Hints for Axion Hunts.

Andreas Ringwald (DESY)

The Ultra-Light Frontier Mainz Institute for Theoretical Physics Mainz, Germany, 15-19 June 2015

Introduction

- Axion and other Nambu-Goldstone bosons arising from spontaneous breakdown of global symmetries are theoretically well-motivated very weakly interacting ultra-light particles
 - light: (approximate) shift symmetry
 - Very weakly coupled: large symmetry breaking scale: $f_a \sim v_h \gg v = 246 \text{ GeV}$

Coefficients determined by specific ultraviolet extension of SM

Introduction

Often, there is more than one global symmetry and therefore more than one Nambu-Goldstone boson

- Global lepton number symmetry: Majoron [Chikashige et al. 78; Gelmini, Roncadelli 80]
- Global family symmetry: Familon

[Wilczek 82; Berezhiani, Khlopov 90]

$$\mathcal{L} \supset -\frac{\alpha_s}{8\pi} \frac{C'_{ig}}{f_{a'_i}} a'_i G^b_{\mu\nu} \tilde{G}^{b,\mu\nu} - \frac{\alpha}{8\pi} \frac{C'_{i\gamma}}{f_{a'_i}} a'_i F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \frac{C'_{a'_i f}}{f_{a'_i}} \partial_\mu a'_i \overline{\psi}_f \gamma^\mu \gamma_5 \psi_f$$

> Particle (field) corresponding to the linear combination

$$\frac{A(x)}{f_A} \equiv \frac{C'_{ig}}{f_{a'_i}} a'_i(x)$$

is called axion: cleans up the strong CP problem

[Peccei,Quinn 77; Weinberg 78; Wilczek 78]

- Mass due to mixing with neutral pion: $m_A \sim m_\pi f_\pi/f_A$

Particle excitations of the fields orthogonal to the axion field are called Axion-Like-Particles (ALPs)

Introduction

Marginal hints for excessive energy losses of stars and excessive transparency of the universe for TeV gamma rays

- Signatures of the axion or an ALP?
- > Hints for terrestrial hunts!

Horizontal Branch (HB) stars may suffer from additional energy losses through axion/ALP produced via Primakoff $\gamma + Ze \rightarrow Ze + a$

- Horizontal Branch (HB) stars may suffer from additional energy losses through axion/ALP produced via Primakoff $\gamma + Ze \rightarrow Ze + a$
- Signature: Increased ratio of # in HB vs. Red Giant Branch (RGB)

[Raffelt 14]

> Observations mildly prefer excessive energy losses

[Ayala et al. 14]

$$g_{a\gamma} \equiv \frac{\alpha C_{a\gamma}}{2\pi f_a} = 0.45^{+0.12}_{-0.16} \times 10^{-10} \text{ GeV}^{-1}$$

 $g_{a\gamma} < 0.66 \times 10^{-10} \text{ GeV}^{-1}$ (95% CL)

Degenerate helium core of Red Giants (RGs) may suffer from additional energy losses through axion/ALP production via Bremsstrahlung:

DESY

Degenerate helium core of Red Giants (RGs) may suffer from additional energy losses through axion/ALP production via Bremsstrahlung:

 $e+Ze \rightarrow Ze+e+a$

> Signature: RGB extended to larger brightness

> Observations mildly prefer excessive energy losses:

Mild hints of anomalous energy loss of White Dwarfs (WDs) could also be explained by same parameter values [Isern et al.]

Axion/ALP Energy Losses of Neutron Star in Cas A?

Neutron star in Cas A:

- Measured surface temperature reveals unusually fast cooling rate
- Hint on extra cooling by axion/ALP due to nucleon bremsstrahlung

$$N + N \rightarrow N + N + a$$

Required coupling to neutron:

$$g_{an} \equiv \frac{C_{an}m_n}{f_a} \sim 4 \times 10^{-10}$$

Alternative explanation: PT of n condens. Andreas Ringwald | Hints for Axion Hunts, The Ultra-Light Frontier, MITP, Mainz, Germany, 15-19 June 2015 | Page 11

[Leinson 14]

Samma ray spectra from distant AGNs should show an energy and redshift dependent exponential attenuation, due to pair production at Extragalactic Background Light (EBL)

Indication of anomalous gamma transparency: attenuation observed by IACT and Fermi-LAT too small [Aharonian et al. 07; de Angelis,Roncadelli et al. 07;...;Horns,Meyer 12;...;Rubtsov,Troitsky 14]

Possible explanation: photon <-> ALP conversions in magnetic fields; conversion very efficient for sub micro-eV mass (strong mixing) [De Angelis et al 07; Simet et al 08; Sanchez-Conde et al 09; Meyer,Horns,Raue 13]

Possible explanation: photon <-> ALP conversions in magnetic fields [De Angelis et al 07; Simet et al 08; Sanchez-Conde et al 09; Meyer, Horns, Raue 13]

Required photon coupling overlaps with preferred region from HBs in GCs

Summary of Astrophysical Hints for Axion/ALPs

Symmetry breaking scale inferred from astrophysical hints:

- HB stars + AGN spectra: $f_a = 2 \times 10^7 \text{ GeV } C_{a\gamma} \left(\frac{5 \times 10^{-11} \text{ GeV}^{-1}}{g_{a\gamma}} \right)$ RGs + WDs: $f_a = 3 \times 10^9 \text{ GeV } C_{ae} \left(\frac{2 \times 10^{-13}}{g_{ae}} \right)$ n star in Cas A: $f_a = 2 \times 10^9 \text{ GeV } C_{an} \left(\frac{4 \times 10^{-10}}{g_{an}} \right)$ 1.
- 2
- 3. n star in Cas A:

Astrophysical hints can be explained by

- 1. ALP with $f_a \sim 10^7 \text{ GeV}, m_a \lesssim 0.1 \ \mu \text{eV}, C_{a\gamma} \sim 1, C_{ae} \sim C_{an} \sim 10^{-2}$
- 2. Axion with $f_A \sim 10^9$ GeV, $C_{An} \sim C_{A\gamma} \sim C_{Ae} \sim 1$ [cf. talk by Javier Redondo] plus

ALP with $f_a \sim 10^7 \text{ GeV}, \ m_a \lesssim 0.1 \ \mu \text{eV}, \ C_{a\gamma} \sim 1, \ C_{ae} \sim C_{an} \ll 10^{-2}$

> ALP from closed string sector of IIB string theory good example for 1.

> 1. and 2. may be checked in upcoming photon regeneration experiments (ALPS II, IAXO, ...)

Closed String ALPs in String Theory

 Massless bosonic spectrum of closed string sector of string theories in 10D contains form fields satisfying gauge symmetries

MASSLESS SPECTRUM OF STRING THEORIES						
THEORY	DIMENSION	SUPERCHARGES	BOSONIC SPECTRUM			
Heterotic	10	16	$g_{\mu u},B_{\mu u},\phi$			
$E_8 \times E_8$			$A^{iar{j}}_{\mu}$ in adjoint representation			
Heterotic	10	16	$g_{\mu u},B_{\mu u},\phi$			
SO(32)			$A^{iar{j}}_\mu$ in adjoint representation			
Type I	10	16	NS-NS	$g_{\mu u},\phi$		
SO(32)			$A^{iar{j}}_{\mu}$ in adjoint representation			
			R-R	$C_{(2)}$		
Type IIB	10	32	NS-NS	NS-NS $g_{\mu\nu}, B_{\mu\nu}, \phi$		
			R-R	$C_{(0)},C_{(2)},C_{(4)}$		
Type IIA	10	32	NS-NS	$g_{\mu u},B_{\mu u},\phi$		
			R-R	$C_{(1)}, C_{(3)}$		

[Quevedo `02]

- 2. Symmetries broken by compactification
- 3. Kaluza-Klein decomposition contains ALPs, with decay constants determined by string or compactification scale [Witten 84; Conlon 06; Svrcek,Witten 06]
- 4. Shift symmetries only violated through non-perturbative effects

Closed String ALPs in IIB String Theory

> KK reduction (expansion in harmonic forms):

$$C_{2} = c^{a}(x)\omega_{a}, \ a = 1, ..., h_{-}^{1,1}$$
$$C_{4} = c_{\alpha}(x)\tilde{\omega}^{\alpha} + ..., \ \alpha = 1, ..., h_{+}^{1,1}$$

Number of ALPs determined by topology of CY orientifold: number of topologically non-equivalent 2-cycles or 4-cycles

Closed String ALPs in IIB String Theory

Realisation brane-world scenario

- Visible sector gauge theory realized by stacks of D7 branes wrapping small 4-cycles
- Gravity propagates in the bulk, leading to a string scale $M_s \sim M_P / \sqrt{\mathcal{V}}$ and a KK scale $M_{\rm KK} \sim M_P / \mathcal{V}^{2/3}$ possibly much much smaller than the Planck scale M_P , at the expense of a large compactification volume $\mathcal{V} \gg 1$

Closed String ALPs in LARGE Volume IIB String Theory

> LVS requires at least four 4-cyles: [Cicoli et al. `11]

- bulk (large volume) cycle, size fixed perturbatively
- dP cycle, size fixed non-perturbatively
- cycle supporting the stack of branes describing the visible sector, size fixed perturbatively
- cycle supporting a stack of branes providing D-terms to stabilise the volume of the visible cycle

LVS has at least two light ALPs: [Cicoli, Goodsell, AR, 1206.0819]

- large volume ALP a'_b with $f_{a'_b} \sim M_{\rm KK} \sim M_P / \mathcal{V}^{2/3}$ small coupling, $C_{\rm bvs} \simeq \mathcal{O} \left(\mathcal{V}^{-2/3} \right) \quad m_{a'_b} \sim m_{3/2} \, {\rm e}^{-c \, n \, \tau_b}$
- visible sector ALP a'_{vs} with

$$f_{a'_{\rm vs}} \sim M_s \sim M_P / \sqrt{\mathcal{V}}$$
$$m_{a'_{\rm vs}} \sim \frac{M_P}{\mathcal{V}} e^{-2\pi n/\alpha}$$
$$C_{a_{\rm vs}\gamma} = \mathcal{O}(1), C_{a_{\rm vs}f} = \mathcal{O}(\alpha)$$

Light-shining-through-a-wall Searches

> Any Light Particle Search (ALPS) at DESY

$$P(a \leftrightarrow \gamma) = 4 \frac{(g_{a\gamma}\omega B)^2}{m_a^4} \sin^2\left(\frac{m_a^2}{4\omega}L_B\right)$$

[Anselm 85;van Bibber et al. 87]

Light-shining-through-a-wall Searches

Currently best limits from LSW: ALPS (DESY) and OSQAR (CERN)

ALPS II: Stages

ALPS IIa

Development Stage

Production-Cavity:

- Power Buildup: $\beta_{PC} = 5000$
- Regeneration-Cavity:
 - Power Buildup: $\beta_{\rm RC} = 40000$

sensitivity
$$\propto \left(\frac{1}{\beta_{PC}\cdot\beta_{RC}}\right)^{\frac{1}{4}}$$

Sensitivity Gain (ALPS-I \rightarrow II): $\times 3.5 \times 14$

[Weinsheimer 15]

ALPS IIa: Optics

Conceptual design

- Stabilize cavities
 - Pound-Drever-Hall
 - Differential-Wavefront-Sensing

- Keep regeneration cavity on resonance with green light
- overlap of cavity modes

ALPs signal: reconverted red photons

[Weinsheimer 15]

ALPS IIa: Optics

[Weinsheimer 15]

ALPS II: Detector

Transition Edge Sensor (TES)

- ▶ $25 \, \mu m \times 25 \, \mu m$ Tungsten-Film
- Microcalorimeter operating at 80 mK

- ▶ Signal O(70 nA) read via SQUID
- ▶ Intrinsic bkg. rate 10⁻⁴ Hz
- Energy resolution below 10%

[Weinsheimer 15]

ALPS II: Detector

Performance

- Setting-up operation done!
- Performance paper published [1502.07878]
- Optimized detection efficiency measurement ongoing

Water circuit

- Heavy contamination lead to Long-Shutdown-1
- Improved (closed cycle) cooling circuit

[Weinsheimer 15]

ALPS IIa: Projected Sensitivity

> Discovery potential for hidden photons in 0.1 meV mass region:

[Horns,Lindner,Lobanov,AR 14]

ALPS IIc

Final Stage

- Magnetic Length:
 - ► (10 + 10) HERA dipoles
 - $BL = 468 \,\mathrm{Tm}$

sensitivity
$$\propto \left(\frac{1}{BL}\right) \cdot \left(\frac{1}{\beta_{PC} \cdot \beta_{RC}}\right)^{\frac{1}{4}}$$

Sensitivity Gain (ALPS-I \rightarrow II): $\times 21$

ALPS IIC: Magnets

[Weinsheimer 15]

Status & Procedure

- First straightened test magnet operated successfully
 - Even with $I > I_{design}$
- Second magnet on test bench
- Successfully operated after 25 y in storage

ALPS IIc: Projected Sensitivity

Crucial test of ALP explanation of excessive HB star energy loss and AGN spectra at VHE

ALPS II: Schedule

Intermezzo at CERN between ALPS IIa and II?

Investigating possibility for intermediate data run at CERN with two LHC dipoles (2016/2017) exploiting ALPS II optics and detector

[Lindner 15]

> Rough estimation with some crucial parameters:

Exp.	Photon flux (1/ s)	Photon E (eV)	B (T)	L (m)	B∙L (Tm)	PB reg.cav.	Sens. (rel.)	Mass reach (eV)
ALPS I	3.5·10 ²¹	2.3	5.0	4.4	22	1	0.0003	0.001
ALPS II	1·10 ²⁴	1.2	5.3	106	468	40,000	1	0.0002
"ALPS III"	3·10 ²⁵	1.2	13	400	5200	100,000	27	0.0001
European XFEL	< 10 ¹⁸	1.104	5.3	106	562	1	0.001	0.01
PW laser	10 ²⁰ 1/ pulse	2.3	10 ⁶	10 ⁻⁵	10	1	0.0003	0.5

[Lindner 14]

"ALPS III" sensitivity

> With a multi - 10 M€ project one could even probe well beyond the IAXO reach.

However:

- It is to be shown first that ALPS II can be realized.
- Magnets as being developed for an LHC energy upgrade are essential.
- *ALPS III" not before 2025.

[Lindner 14]

ALPS II: Collaboration in 2015

ALPS II is a joint effort of

PhD students, postdocs

> DESY:

Reza Hodajerdi, Mikhail Karnevskiy, Ernst-Axel Knabbe, Natali Kuzkova, Axel Lindner, Andreas Ringwald, Jan Põld, Richard Stromhagen, Dieter Trines, Klaus Zenker

Hamburg University:

Noemie Bastidon, Dieter Horns, Aaron Spector

- > AEI Hanover (MPG & Hanover Uni.): Robin Bähre, Benno Willke
- Mainz University: Matthias Schott, Christoph Weinsheimer
- > University of Florida, Gainesville: Guido Müller, David Tanner, N.N., N.N.

with strong support from

> neoLASE, PTB Berlin, NIST (Boulder)

Summary

Strong physics case for axion/ALPs

- Axion and ALPs occur naturally as NG bosons from breaking of well motivated symm.
- Solution of strong CP problem
- Candidates for dark matter
- Explanation of astrophysical hints (energy losses of stars; AGN spectra)
- Large parts in axion and ALPs parameter space can be tackled in the upcoming decade by a number of terrestrial experiments:
 - Light-shining-through-a-wall experiments (ALPS II, ...)
 - Helioscopes (IAXO, ...) cf. talk tomorrow by Javier Redondo
 - Haloscopes (ADMX, CASPeR, ...) cf. talk today by Gray Rybka

Stay tuned!

ALPS IIc

Sensitivity

$$S(g_{a\gamma\gamma}) \propto \frac{1}{BL} \left(\frac{DC}{t}\right)^{rac{1}{8}} \left(rac{1}{DE \cdot eta_{PC} \cdot eta_{RC} \cdot \dot{N}_{prod}}
ight)^{rac{1}{4}}$$

Parameter	Scaling	ALPS-I	ALPS-IIc	Sens. gain
Effective laser power P _{laser}	$g_{a\gamma} \propto P_{\text{laser}}^{-1/4}$	1 kW	150 kW	3.5
Rel. photon number flux n_{γ}	$g_{a\gamma} \propto n_{\gamma}^{-1/4}$	1 (532 nm)	2 (1064 nm)	1.2
Power built up in RC P _{RC}	$g_{a\gamma} \propto P_{reg}^{-1/4}$	1	40,000	14
<i>BL</i> (before& after the wall)	$g_{a\gamma} \propto (BL)^{-1}$	22 Tm	468 Tm	21
Detector efficiency QE	$g_{a\gamma} \propto Q E^{-1/4}$	0.9	0.75	0.96
Detector noise DC	$g_{a\gamma} \propto DC^{1/8}$	$0.0018 { m s}^{-1}$	$0.000001 \ \mathrm{s}^{-1}$	2.6
Combined improvements				3082

Most sensitive until now: CERN Axion Solar Telescope (CAST)

- Superconducting LHC dipole magnet
- X-ray detectors

$$P(a\leftrightarrow\gamma) = 4 \frac{(g_{a\gamma}\omega B)^2}{m_a^4} \sin^2\left(\frac{m_a^2}{4\omega}L_B\right)$$

Proposed successor: International Axion Observatory (IAXO)

- Dedicated superconducting toroidal magnet with much bigger aperture than CAST
- Extensive use of X-ray optics
- Low background X-ray detectors

[Armengaud et al (IAXO CDR) 1401.3233]

Crucial test of the axion explanation of the excessive energy losses of RGs, WDs, n star in Cas A and ALP explanation of AGN spectra at VHE

IAXO may also probe the electron coupling

[Lol IAXO 13]

