Nuclear spin precession in ultra low fields a probe for physics beyond the standard model

Lutz Trahms

Physikalisch-Technische Bundesanstalt

- 1. Low magnetic fields and what they are good for
- 2. Probing the low energy range by nuclear spin precession
- 3. Searching Axions

1. Low magnetic fields and what they are good for

- 2. Probing the low energy range by nuclear spin precession
- 3. Searching Axions

Berlin Magnetically Shielded Room - 2

- Passive magnetic shielding 7-layers of mu-metal
- One eddy-current layer
- Active shielding coil system (feedback control)
- Shielding performance @ 0.1Hz
 Passive shielding: 2.10⁵
 With active shielding: 2.10⁷

BMSR-2 – a walkable room $3 \times 3 \times 3 \text{ m}^3$

Berlin Magnetically Shielded Room - 2

Berlin Magnetically Shielded Room - 2

Residual static field < 200 pT

Shielding factor vs. frequency

PB

Superconducting Quantum Interference Device

Low magnetic fields

Noise spectrum of the SQUIDs in the 304 channel device

D. Drung High-performance DC SQUID read-out electronics Physica C 368 (2002) 134-140

Applications :MCG

Magnetocardiography

- more information content
- reduced uncertainty
- better reconstruction of current density

Brockmeier et al. (1997) J Cardiovasc Electrophysiol

Applications: MEG

Multichannel SQUID device

Brain's magnetic response after auditory simulation

Isocontour plot of the evoked magnetic field 90 ms after stimulation

Salajegheh et al (2004) Neuroimage

Magnetoencephalography

Localization of the current source in the brain

Applications: MNG

Magnetoneurogram

Propagation of the action potential in the tibial nerve

Patient with a conduction block in the right leg

Functional localization of the block

Mackert et al (1998) Electroenceph Clin Neurophysiol

Magnetic nanoparticles for cancer therapy

A magnet focusses the particles in the tumor Injection of magnetic nanoparticles carrying a therapeutic drug Tumor

What is the biodistribution of the MNP?

Ultralight Frontier Workshop

Applications: MNP

Magnetic field distribution reflects two sources

Source reconstruction is quantitative, but spatial resolution is limited

Wiekhorst et al (2012) Pharmaceut Res

¹H NMR: Relaxation in water revisited

1. Low magnetic fields and what they are good for

2. Probing the low energy range by nuclear spin precession

3. Searching Axions

Helmholtz-Coils inside BMSR-2

 $B_0 = \sim 1 \mu T$ Homogeneity across sample volume : $\Delta B_0 = \sim 100 \text{ pT}$

 $B_{\rm res} = \sim 200 \text{ pT}$ Homogeneity across sample volume : $\Delta B_{\rm res} = \sim 10 \text{ pT}$

3D Helmholtz-Coils inside BMSR-2

Generation of nuclear magnetization

Hyperpolarized ³He and ¹²⁹Xe by optical pumping (10%-30%)

W. Kilian

Nuclear spin precession

Nuclear spin precession

Nuclear spin precession

PB

Example: ³He spin

Transverse relaxation rate $\frac{1}{T_2^*} = \Gamma_{\text{Grad}} + \Gamma_{\text{intr}}$

$$\Gamma_{\text{grad}} = \frac{4R^4\gamma^2}{175D} \left(\left| \boldsymbol{\nabla} B_y \right|^2 + \left| \boldsymbol{\nabla} B_z \right|^2 + 2 \left| \boldsymbol{\nabla} B_x \right|^2 \right)$$

Low fields \implies small gradients \implies long T_2^*

Cates et al (1988) Phys Rev A

Ultralight Frontier Workshop

Limit of frequency resolution

Theory: Cramor Bao low

Cramer-Rao lower bound for a decaying signal in the presence of white noise

$$\sigma_{v} \geq \frac{\sqrt{3}}{\pi \cdot SNR \cdot \sqrt{v_{BW} \cdot T^{3}}} \cdot \sqrt{C(T, T_{2}^{*})}$$

$$T_{2}^{*} = 100 \text{ h}$$

$$v_{BW} = 0.3 \text{ Hz}$$

$$\text{SNR} = 100$$

$$C(T, T_{2}^{*}) \sim 1$$

$$\sigma \sim 5 \times 10^{-11} \text{ Hz}$$

$$\Delta E \sim 2 \times 10^{-25} \text{ eV}$$

Slow field drifts spoil the resolution

Increase frequency stability by:

Two gas species in one bulb, e.g. HeXe comagnetometer weighted frequency difference is independed of B₀ drifts

$$\Delta \omega = \omega_{He} - \frac{\gamma_{He}}{\gamma_{Xe}} \omega_{Xe} = 0$$

gas/SQUID comagnetometer: measure B₀ drift with an independent SQUID and build a B₀ locked loop (i.e. B₀LL) or use results for offline correction

- 1. Low magnetic fields and what they are good for
- 2. Probing the low energy range by nuclear spin precession
- 3. Searching Axions

Axion like particles (ALPs):

- act on the nucleus like an alternating magnetic field *
- modulation of the precession frequency
- Unknown frequency $v_{ALP} \sim mass m_{ALP}$
- Axion coherence time $10^{-6}/v_{ALP}$

Introducing: Axion-o-meter

based on frequency change of free precessing noble gas nuclei

Axion search

P. Graham and S. Rajendran, PRD 2011, 2013

Frequency modulation

$$\omega_{\rm L} = \gamma \, {\rm B} \implies \omega(t) = \omega_{\rm L} + I \, \sin(\omega_{\rm ALP} t)$$

Signal measured by the SQUID:

$$B_{SQUID}(t) = B_{He}^* \sin(\omega_L + I \sin(\omega_{ALP} t))^* t$$

with modulation index
$$I = \frac{\gamma * A_{ALP}}{\omega_{ALP}}$$

Sinusodial change of $B_0 \implies frequency \mod d$

results in sidebands at $\omega_{\rm L} \pm \omega_{\rm ALP}$:

The amplitude of the side band is given by the Bessel function

$$J_n(I) = \sum_{s=1}^{\infty} \frac{(-1)^s}{s!(n+s)!} \left(\frac{I}{s}\right)^{n+2s} = \frac{I^n}{2^n n!} - \frac{I^{n+2}}{2^{n+2}(n+1)!} + \dots$$

Б

Axion search : Demo

Demonstration of ALP detection principle

Feed a sinusodial current to a second Helmholz coil to produce a modulation field

Axion search : Demo

Apply a modulation by HH coil: $B_{"ALP"} = 1 nT$ $v_{"ALP"} = 1.5 Hz$

Experimental result: $B_{HE} = 12.6 \text{ fT}$ $B_{SB} = 0.145 \text{ fT}$ Samples = 166586 (duration 11 min, v_s =250 Hz)

Calculated result using $\gamma_{He} = 32.434 \text{ Hz}/\mu\text{T}$:

$$B_{ALP''} \approx v_{ALP''} * 2 * B_{SB} / (\gamma * B_{He})$$

 $B_{ALP''} = 1 nT$

Noise spectrum (amplitude density): $\sqrt{\mathsf{Hz}}$ 100000 fT/√Hz v_{L} 10000 Ē mag. flux density $\, \sqrt{\mathsf{S}_{\mathsf{B}}}$, $v_{I} + v_{mod}$ 1000 $v_{l} - v_{mod}$ =34.15Hz =31.15Hz 100 10 frequency vAmplitude peak spectrum: peak amplitude [fT] $B_{s_{R}} = 0.145 \text{ fT}$ B / fT $v_{ALP} = v_{L} - v_{SB}$ nagn. flux 0.1 Noise floor \approx 8 aT 0.05 29.5 30.5 30 31 31.5 32 Frequency1 [Hz] frequency v/Hz

Limit of detection

Amplitude peak spectrum:

Noise floor (rms) = 7.3 aT ± 3.9 aT(k=1) Limit of detection for one peak ~ 20 aT

Axion search

Limit of detection: Contourplot pseudo magnetic field B_{ALP} / fT

Relation between axion wind coupling g_{aNN} and $B_{ALP^{"}}$:

$$g_{aNN} = \frac{\gamma_{He}}{2\nu m_a a} B_{"ALP"}$$

$$g_{aNN} = 3.1 \times 10^7 \left(\frac{B_{"ALP"}}{T}\right) \text{GeV}^{-1}$$

$$v_{ALP}$$
=0.01 Hz : $B_{ALP} = 100 \text{ aT}$
 $g_{aNN} = 3.1 \text{ x } 10^{-9} \text{ GeV}^{-1}$

$$v_{ALP}$$
=10 Hz : $B_{ALP''} = 100 \text{ fT}$
 $g_{aNN} = 3.1 \times 10^{-6} \text{ GeV}^{-1}$

P. Graham

Noise floor depends on number of samples N:

How long should we measure? \rightarrow Axion coherence time? \rightarrow earth rotation?

Conclusion

- Nuclear spin precession of noble gases in ultra low fields have the potential to resolve energies down to 10⁻²⁵ eV (but we are still far from that)
- Oscillating ALP fields generate two sidebands of the Larmor peak
- The two sidebands have the same amplitude and a well defined frequency relation (how can we make more use of this?)
- ALPs of masses between 0.01 Hz ... 10 Hz are detectable, if their coupling corresponds to a magnetic field between 0.1 fT ... 100 fT, i.e. 3 x 10⁻⁹ GeV⁻¹ ... 3 x 10⁻⁶ GeV⁻¹
- Artefacts are identified by the presence of an additional peak at the modulation frequency $_{\text{ALP}}$ "

Acknowledgement

Thanks to:

Hans-Helge Albrecht Martin Burghoff Isaak Fan Wolfgang Kilian Silvia Knappe-Grüneberg Allard Schnabel Frank Seifert Detlef Stollfuß Jens Voigt

MITP:

D. Budker S. Rajendran P. Graham DFG Priority Program SPP 1491

