Axion-induced EDMs in paramagnetic systems

Benjamin M. Roberts

Yevgeny V. Stadnik, Vladimir A. Dzuba, Victor V. Flambaum

Department of Theoretical Physics, University of New South Wales, Sydney, Australia

The Ultra-Light Frontier

Mainz Institute for Theoretical Physics, Johannes Gutenberg University, Mainz, Germany

18 June 2015

B. M. Roberts (UNSW Australia)

Overview:

Axions, ALPs & pseudoscalar fields

- Conventional searches: axion-photon coupling
 - Quadratic (+higher) in coupling

Axion–Gluon Coupling: Linear effects

[Graham, Rajendran, PRD 84, 055013 (2011)]

 Oscillating EDMs in diamagnetic systems: CASPEr [Budker, Graham, Ledbetter, Rajendran, Sushkov, PRX 4, 021030 (2014)]

New linear effects

- Axion/ALP-Gluon, -Fermion, and -Photon
- Oscillating EDMs in paramagnetic systems

Tests of CPT

• Limits on SME parameters

WIMP-electron scattering: atomic ionisation

• Implications for DAMA annual modulation

Axions

Strong CP Problem

- Observed lack of *CP*-violation in QCD ($\theta < 10^{-10}$)
- Resolution: Pseudoscalar particle "Axion" [1]

Axion Condensate

- Classical, oscillating field $a(t) = a_0 \cos(m_a t)$
- Cold dark matter candidate [2]

[1] Peccei, Quinn, Phys. Rev. Lett. 38, 1440 (1977); Weinberg, Phys. Rev. Lett. 40, 223 (1978).

 [2] Preskill, Wise, Wilczek, Phys. Lett. B 120, 127 (1983); Sikivie, Phys. Rev. Lett. 51, 1415 (1983); Dine, Fischler, Phys. Lett. B 120, 137 (1983).

B. M. Roberts (UNSW Australia)

ALP-induced paramagnetic EDMs

Axion–SM Couplings

Anomalous effective couplings to SM particles:

 $\overbrace{\frac{a}{f_a}F^{\mu\nu}\widetilde{F}_{\mu\nu}}^{Photon} \qquad \overbrace{\frac{a}{f_a}G^{\mu\nu}\widetilde{G}_{\mu\nu}}^{Gluon} \qquad \overbrace{\frac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma_5\psi}^{Fermion}$ $a(t) = a_0\cos(m_a t) \qquad \frac{1}{f_a} \approx 2 \times 10^{-20} \text{ eV}^{-1} \left(\frac{m_a}{10^{-4} \text{ eV}}\right)$

Classical Region: $m_a \sim 10^{-6} - 10^{-4} \text{ eV}$ (~MHz - GHz)Anthropic Region: $m_a \sim 10^{-10} - 10^{-8} \text{ eV}$ (~kHz - MHz)

• Saturates DM density: $\Rightarrow a_0/f_a \sim 4 imes 10^{-19}$ (QCD axion)

• (In general, DM ALP, f_a free parameter, $a_0 \sim 1/m_a$)

Searching for Axions "Standard" Searches: Axion-photon coupling

• Good for $\sim f_a < 10^{13} \text{ GeV}$

e.g. : depts.washington.edu/admx/, cast.web.cern.ch/CAST/, alps.desy.de/

B. M. Roberts (UNSW Australia)

ALP-induced paramagnetic EDMs

Emerging Axion Searches:

Schiff Moments and CASPEr

Gluon-coupling: Axion-induced EDMs

- $\theta_{\rm QCD} \rightarrow a/f_a \quad \Rightarrow \quad d_n = 1.2 \times 10^{-16} \, \theta \, e \, {\rm cm}^{[1]}$
- Also produces observable Nuclear Schiff Moments
- Dominated by *a*-induced inter-nucleon force ^[2]
- Linear in $a_0/f_a!$ Good for $f_a > \sim 10^{16}$ GeV

- Precision magnetometry ^[3]
- Solid-state, diamagnetic atoms

FIG. 1. Geometry of the experiment.

- [1] Graham, Rajendran, Phys. Rev. D 84, 055013 (2011); 88, 035023 (2013).
- [2] Stadnik, Flambaum, Phys. Rev. D 89, 043522 (2014).
- [3] Budker, Graham, Ledbetter, Rajendran, Sushkov, Phys. Rev. X 4, 021030 (2014).

B. M. Roberts (UNSW Australia)

Magnetic Quadrupole Moments

 \bullet As for Schiff moments, $\theta_{\rm QCD} \rightarrow {\it a}/{\it f_a} \ \Rightarrow {\sf MQMs}$

Oscillating EDMs

- P & T Violating nuclear moment \Rightarrow EDMs
- Need I > 1/2
- Much larger effect in Paramagnetic Systems

Nuclear Enhancement

- Quadrupole deformation \Rightarrow enhancement (most nuclei!)
- (Schiff moment needs Octopole)

▶ Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. D 90, 096005 (2014).

▶ Roberts, Stadnik, Flambaum, In Preparation

B. M. Roberts (UNSW Australia)

MQM Sensitivity

$$M \approx np \ \mu \ E \ D_A \ \frac{\sin[(2\mu B_e - mc^2)t/\hbar]}{(2\mu B_e - mc^2)/\hbar} \sin(2\mu B_e)$$

• $\mu_N \rightarrow \mu_e \Rightarrow 10^3$

•
$$S
ightarrow D_{
m MQM} \Rightarrow 10^{3\,{
m or}\,4}$$
 (potentially more in special systems)

But:

• Paramagnetic
$$\Rightarrow \tau/\tau = 10^{-6}$$

ALP-Electron Interaction

Alkali atoms:

$$dpprox rac{a_0}{f_a}lpha_0 m_a^2 \cos(m_a t) \sim 10^{-38} \, e\, {
m cm}$$

Stadnik, Flambaum, Phys. Rev. D 89, 043522 (2014); Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. Lett. 113, 081601 (2014); Phys. Rev. D 90, 096005 (2014).

B. M. Roberts (UNSW Australia)

Resonance

- Dysprosium, Radium, Diatomic molecules
- $\bullet\,$ Close opposite-parity levels $\Rightarrow \sim 10^4$ enhancement
- Magnetically drive resonance: $E_a E_b = m_a \Rightarrow$ more?

$$d_{
m EDM}\simeq -2irac{\langle A|e{f r}|B
angle\langle B|\gamma^5|A
angle}{(E_A-E_B+i\Gamma/2)^2-m^2}\,\,m^2\,\,rac{a_0}{f_a}\,\,\cos(m_at)$$

B. M. Roberts (UNSW Australia)

ALP-Electron Interaction

However, exact relation:

$$\langle a|\gamma^5|n\rangle = i\Delta E_{an}\langle a|\Sigma\cdot r|n\rangle + \langle a|2\gamma^5\hat{K}|n\rangle$$

- Main term, on resonance: $\Delta E = m \gg \Gamma$
 - $D_A \sim \frac{a_0 m}{2f_a}$
 - Independent of m_a (for ALP Dark Matter)

• Main term, off resonance:
$$\Delta E, \Gamma \ll m$$

• $D_A \sim -\Delta E \frac{2a_0}{f_a}$

• Other terms:
$$\Delta E' \gg \Gamma, m$$

• $D_A \sim -\frac{m^2}{\Delta E'} \frac{2a_0}{f_a}$

Enhanced by $(m_a/eV)^{-1}$ c.f. alkali \Rightarrow several orders of magnitude

Oscillating EDMs in Paramagnetic Systems

- Axion-Electron dominant mechanism in atoms
- MQM dominant mechanism for solid state (resonance)
- Different parametric dependence

Potential benefits

- Much larger effects than diamagnetics
- ...unpaired spins \Rightarrow higher systematics
- Different dependence on m_a to CAPSEr \Rightarrow Complementary!

[▶] Roberts, Stadnik, Flambaum, In Preparation

Fermion Interaction

Atomic Parity-Violation

▶ Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. D 90, 096005 (2014)

Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. Lett. 113, 081601 (2014)

[1] Colladay, Kostelecký, Phys. Rev. D 58, 116002 (1998).

B. M. Roberts (UNSW Australia)

Atomic Parity & Time-Reversal Violation

Conventional sources

- P-Violating "E1" transition: $E_{\rm PNC}$
 - e-N interaction: Q_W
 - N-N interaction: Anapole Moment
- P, T-Violating Electric Dipole Moments
 - e-N interaction; electron EDM

- Zeldovich, Zh. Eksp. Teor. Fiz. 36, 964 (1959); Bouchiat & Bouchiat, Phys. Lett. B 48, 111 (1974).
- Sandars, Phys. Lett. 14, 194 (1965).
- ▶ Recent Review: Roberts, Dzuba, Flambaum, Annu. Rev. Nucl. Part. Sci. 65, 63 (2015).

B. M. Roberts (UNSW Australia)

ALP-induced paramagnetic EDMs

"Cosmic Field"-induced Parity Violation

$$\langle a|\gamma^5|n\rangle = i\Delta E_{an}\langle a|\Sigma\cdot r|n
angle + \langle a|2\gamma^5\hat{K}|n
angle$$

• $\Sigma \cdot r$: ~ 1/c; No PNC effect; Main EDM effect

Pseudoscalar field

- Static field \Rightarrow no effects
- Oscillating field (e.g. axions, ALPs) \Rightarrow Oscillating PNC
- $E_{\rm PNC} = i (a_0/f_a) m_a \sin(m_a t) K_{\rm PNC}$
- \bullet Atomic structure: ${\it K}_{\rm PNC} \sim 10^7~|{\it e}|~{\rm GeV^{-2}}$

Pseudovector field: $\mathcal{L} = b_{\mu} \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ [1]

•
$$b_0 \Rightarrow$$
 Static and oscillating PNC

•
$$E_{\rm PNC} = i \ b_0 \sin(\omega_b t) \ K_{\rm PNC}$$

Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. Lett. 113, 081601 (2014)
 [1] Colladay, Kostelecký, Phys. Rev. D 58, 116002 (1998).

B. M. Roberts (UNSW Australia)

ALP-induced paramagnetic EDMs

16 / 28

18 June 2015

Tests of CPT: Limiting pseudovector field

Limit on electron-field coupling

• From PNC experiment in Dy ^[1]

$$|b_0^{(e)}| < 7 imes 10^{-15} \,\, {
m GeV}$$

Limit on nucleon-field coupling

• From Cs anapole moment measurement ^[2]

$$|b_0^{(p)}| < 4 imes 10^{-8} \,\, {
m GeV} \qquad |b_0^{(n)}| < 2 imes 10^{-7} \,\, {
m GeV}$$

 Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. Lett. 113, 081601 (2014); Phys. Rev. D 90, 096005 (2014).
 [1] Nguyen, Budker, DeMille, Zolotorev, Phys. Rev. A 56, 3453 (1997).
 [2] Wood, Bennett, Cho, Masterson, Roberts, Tanner, Wieman, Science 275, 1759 (1997).

B. M. Roberts (UNSW Australia)

ALP-induced paramagnetic EDMs

17 / 28

18 June 2015

Fermion Interaction

Lead to limits on several other previously unconstrained parameters

Coefficient	Electron	Proton	Neutron
\tilde{b}_X	$10^{-31}~{ m GeV}$	10^{-33} GeV	$10^{-33} { m GeV}$
\tilde{b}_Y	10^{-31} GeV	10^{-33} GeV	10^{-33} GeV
\tilde{b}_Z	$10^{-29}~{ m GeV}$	10^{-28} GeV	10^{-29} GeV
\tilde{b}_T	10^{-26} GeV	$10^{-7} { m GeV}$	10^{-26} GeV
$\tilde{b}_J^*,~(J=X,Y,Z)$	$10^{-22}~{\rm GeV}$	-	_
\tilde{d}_+	10^{-27} GeV	$10^{-7} { m GeV}$	10^{-27} GeV
\tilde{d}_{-}	10^{-26} GeV	-	$10^{-26} { m GeV}$
\tilde{d}_Q	10^{-26} GeV	10^{-7} GeV	10^{-26} GeV
\tilde{d}_{XY}	10^{-26} GeV		10^{-27} GeV
\tilde{d}_{YZ}	$10^{-26}~{ m GeV}$	-	10^{-26} GeV
\tilde{d}_{ZX}	10^{-26} GeV	-	_
\tilde{d}_X	10^{-22} GeV	10^{-27} GeV	10^{-28} GeV
\tilde{d}_Y	10^{-22} GeV	10^{-27} GeV	10^{-28} GeV
\tilde{d}_Z	$10^{-19}~{\rm GeV}$	-	-
ã	10^{-27} CeV	10^{-7} CeV	10^{-27} GeV
gT	10-26 C-V	10 Gev	10 GeV
g_c	10 Gev	_	10 Gev
g_Q	-	-	-
\tilde{a}_{-}	-	-	-

Table S2 Maximal consitivities for the matter sector

 Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. D 90, 096005 (2014); Phys. Rev. Lett. 113, 081601 (2014)

[1] Kostelecký, Russell, Rev. Mod. Phys. 83, 11 (2011) [Up-to-date: arXiv:0801.0287v8].

B. M. Roberts (UNSW Australia)

Tests of CPT: Fermion MDM

$$\mathcal{L}_{ ext{int.}} = -f^{
u} ar{\psi} \gamma^{\lambda} \gamma^{5} \widetilde{F}_{\lambda
u} \psi$$

CPT-odd background field

• Splits g-factors of fermion/anti-fermion

•
$$[a = (g - 2)/2]$$

$$\delta a = rac{2f^0m}{e}\left(1-rac{\gamma^2\mathbf{v}^2}{(\gamma+1)^2}
ight)$$

Limits on f^0

- Muon: 8 imes 10⁻¹¹ μ_B
- Electron: $2.3 \times 10^{-12} \ \mu_B$

• Proton:
$$4 imes 10^{-9} \ \mu_{E}$$

UNSW

▶ Stadnik, Roberts, Flambaum, Phys. Rev. D 90, 045035 (2014).

Electromagnetic Anomaly

Perturbation to Coulomb interaction

Axion–Magnetic Dipole Interaction

- Oscillating "EDM" for any MDM ^[1]
- Requires phase&frequency locked \vec{E}
- Not observable

Axion-perturbed Coulomb Interaction

- Collective atomic EDMs
- Measured with static \vec{E} ; no reversals
- Significantly smaller than other effects

- [1] Hill, arXiv:1504.01295 (2015).
- ▶ Roberts, Stadnik, Flambaum, In Preparation

B. M. Roberts (UNSW Australia)

DAMA Experiment

• Scintillation experiment; search for annual modulations

B. M. Roberts (UNSW Australia)

ALP-induced paramagnetic EDMs

DAMA annual modulation

"Model Independent" WIMP detection: 9σ DAMA signal

WIMP-Nucleus scattering?

- Null results from XENON, LUX, SuperCDMS, ...
- WIMP-electron scattering? ^[1]

- ▶ DAMA: Bernabei et al., Eur. Phys. J. C 73, 2648 (2013).
- For example: Bernabei *et al.* (DAMA), Phys. Rev. D 77, 023506 (2008); Kopp, Niro, Schwetz, Zupan, Phys. Rev. D 80, 083502 (2009).

B. M. Roberts (UNSW Australia)

Atomic ionisation & DAMA annual modulation

Due to electron scattering?

- Atomic ionisation
- ab initio Relativistic calculations

Preliminary calculations

- Dominated by very low \vec{r} : relativistic + FNS important
- Entirely due to s-states
- Exponential suppression → power due to s-state cusp!

▶ Roberts, Stadnik, Dzuba, Flambaum, Gribakin, Pospelov, Yavin, In Preparation

B. M. Roberts (UNSW Australia)

Atomic ionisation & DAMA annual modulation

Iodine Atomic form-factor: Normal atomic momentum scale

I: (3s) lowq; $\Delta E = 02353$ eV

Atomic ionisation & DAMA annual modulation

Iodine Atomic form-factor: Relevant Momentum scale

B. M. Roberts (UNSW Australia)

 $|\langle \kappa_b | e^{iq \cdot r} | 3s \rangle|^2$

Atomic ionisation & DAMA annual modulation

Iodine Atomic form-factor: Function of energy deposition

2.5e-10Total 2s2e-103s $\sum_{\kappa_b}|\langle\kappa_b|e^{iq\cdot r}|n\kappa\rangle|^2$ 4s5s1.5e-101e-10 5e-110 503003500 100150200250400450500 ΔE (au)

I: Iodine; q = 01000 eV

Atomic ionisation & DAMA annual modulation

Aim:

- Combine high-accuracy numerical results +
- Simple analytic results (w/ scaling factors)
- Present simple Z-dependent model that others can implement

Simple-but accurate-model:

- Important because $d\sigma$ depends on
 - Lorentz structure, DM mass, mediator mass,
 - DM velocity distribution

• Easy to implement once atomic $\sum |\langle f|\hat{V}|i\rangle|^2$ is known

[▶] Roberts, Stadnik, Dzuba, Flambaum, Gribakin, Pospelov, Yavin, In Preparation

Conclusion

Axion–Induced Oscillating EDMs

- New effects, linear in interaction
- Axion-gluon, -fermion, and -photon couplings
- Complementary to existing searches; different parameter space

Tests of CPT

• New limits on SME parameters

DAMA annual modulation

- Electron scattering: s-states, very small $\vec{r} \rightarrow$ simple usable model
- Roberts, Dzuba, Flambaum, Annu. Rev. Nucl. Part. Sci. 65, 63 (2015).
- Stadnik, Flambaum, Phys. Rev. D 89, 043522 (2014).
- Roberts, Stadnik, Dzuba, Flambaum, Leefer, Budker, Phys. Rev. Lett. 113, 081601 (2014); Phys. Rev. D 90, 096005 (2014).
- Roberts, Stadnik, Flambaum, In Preparation.
- Roberts, Stadnik, Dzuba, Flambaum, Pospelov, Yavin, In Preparation.

B. M. Roberts (UNSW Australia)

