Global Network of Optical Magnetometers for Exotic physics

Current Status and Future Perspectives

Szymon Pustelny

Mainz, 17 June 2015

Outline

Introduction

Proof-of-principle experiment

Outlook

Optical magnetometry

Optical magnetometry

Method of detecting magnetic fields via detection of properties of light propagating through magnetooptically active medium

Principles of operation

Magnetic field

Name	$\frac{\text{Element}(s)}{\text{Compound}(s)}$	$\frac{\delta B_f}{\left[\text{fT}/\sqrt{\text{Hz}} \right]}$	$\frac{\delta B_d}{\left[\mathrm{fT}/\sqrt{\mathrm{Hz}} \right]}$
SERF	K	0.05	0.16
μ -SERF	Rb	1	30
NMR-SERF hybrid	pentane-HFB	0.23	3200
NMOR	Rb	0.16	0.3^a
AM NMOR	Rb	3.2	39
M_x	\mathbf{Cs}	5	9
μ -M $_x$	\mathbf{Cs}	20	42
Helium	He	5	50
Hg EDM	Hg	0.07	1.2

Optical magnetometers are the most sensitive magnetic-field sensors

S. Pustelny, GNOME – Current status and future perspectives

Ultra-Light Frontier..., Mainz, 17 June 2015

Exotic spin-coupling detection

OMAGs are ideally suited for detection of non-magnetic spin interactions

Name	Element(s)/	δB_f	δB_d	δE_f	δE_d
	Compound(s)	$\left[fT/\sqrt{Hz} \right]$	$\left[fT/\sqrt{Hz} \right]$	$\left[10^{-20} \text{eV}/\sqrt{\text{Hz}}\right]$	$\left[10^{-20} \text{eV} / \sqrt{\text{Hz}}\right]$
SERF	³ He	0.002	0.75	3×10^{-5}	0.01
μ -SERF	Rb	1	30	1.9	58
NMR-SERF hybrid	pentane-HFB	0.23	3200	0.004	55
NMOR	Rb	0.16	0.3^{a}	0.31	0.58
AM NMOR	Rb	3.2	39	9	110^{a}
M_x	Cs	5	9	7	13
μ -M $_x$	Cs	20	42	29	61
Helium	He	5	50	54	540
Hg EDM	Hg	6×10^{-4b}	320	2×10^{-6}	1

Exotic spin coupling

The spin precession is modified

$$\vec{I}_{ex} \cdot \vec{S} \neq 0 \quad \blacksquare \quad \omega_{\uparrow\downarrow} \neq \omega_{\uparrow\uparrow}$$

Exotic spin-coupling detection

S. Pustelny, GNOME – Current status and future perspectives

Oscillating field and transients

Oscillating exotic spin coupling

Transient exotic spin coupling

Transient spin couplings

Global Network of Optical Magnetometers for Exotic physics (GNOME)

A network of optical magnetometers operating synchronously in distant locations, which by correlating readouts if the magnetometers enables detection of global disturbances of spin dynamics

Experimental signal:

- leakage of the magnetic field into the shield,
- change of laser properties,
- electrical disturbances,
- ...

GNOME

Correlating signals

Ability to suppress local noise (correlations) Spatio-temporal resolution (spatial identification of the coupling source).

GNOME crucial ingredients

Proof-of-principle experiment

Proof-of-principle GNOME

Experimental setup

Consequences:

- primarily sensitive to the magnetic fields,
- unoptimized for the detection of the magnetic field.

Experimental results

Self-compensating magnetometer – Setup

Romalis's self-compensating magnetometer

Crucial elements

mixture of gases

- alkali(s) vapor (potassium or rubidium)
- noble gas (helium or xenon) ~5 amg

Compansating magnetic field

High temperature operation

• temperature – 150°C-200°C

Spin-exchange relaxation free regime

Dynamics of the system

Equation of motion of electron (alkali) polarization:

Equation of motion of helium (neuron) polarization:

$$\frac{\partial \mathbf{P}^{\mathbf{n}}}{\partial t} = \gamma_n (\mathbf{B} + \lambda M^e \mathbf{P}^{\mathbf{e}} + \mathbf{b}^{\mathbf{n}}) \times \mathbf{P}^{\mathbf{n}} + \mathbf{\Omega} \times \mathbf{P}^{\mathbf{n}} + \frac{R_{se}^{ne} (\mathbf{P}^{\mathbf{e}} - \mathbf{P}^{\mathbf{n}}) - R_{tot}^n \mathbf{P}^{\mathbf{n}}}{\mathbf{P}^{\mathbf{n}}}$$

Dynamics of the system

Equations of motion:

$$\frac{\partial \mathbf{P}^{\mathbf{e}}}{\partial t} = \frac{\gamma_{e}}{Q(P^{e})} \left[\mathbf{B} + \lambda M^{n} \mathbf{P}^{\mathbf{n}} + \mathbf{L} + \mathbf{b}^{\mathbf{e}} \right] \times \mathbf{P}^{\mathbf{e}} + \mathbf{\Omega} \times \mathbf{P}^{\mathbf{e}} + (R_{p} \mathbf{s}_{p} + R_{se}^{en} \mathbf{P}^{\mathbf{n}} + R_{m} \mathbf{s}_{m} - R_{tot} \mathbf{P}^{\mathbf{e}}) / Q(P^{e}) \\ \frac{\partial \mathbf{P}^{\mathbf{n}}}{\partial t} = \gamma_{n} \left[\mathbf{B} + \lambda M^{e} \mathbf{P}^{\mathbf{e}} + \mathbf{b}^{\mathbf{n}} \right] \times \mathbf{P}^{\mathbf{n}} + \mathbf{\Omega} \times \mathbf{P}^{\mathbf{n}} + R_{se}^{ne} (\mathbf{P}^{\mathbf{e}} - \mathbf{P}^{\mathbf{n}}) - R_{tot}^{n} \mathbf{P}^{\mathbf{n}}$$

Observations:

- The ability to compensate the polarization of a given species with an external magnetic field...
- but this is possible only for one species,
- Different than magnetic coupling to hypothetical exotic field.

The ability to simulate response of the "magnetometer"

General simulation simplifications:

- Negligence of pump-light action on spin precession (no light shift)
- Negligence of Earth rotation
- Negligence of optical pumping with probe

 $\begin{aligned} \boldsymbol{L} &= \boldsymbol{0} \\ \boldsymbol{\Omega} &= \boldsymbol{0} \end{aligned}$

 $s_m = 0$

Dynamics of the system - Pumping

Simulation parameters:

- Large optical pumping rate
- Relaxation rate of alkali polarization
- Relaxation rate of helium polarization
- No magnetic field

 $R_p = 180 \ 1/s$ $R_{tot} = 400 \ 1/s$ $R_{tot}^n = 10^{-3} \ 1/s$ B = 0

Short time scale

Optical pumping

SEC pumping

S. Pustelny, GNOME – Current status and future perspectives

Ultra-Light Frontier..., Mainz, 17 June 2015

Dynamics of the system – Transverse field

Simulation parameters:

- Old parameters
- Varying magnetic field

$$R_p = 180 \ 1/s \quad R_{tot} = 400 \ 1/s \quad R_{tot}^n = 10^{-3} \ 1/s \\ B = \begin{cases} 0 \text{ for } t \le \frac{t_f}{4} \\ 0, \frac{B_{comp}}{100} \left(t - \frac{t_f}{4}\right) \text{ for } t \le \frac{t_f}{4} \end{cases}$$

Uncompensated field

Dynamics of the system – Transverse field

Simulation parameters:

- Old parameters
- Varying magnetic field

$$R_{p} = 180 \ 1/s \quad R_{tot} = 400 \ 1/s \quad R_{tot}^{n} = 10^{-3} \ 1/s \\ B = \begin{cases} 0 \text{ for } t \leq \frac{t_{f}}{4} \\ 0, \frac{B_{comp}}{100} \left(t - \frac{t_{f}}{4}\right) \text{ for } t \leq \frac{t_{f}}{4}, B_{comp} \end{cases}$$

Magnetic field compensating helium magnetization

S. Pustelny, GNOME – Current status and future perspectives

Dynamics of the system – Transverse field

Remarks:

- The efficiency of self-compensation depends strongly on the compensation field,
- The compensation field depends on the actual experimental parameters.

Dynamics of the system – Transverse exotic

Alkali polarization dynamics

Simulation parameters:

• Old parameters $R_p = 180 \text{ 1/s}$ $R_{tot} = 400 \text{ 1/s}$ $R_{tot}^n = 10^{-3} \text{ 1/s}$ $\boldsymbol{B} = \{0, 0, B_{comp}\}$

Electron exotic-field coupling

$$b^{e} = \{0,0, \frac{B_{comp}}{100} \left(t - \frac{t_{f}}{8}\right) for \ t > t_{f}/8 \}$$

Helium dynamics

$$\frac{\partial \mathbf{P}^{\mathbf{n}}}{\partial t} = \gamma_n (\mathbf{B} + \lambda M^e \mathbf{P}^{\mathbf{e}} + \mathbf{b}^{\mathbf{n}}) \times \mathbf{P}^{\mathbf{n}} + \mathbf{\Omega} \times \mathbf{P}^{\mathbf{n}} + R_{se}^{ne} (\mathbf{P}^{\mathbf{e}} - \mathbf{P}^{\mathbf{n}}) - R_{tot}^n \mathbf{P}^{\mathbf{n}}$$
Nonzero
Zero exotic coupling to neutrons

Simulation parameters:

No neutron spin coupling

$$b^n = \{0, 0, 0\}$$

Dynamics of the system – Transverse exotic

Transverse exotic fields are not compansated

Dynamics of the system – Pulsed response

The ability to shield magnetic fields and to be sensitive to transverse signal

Shy isn't the system ready?

Six months later...

Shy isn't the system ready?

We are ready...

Construction of the GNOME station

Kraków station status update

Experiment is under construction

Global time synchronization

Techniques of time synchronization

- Internet time servers (NTP, PTP, etc.)
- Radio-broadcast clock time

• Fiber systems

- . Satellite
 - GPS,
 - Geostationary satellites
 - TWSTFT

 $\begin{array}{ll} \textbf{Pros \& Cons}\\ \textbf{Cheap} & \delta t > 10 \ \text{ms} \end{array}$

Uncontrollable fluctuations of propagation time Limited reception range $\delta t \sim 1 \text{ ms}$

Absolutely highest precision $\delta t < 1 \text{ ps}$

Limited applicability

 $\delta t < 100 \text{ ns}$ Requires Global construction of available dedicated equipment

S. Pustelny, GNOME – Current status and future perspectives

Global time synchronization

System parameters:

- 4 analog channels
 - Time precision: <1 μs
 - Sampling rate: 1 1000 S/s
 - Resolution: 16 bits
 - Input ranges: ±1.25 V, ±2.5 V, ±5 V, ±10 V
- Additional sensors (50 S/s)
 - Temperature
 - Magnetic field (GMR)
- Communication:
 - USB
 - Internal memory (20 h data)

Global time synchronization

GNOME crucial ingredients

The ability to compare different devices and identify signals

Outlook for future GNOME collaboration

Core collaboration:

- D. Budker (Mainz, Germany/Berkeley, USA)
- D. F. Jackson Kimball (California State University East Bay, USA)
- S. Pustelny (Jagiellonian University, Poland)

People who expressed interest:

- M. Romalis (Princeton, USA),
- Z.-T. Lu (Hefei, China),
- P. Firlinger (University Cluster Munchen, Germany),
- Y. Semertzidis (Institute for Basic Science, Korea)
- S. Rangwala (Raman Research Institute, India)
- B. Heckel (U. Seattle, USA)
- M. Larsen (Northrop Grumman, USA)
- I. Novikova (William and Mary Collage, USA)
- J. Stalnaker (Oberlin Collage, USA),
- R. Folman (Ben-Gurion University, Israel)

Other ideas:

- A. Derevianko (U. Nevada, USA)
- M. Pospelov (Perimiter Institute, Canada)
 Clocks
- H. Muller (Berkeley, USA)
- P. Hamilton (Los Angeles, USA)

Atomic interferometers

Outlook

Development of data processing techniques

Development of data exchange protocols

Identification of theoretical problems that can be address with the GNOME

S. Pustelny, GNOME – Current status and future perspectives

Acknowledgements

Ministry of Science and Higher Education

The National Centre for Research and Development

What the community things about us?

Even if it is true... IT MAY STILL BE VERY INTERESTING