

The number N(λ) = # {j ∈ N : λj < λ} of eigenvalues of H less than λ satisfies

lim
λ→∞

N(λ)

log2 λ
=

1

(πb)2
.

This follows by ’differentiating’ the Riesz mean. To argue rigorously note that for h > 0

N(λ) ≤ 1

h

(∑
j≥1

(λ+ h − λj)+ −
∑
j≥1

(λ− λj)+
)

Using the results of the theorem and the convexity of λ 7→ λ2 log λ one can show that

lim sup
λ→∞

N(λ)

log2 λ
≤ 1

(πb)2

by choosing h suitably depending on λ. A corresponding lower bound follows from

N(λ) ≥ 1

h

(∑
j≥1

(λ− λj)+ −
∑
j≥1

(λ− h − λj)+
)
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Main results

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))

H−1 is trace-class.

This follows immediately from the asymptotics of N(λ)∑
j≥1

1

λj
=

∫ ∞
2

1

λ
dN(λ) =

N(λ)

λ

∣∣∣∣∞
2

+

∫ ∞
2

N(λ)

λ2
dλ <∞.

This provides a simple proof of the trace-class property without explicit computation of
the integral kernel of H−1, as done previously[1].

[1]R. Kashaev and M. Mariño (2015)
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Proof of the Theorem
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Coherent state transform

Consider the normalised Gaussian function g(x) = (a/π)1/4e−
a
2
x2 with some a > 0. For

ψ ∈ L2(R) the classical coherent state transform is given by

Coherent state transform

ψ̃(k, y) =

∫
R
e−2πikxg(x − y)ψ(x)dx .

Plancherel’s theorem shows that∫
R
|ψ̃(k, y)|2 dk = (|ψ|2 ∗ |g |2)(y) ,∫

R
|ψ̃(k, y)|2 dy = (|ψ̂|2 ∗ |ĝ |2)(k) .

Note that ψ̃ ∈ L2(R2) with
∫∫

R2 |ψ̃(k, y)|2 dk dy = ‖ψ‖2. We can also write

ψ̃(k, y) = 〈ek,y , ψ〉 with ek,y (x) = e2πikxg(x − y) .
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Coherent state representation: H0

We are trying to express 〈ψ,H0ψ〉 in terms of ψ̃, ideally as

〈ψ,H0ψ〉 =

∫
R

2 cosh(2πbk)|ψ̂(k)|2 dk =

∫∫
R2

h(k)|ψ̃(k, y)|2 dk dy .

Since ∫
R
|ψ̃(k, y)|2 dy = (|ψ̂|2 ∗ |ĝ |2)(k)

we have that ∫∫
R2

h(k)|ψ̃(k, y)|2 dk dy =

∫
R

(h ∗ |ĝ |2)(k)|ψ̂(k)|2 dk .

So we need to find h such that

(h ∗ |ĝ |2)(k) = 2 cosh(2πbk) .

This can be solved explicitly, in fact

(2d1 cosh(2πb ·) ∗ |ĝ |2)(k) = 2 cosh(2πbk)

with d1 = e−(πb2)/a. As a consequence

〈ψ,H0ψ〉 =

∫∫
R2

2d1 cosh(2πbk)|ψ̃(k, y)|2 dk dy .
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Coherent state representation: W

We are trying to express 〈ψ,Wψ〉 in terms of ψ̃, ideally as

〈ψ,Wψ〉 =

∫
R

2 cosh(2πby)|ψ(y)|2 dy =

∫∫
R2

w(y)|ψ̃(k, y)|2 dk dy

Since ∫
R
|ψ̃(k, y)|2 dk = (|ψ|2 ∗ |g |2)(y)

we have that ∫∫
R2

w(y)|ψ̃(k, y)|2 dk dy =

∫
R

(w ∗ |g |2)(y)|ψ(y)|2 dy .

So we need to find w such that

(w ∗ |g |2)(y) = 2 cosh(2πby) .

This can be solved explicitly, in fact

(2d2 cosh(2πb ·) ∗ |g |2)(y) = 2 cosh(2πbk)

with d2 = e−ab2/4. As a consequence

〈ψ,Wψ〉 =

∫∫
R2

2d2 cosh(2πby)|ψ̃(k, y)|2 dk dy .
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Coherent state representation: H = H0 +W

Using the two identities

(2d1 cosh(2πb ·) ∗ |ĝ |2)(k) = 2 cosh(2πbk) , (2d2 cosh(2πb ·) ∗ |g |2)(y) = 2 cosh(2πbk)

we have thus established the following.

Coherent state representation of H

〈ψ,Hψ〉 =

∫∫
R2

(2d1 cosh(2πbk) + 2d2 cosh(2πby))|ψ̃(k, y)|2 dk dy .

This allows to write the operator H in terms of its full symbol σ(k, y) up to the two
constants d1, d2 < 1.
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Upper bound on the Riesz mean

From λj = 〈ψj ,Hψj〉 and the coherent state representation we obtain∑
j≥1

(λ− λj)+ =
∑
j≥1

(
λ−

∫∫
R2

(
2d1 cosh(2πbk) + 2d2 cosh(2πby)

)
|ψ̃j(k, y)|2 dk dy

)
+

.

Since
∫∫

R2 |ψ̃j(k, y)|2 dk dy = ‖ψj‖2 = 1 Jensen’s inequality yields∑
j≥1

(λ− λj)+ ≤
∫∫

R2

(
λ− 2d1 cosh(2πbk)− 2d2 cosh(2πby)

)
+

∑
j≥1

|ψ̃j(k, y)|2 dk dy .

Using ek,y (x) = e2πikxg(x − y) and the fact that ψj form an orthonormal basis in L2(R),∑
j≥1

|ψ̃j(k, y)|2 =
∑
j≥1

|〈ek,y , ψj〉|2 = ‖ek,y‖2 = 1 for all k, y ∈ R,

and we arrive at the upper bound∑
j≥1

(λ− λj)+ ≤
∫∫

R2

(
λ− 2d1 cosh(2πbk)− 2d2 cosh(2πby)

)
+
dk dy

=
λ log2 λ

(πb)2
+ O(λ log λ) .
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Lower bound on the Riesz mean

From
∫∫

R2 |ψ̃j(k, y)|2 dk dy = 1 we obtain∑
j≥1

(λ− λj)+ =
∑
j≥1

(λ− λj)+

∫∫
R2

|ψ̃j(k, y)|2 dk dy .

Using ψ̃j(k, y) = 〈ek,y , ψj〉 we can write∑
j≥1

(λ− λj)+ =

∫∫
R2

∑
j≥1

(λ− λj)+〈ek,y |ψj〉〈ψj |ek,y 〉 dk dy .

Since
∑

j≥1 〈ek,y |ψj〉〈ψj |ek,y 〉 = 〈ek,y , ek,y 〉 = ‖g‖2 = 1 Jensen’s inequality yields∑
j≥1

(λ− λj)+≥
∫∫

R2

(
λ−

∑
j≥1

λj〈ek,y |ψj〉〈ψj |ek,y 〉
)
+
dk dy =

∫∫
R2

(
λ− 〈ek,y ,Hek,y 〉

)
+
dk dy .

Using again Plancherel’s theorem we note that

〈ek,y ,H0ek,y 〉 = (2 cosh(2πb ·) ∗ |ĝ |2)(k) =
1

d1
2 cosh 2πbk

〈ek,y ,Wek,y 〉 = (W ∗ |g |2)(y) =
1

d2
2 cosh 2πby .
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Lower bound on the Riesz mean

From
∫∫

R2 |ψ̃j(k, y)|2 dk dy = 1 we obtain∑
j≥1

(λ− λj)+ =
∑
j≥1

(λ− λj)+

∫∫
R2

|ψ̃j(k, y)|2 dk dy .

Using ψ̃j(k, y) = 〈ek,y , ψj〉 we can write∑
j≥1

(λ− λj)+ =

∫∫
R2

∑
j≥1

(λ− λj)+〈ek,y |ψj〉〈ψj |ek,y 〉 dk dy .

Since
∑

j≥1 〈ek,y |ψj〉〈ψj |ek,y 〉 = 〈ek,y , ek,y 〉 = ‖g‖2 = 1 Jensen’s inequality yields∑
j≥1

(λ− λj)+≥
∫∫

R2

(
λ−

∑
j≥1

λj〈ek,y |ψj〉〈ψj |ek,y 〉
)
+
dk dy =

∫∫
R2

(
λ− 〈ek,y ,Hek,y 〉

)
+
dk dy .

We arrive at the lower bound∑
j≥1

(λ− λj)+ ≥
∫∫

R2

(
λ− 2

d1
cosh(2πbk)− 2

d2
cosh(2πby)

)
+

dk dy

=
λ log2 λ

(πb)2
+ O(λ log λ) .
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Generalisation to X = F0

The proof generalises to

H(ζ) = U + U−1 + V + ζV−1

with a parameter ζ > 0.

Theorem (A. Laptev, LS and L. A. Takhtajan (2016))

The eigenvalues λj of the operator H(ζ) have the asymptotic behaviour

Tr(λ− H)+ =
∑
j≥1

(λ− λj)+ =
λ log2 λ

(πb)2
+ O(λ log λ) as λ→∞.

Corollary (A. Laptev, LS and L. A. Takhtajan (2016))

The number N(λ) = # {j ∈ N : λj < λ} of eigenvalues of H(ζ) less than λ satisfies

lim
λ→∞

N(λ)

log2 λ
=

1

(πb)2
.

In particular H(ζ)−1 is trace-class.
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Where can this proof be applied?
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Recap of the proof idea

For the upper bound we derived a coherent state representation. This required to solve

(h ∗ |ĝ |2)(k) = 2 cosh(2πbk) , (w ∗ |g |2)(y) = 2 cosh(2πby)

which allowed us to obtain the upper bound∑
j≥1

(λ− λj)+ ≤
∫∫

R2

(
λ− h(k)− w(y)

)
+
dk dy .

For the lower bound, we computed

〈ek,y ,H0ek,y 〉 = (2 cosh(2πb ·) ∗ |ĝ |2)(k) , 〈ek,y ,Wek,y 〉 = (W ∗ |g |2)(y)

which allowed us to obtain the lower bound∑
j≥1

(λ− λj)+ ≥
∫∫

R2

(
λ− (2 cosh(2πb ·) ∗ |ĝ |2)(k)− (W ∗ |g |2)(y)

)
+
dk dy .
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Generalisation to Seiberg–Witten curve of N = 2 Yang–Mills theory

The operator[1]

H = U + U−1 + x2N

is given by the following formal functional-difference expression

(Hψ)(x) = ψ(x + ib) + ψ(x − ib) + x2Nψ(x) .

and its spectrum can be proven to be discrete.

For an upper bound we note that a solution to

(w ∗ |g |2)(y) = y 2N

is given by

w(y) = y 2N + q(y)

with a polynomial q of order 2N − 2. We thus obtain the∑
j≥1

(λ− λj)+ ≤
∫∫

R2

(
λ− 2d1 cosh(2πbk)− y 2N − q(y)

)
+
dk dy

=
2

πb

2N

2N + 1
λ

2N+1
2N log λ+ O(λ

2N+1
2N ) .

[1]A. Grassi and M. Mariño (2019)
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Generalisation to Seiberg–Witten curve of N = 2 Yang–Mills theory

The operator[1]

H = U + U−1 + x2N

is given by the following formal functional-difference expression

(Hψ)(x) = ψ(x + ib) + ψ(x − ib) + x2Nψ(x) .

and its spectrum can be proven to be discrete.

For a lower bound we can compute that

〈ek,y , | · |2Nek,y 〉 = (| · |2N ∗ |g |2)(y) = y 2N + p(y)

with a polynomial p of order 2N − 2. We thus obtain∑
j≥1

(λ− λj)+ ≥
∫∫

R2

(
λ− 2

d1
cosh(2πbk)− y 2N − p(y)

)
+

dk dy

=
2

πb

2N

2N + 1
λ

2N+1
2N log λ+ O(λ

2N+1
2N ) .

[1]A. Grassi and M. Mariño (2019)
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Generalisation to Seiberg–Witten curve of N = 2 Yang–Mills theory

The operator

H = U + U−1 + x2N + r(x)

with r(x) = O(x2N−ε) is given by the following formal functional-difference expression

(Hψ)(x) = ψ(x + ib) + ψ(x − ib) + x2Nψ(x) + r(x)ψ(x) .

and its spectrum can be proven to be discrete.

Theorem (A. Laptev, LS and L. A. Takhtajan (2019))

The eigenvalues λj of the operator H satisfy

lim
λ→∞

1

λ
2N+1
2N log λ

∑
j≥1

(λ− λj)+ =
2

πb

2N

2N + 1
,

lim
λ→∞

N(λ)

λ
1
2N log λ

=
2

πb
.

Again, these results can be identified as Weyl-type asymptotics and H−1 is trace-class.

Recently[2] the results were extended to potentials W (x) = |x |pe|x|
β

.

[1]Y. W. Qiu (2023)
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Generalisation to X = P2

The operator[1]

H = U + V + q−mnU−mV−n

is given by the following formal functional-difference expression

(Hψ)(x) = ψ(x + ib) + e2πbxψ(x) + qmne−2πnbxψ(x −mib)

and its spectrum can be proven to be discrete.

For an upper bound a direct computation yields the coherent state representation

〈ψ, q−mnU−mV−nψ〉 = 〈V−n/2ψ,U−mV−n/2ψ〉

= dm2

1 dn2

2

∫∫
R2

e2πb(mk−ny)|ψ̃(k, y)|2 dk dy

which allows us to obtain the upper bound∑
j≥1

(λ− λj)+ ≤
∫∫

R2

(
λ− d1e

−2πbk − d2e
2πby − dm2

1 dn2

2 e2πb(mk−ny))
+
dk dy

=
(m + n + 1)2

2mn
λ log2 λ+ O(λ log λ) .

[1]A. Grassi, Y. Hatsuda and M. Mariño (2014)
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Generalisation to X = P2

The operator[1]

H = U + V + q−mnU−mV−n

is given by the following formal functional-difference expression

(Hψ)(x) = ψ(x + ib) + e2πbxψ(x) + qmne−2πnbxψ(x −mib)

and its spectrum can be proven to be discrete.

For a lower bound a direct computation yields

〈ek,y , q−mnU−mV−nek,y 〉 = 〈V−n/2ek,y ,U
−mV−n/2ek,y 〉

=
1

dm
1 dn

2

e2πb(mk−ny)

which allows us to obtain the lower bound∑
j≥1

(λ− λj)+ ≥
∫∫

R2

(
λ− 1

d1
e−2πbk − 1

d2
e2πby − 1

dm2

1 dn2
2

e2πb(mk−ny)

)
+

dk dy

=
(m + n + 1)2

2mn
λ log2 λ+ O(λ log λ) .

[1]A. Grassi, Y. Hatsuda and M. Mariño (2014)
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Generalisation to X = P2

The operator

H = U + V + q−mnU−mV−n

is given by the following formal functional-difference expression

(Hψ)(x) = ψ(x + ib) + e2πbxψ(x) + qmne−2πnbxψ(x −mib)

and its spectrum can be proven to be discrete.

Theorem (A. Laptev, LS and L. A. Takhtajan (2016))

The eigenvalues λj of the operator H satisfy

lim
λ→∞

1

λ log2 λ

∑
j≥1

(λ− λj)+ =
cm,n

(πb)2
,

lim
λ→∞

N(λ)

log2 λ
=

cm,n
(πb)2

,

with cm,n =
(m + n + 1)2

2mn
.

Again, these results can be identified as Weyl-type asymptotics and H−1 is trace-class.
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Further generalisation

Consider the general operator

H =
∑

m,n∈Z

am,nq
−mnU−mV−n

with am,n ≥ 0 and am,n = 0 for all but finitely many m, n ∈ Z. If H contains at least one
negative and one positive power of both U and V , it can be proven to have discrete
spectrum. Furthermore its inverse H−1 is trace-class.

Theorem

Under the above assumptions H has discrete spectrum and its Riesz mean and eigenvalue
counting function satisify Weyl-type asymptotics. In particular H−1 is trace-class.
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Thank you for your attention!
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