SEARCH FOR DARK PHOTONS AT THE MAINZ MICROTRON AND AT MESA

Harald Merkel Johannes Gutenberg-Universität Mainz

The Ultra-Light Frontier MITP Mainz, Germany

June 18th, 2015

- Motivation
- Experiments at the Mainz Microtron (MAMI)
- Future Possibilities
 - Shielded Vertex
 - MESA Accelerator
 - Beam-dump Experiments

Summary

Assumption:

There is an interaction between Dark Matter and Standard Model matter beyond gravitation

Structur formation in the early universe

Blue-print for "Matter": Quantum field theory

⇒ Particle models of DM predict a Dark Sector

 \Rightarrow Interaction included!

Simplest solution: "Dark photon"

► U(1) gauge boson of DM – SM Interaction
 ► Massive but NOT HEAVY

IDEA: don't look for DM Particles, look for the Interaction

Dark matter couples to U(1) boson Mixing between γ and γ' via kinetic term

$$\mathcal{L} = \cdots + -\frac{1}{4} F_{\mu\nu}^{SM} F_{SM}^{\mu\nu} - \frac{1}{4} F_{\mu\nu}^{hidden} F_{hidden}^{\mu\nu} + \frac{\varepsilon}{2} F_{\mu\nu}^{SM} F_{hidden}^{\mu\nu} + m_{\gamma'}^2 A_{\mu}^{hidden} A_{hidden}^{\mu}$$

Renormalization of Charge:

 \Rightarrow Mixing Standard Model Charge – "dark" charge

• Parametrized by mixing parameter ϵ of γ'/γ mixing

• Boson mass $m_{\gamma'} > 0 \Rightarrow$ decay suppressed, *macroscopic* lifetime

B. Holdom, Phys. Lett. B 166 (1986) 196

Experimental Method

Radiative Production from a heavy target

Radiative production

$$e+Z \rightarrow e+Z+\gamma' \
ightarrow e^++e^-$$

- leavy target nucleus (Tantalum, Z = 73)
- Cross section is peaked in forward direction
- lacebox Macroscopic decay length of a few μm
- Subsequent decay to lepton pair
 - Detection of lepton pair
 - ► Possible Signal: Peak at $m_{\gamma}^2 = (e^+ + e^-)^2$
 - High resolution neccessary

- Virtual photon instead of γ'
- Computable in QED
- Same shape of cross section
- $\bullet \Rightarrow \mathsf{Not} \mathsf{separable}$

- Computable in QED
- Peak for l^* on mass shell
- Energy transfer to l^- or l^+
- $\bullet \Rightarrow$ Kinematically reducable

+ crossing and anti-symmetrization!

T. Beranek, H.M., M. Vanderhaeghen, Phys. Rev. D88, 015032 (2013).

Bethe-Heitler Background

- Peak at $m_{e^+e^-} = 0$
- Peak for asymmetric production
- Minimum for symmetric production at maximum of energy transfer

The Experiment

A1: Spectrometer setup at MAMI

Spectrometer A:

$$\alpha > 20^{\circ}$$

 $p < 735 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 20\%$

Spectrometer B:

$$\alpha > 8^{\circ}$$

 $p < 870 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 5.6 \text{msr}$
 $\Delta p/p = 15\%$

Spectrometer C:

$$\alpha > 55^{\circ}$$

 $p < 655 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 25\%$

 $\delta p/p < 10^{-4}$

- Momentum resolution: $\delta p/p < 10^{-4}$
- Momentum acceptance: $\Delta p/p = 20\%$
- Solid angle:
 - $\Delta \Omega = 11.5^{\circ} \times 8.0^{\circ}$ $= 28 \,\mathrm{msr}$

- Target: 0.05 mm Tantalum (mono-isotopic ¹⁸¹Ta)
- Beam current: $100\mu A$
- Luminosity: $L = 1.7 \cdot 10^{35} \frac{1}{\text{s cm}^2}$ $(L \cdot Z^2 \approx 10^{39} \frac{1}{\text{s cm}^2})$
- Complete energy transfer to γ' boson (x = 1)
- Minimal angles for spectrometers
- Spectrometer setup as symmetric as possible (background reduction)

Beam energy	$E_0 = 855.0 { m MeV}$
Spectrometer A	$p_{e^-} = 338.0 { m MeV}/c$
	$ heta_{e^-}=22.8^{\circ}$
Spectrometer B	$p_{e^+} = 470.0 { m MeV}/c$
	$ heta_{e^+}=15.2^{\circ}$

• Particle identification e^+ , e^- by Cerenkov detectors

- Correction of path length in spectrometers $\approx 12 \text{ m}$ \Rightarrow Time-of-Flight reaction identification
- Coincidence time resolution $\approx 1 \, \mathrm{ns} \, \mathrm{FWHM}$
- Estimate of background: side band $5 \text{ ns} < T_{A \land B} < 25 \text{ ns}$
- Almost no accidental background $\approx 5\%$
- Above background: only coincident e^+e^- pairs!

• Mass of
$$e^-e^+$$
 pair $m_{\gamma'}^2 = (e^- + e^+)^2$

What is the expected peak width?

N.B.: Systematic error of $\delta m_{e^+e^-} < 10^{-3}!$

Exclusion limits

Confidence interval by Feldman-Cousins algorithm

- "Model" for Background-subtraction: local fit with polynomial
- Resolution = bin width
- Averaging (mean of 10 bins) only for "subjective judgment"

Settings	E_0	p_{A}	p_{B}	\overline{I}_0	Tar	get	t
	(MeV)	(MeV/c)	(MeV/c)	(µA)	(mg/	cm^2)	t
1	180	78.7	98.0	2.2	Foil	9.4	12h 30' 56"
2	240	103.6	132.0	5.5	Foil	9.4	46h 53' 18"
3	255	110.1	140.4	7.0	Foil	9.4	43h 49' 11"
4	300	129.5	164.5	11.7	Foil	9.4	37h 56' 03"
5	360	155.4	197.6	16.6	Foil	9.4	5h 15' 29"
6	435	190.7	247.7	43.4	Foil	9.4	44h 3' 27"
7	495	213.7	271.6	7.0	Stack	113.1	36h 25' 16"
8	585	250.0	317.3	16.3	Stack	113.1	29h 37' 03"
9	720	309.2	392.7	19.4	Stack	113.1	76h 0'20"

Spectrometer	Angle	Solid angle	$\Delta p/p$
		(msr)	
А	20.01°	21.0	20%
В	15.63°	5.6	15%

- Mass range 40 MeV $< m_{\gamma} < 300$ MeV
- 9 different beam energies
- finally 24 settings (e^+ in A or B?)

Are we allowed to add up all settings?

- NMR Probe for magnetic field $\delta B/B < 10^{-4}$
- Hall Probe for magnetic field $\delta B/B < 10^{-3}$
- Extensive calibration with elastic lines (during ISR experiment)

Exclusion limits MAMI 2014

- 24 kinematical settings
- Including data from pilot experiment H.M. et al. PRL 106 (2011) 251802
- Sensitivity $\epsilon^2 > 8 \cdot 10^{-7}$

H.M. et al., Phys. Rev. Lett. 112 (2014)

Limits from Meson Decays

BaBar KLOE-2 WASA HADES KLOE-2 $\begin{array}{c} e^{+}e^{-} \rightarrow \Upsilon \rightarrow \mu^{+}\mu^{-}\gamma \\ \phi \rightarrow e^{+}e^{-}\gamma \\ \pi^{0} \rightarrow e^{+}e^{-}\gamma \\ p+p, p+Nb, Ar+KCl \rightarrow e^{+}+e^{-} \\ e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\gamma \end{array}$

- B. Aubert et al., PRL 103, 081803 (2009)
- D. Babusci et al., PLB 720 (2013)
- P. Adlarson *et al.*, PLB 726 (2013)
- G. Agakishiev et al. PLB 731 (2014)
- D. Babusci et al., Phys. Lett. B736 (2014)

Decay Channel:

 $\pi^0
ightarrow \gamma + e^+ + e^-$

Possible improvements

- Sensitive to decay length 10 mm 130 mm
- $\bullet \Rightarrow \gamma c \tau = 4.35 \,\text{mm} 1120 \,\text{mm}$ (10%-limit)
- Target: 5 mm Ta \Rightarrow $L = 1.72 \cdot 10^{37} \frac{1}{\text{s cm}^2}$ at 100 μ A beam current
- First tests promising, more work to be done....
 - \blacktriangleright Backscattering > 0
 - Collimated shielding needed
 - Radiation, air activation

- Macroscopic decay vertex distance
- Luminosity
- Coupling vs. lifetime
- Angular range

 $\epsilon^{2} > 10^{-11}$ $m_{\gamma'} < 500 \,\mathrm{MeV}/c^{2}$ $m_{\gamma'} > 30 \,\mathrm{MeV}/c^{2}$

 $\epsilon^2 < 10^{-8}$

Step 3: Access to low mass region MESA Accelerator

- Mainz Energy recovering Superconduction Accelerator
- up to 10 mA beam current
- Single pass accelerator \Rightarrow excellent beam quality
- $\bullet \Rightarrow L = 10^{35} \frac{1}{\text{s cm}^2}$ with internal target

MESA Spectrometer Setup

- Low energy precision physics: $\sigma \sim \sin^{-4} \frac{\theta}{2}$
- Multi-purpose spectrometer setup
- Dark Photon experiment: mass-resolution beats solid angle!
- Status:
 - Finite-elements design of magnets
 - (polarized) internal target design
 - Focal plane detectors (> 1 MHz count rate at $50\mu m$)

\Rightarrow ideal for dark photon search!

- γ' detection via missing mass $m_{\gamma'}^2 = (e + p e' p')^2$
- No restriction by decay
- Background: virtual Compton scattering: $e + p \rightarrow e' + p + \gamma + radiative tail$
- Vertex identification with high suppression factor $(10^8...10^{10})$ necessary
- Detector development

Direct detection experiments:

- No clear signal yet
- Limit of sensitivity (solar v background) will be reached soon
- Lower masses (*i.e.* low recoil energy) not accessible

• Production in beam dump, *e.g.* via pair production

- We now have a Dark Matter Beam!
- Dark Matter particles have enough recoil energy!
- Detection with simple detector, e.g. scintillator cube
- ... or with sophisticated DM Detector ...

- 1 MeV energy deposition \rightarrow simple detector
- Background is crucial

New Hall (just funded)

- Dedicated new hall for experiment
- Space for high resolution experiment
- Additional space for beam dump experiment: 1 mA beam on target for 50%/a

- Neutrons can be shielded
- Below pion threshold: negligible v background
- Clean conditions, detailed layout of hall needed for further design

• Pair production on heavy target $\Rightarrow (g-2)_{\mu}$ Region is nearly covered $\epsilon^2 > 10^{-6}$

 $10^{-10} < \varepsilon^2 < 10^{-8}$

- Finite production vertex
 Difficult, but first tasts are promi
 - \Rightarrow Difficult, but first tests are promising
- Low energy high current

- $m_{\gamma'} < 50 \,\mathrm{MeV}/c^2$
- \Rightarrow New Accelerator dedicated to "Precision Frontier"
- \Rightarrow Beam Dump Experiments