# Magnetic Resonance with Single Nuclear-Spin Sensitivity



#### **Alex Sushkov**





MRI scanner















magnetic force microscopy (MFM) image of hard drive surface



topological spin texture in helical magnet Fe<sub>0.5</sub>Co<sub>0.5</sub>Si [Nature 465, 901 (2010)]

#### Magnetic sensors

sensitivity

resolution



## Cantilever RF field Laser Interferometer Magnetic Tip Resonant slice

## number of detectable magnetic moments (spins)





Phys.Rev.Lett. 12, 159 (1964)



#### The challenge: detecting a single proton spin

the ultimate limit of magnetization sensitivity









#### **Outline**

- 1. The NV color center in diamond: introduction and applications
- 2. Magnetic sensing with an NV center: the tools
- 3. NMR experiments with liquid hydrocarbons: detecting 10<sup>4</sup> nuclear spins

4. NMR spectroscopy of single protein molecules: detecting 400 nuclear spins

5. NMR with single nuclear spin sensitivity



#### 6. Outlook

## Nitrogen-vacancy (NV) centers in diamond



Nitrogen impurity next to a vacancy inside the diamond lattice

behaves like a single atom trapped inside the transparent diamond crystal

#### Making NV centers in diamond



- 1. "electronic-grade" diamond crystal
- 2. nitrogen ion implantation
- 3. anneal at 800 C



behaves like a single atom trapped inside the transparent diamond crystal



1. the relevant levels of the NV center are within diamond bandgap, an electric-dipole transition



- 1. the relevant levels of the NV center are within diamond bandgap, an electric-dipole transition
- 2. ground-state electron spin S=1













![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_1.jpeg)

#### Experimental apparatus

![](_page_22_Figure_1.jpeg)

#### Applications of NV centers

![](_page_23_Figure_1.jpeg)

*Physics Today* **67**, 38 (2014) *Scientific American* **297**, 84 (2007)

## Outline

- 1. The NV color center in diamond: introduction and applications
- 2. Magnetic sensing with an NV center: the tools
- NMR experiments with liquid hydrocarbons: detecting 10<sup>4</sup> nuclear spins

4. NMR spectroscopy of single protein molecules: detecting 400 nuclear spins

5. NMR with single nuclear spin sensitivity

![](_page_24_Picture_6.jpeg)

#### 6. Outlook

#### NV-based magnetic sensing schemes

![](_page_25_Figure_1.jpeg)

fast-oscillating fields (>GHz) → NV population transfer (incoherent)

![](_page_25_Figure_3.jpeg)

all-optical magnetic detection of single-atom Gd spins at room temperature

Alex Sushkov, Nick Chisholm, Igor Lovchinsky, et al., Nano Lett. 14, 6443 (2014)

probing magnetic Johnson noise at the nanometer scale, electron ballistic transport

Shimon Kolkowitz, Arthur Safira, et al., *Science,* in press

#### NV-based magnetic sensing schemes

![](_page_26_Figure_1.jpeg)

- fast-oscillating fields (>GHz)  $\rightarrow$  NV population transfer (incoherent)
- radiofrequency fields (kHz 100 MHz) → NV echo magnetometry (coherent)

![](_page_26_Figure_4.jpeg)

#### NV spin echo magnetic sensing

![](_page_27_Figure_1.jpeg)

#### NV spin echo magnetic sensing

![](_page_28_Figure_1.jpeg)

NV CPMG (Carr-Purcell-Meiboom-Gill) magnetic sensing

![](_page_29_Figure_1.jpeg)

- robust against pulse errors
- longer NV T<sub>2</sub> due to dynamical decoupling from environment
- spectral selectivity by varying free evolution interval τ

## Outline

- 1. The NV color center in diamond: introduction and applications
- 2. Magnetic sensing with an NV center: the tools
- 3. NMR experiments with liquid hydrocarbons: detecting 10<sup>4</sup> nuclear spins

4. NMR spectroscopy of single protein molecules: detecting 400 nuclear spins

5. NMR with single nuclear spin sensitivity

![](_page_30_Picture_6.jpeg)

#### 6. Outlook

#### An NV-based NMR experiment

![](_page_31_Figure_1.jpeg)

measure variance of nuclear magnetic field:  $\langle B_n^2 \rangle$ 

#### First NMR experiments: protons in immersion oil

![](_page_32_Figure_1.jpeg)

#### NV depth extracted from proton peak magnitude

S. DeVience, L.Pham, I. Lovchinsky, et al., *Nature Nano*, DOI: 10.1038 (2015)

H. Mamin, et al., *Science* **339**, 557 (2013) T. Staudacher et al., *Science* **339**, 561 (2013)

## Outline

- 1. The NV color center in diamond: introduction and applications
- 2. Magnetic sensing with an NV center: the tools
- NMR experiments with liquid hydrocarbons: detecting 10<sup>4</sup> nuclear spins

4. NMR spectroscopy of single protein molecules: detecting 400 nuclear spins

5. NMR with single nuclear spin sensitivity

![](_page_33_Picture_6.jpeg)

![](_page_33_Picture_7.jpeg)

6. Outlook

#### Experimental sensitivity parameters

![](_page_34_Figure_1.jpeg)

signal: 
$$\langle B_n^2 \rangle \approx \mu_n^2/r^6$$
  $\blacktriangleleft$ ------ closer is better  
NV spin coherence time:  $2\tau \approx T_2$   $\blacktriangleleft$ ------ longer  $T_2$  is better  
NV spin readout fidelity  $\blacktriangleleft$ ------- higher fidelity is better

![](_page_35_Figure_0.jpeg)

Igor Lovchinsky, Alex Sushkov, Elana Urbach, Nathalie de Leon, et al. manuscript in preparation

#### NV spin readout

![](_page_36_Figure_1.jpeg)

### Improving NV spin readout using quantum logic

![](_page_37_Figure_1.jpeg)

#### Improving NV spin readout using quantum logic

![](_page_38_Figure_1.jpeg)

## Single ubiquitin proteins

![](_page_39_Figure_1.jpeg)

AFM of a clean diamond surface:

![](_page_39_Picture_3.jpeg)

ubiquitin protein, enriched with  ${}^{13}C$  (I=1/2) and  ${}^{2}H$  (I=1)

![](_page_39_Picture_5.jpeg)

AFM of a diamond surface with attached proteins:

![](_page_39_Figure_7.jpeg)

#### NMR spectroscopy on single ubiquitin proteins

![](_page_40_Figure_1.jpeg)

ubiquitin protein, enriched with  ${}^{13}C$  (I=1/2) and  ${}^{2}H$  (I=1)

![](_page_40_Figure_3.jpeg)

 <sup>13</sup>C linewidth consistent with dipolar broadening

• <sup>2</sup>H linewidth consistent with quadrupolar shifts  $\rightarrow$  chemical environment

#### NMR with ≈ 400 nuclear spins in a single protein molecule

Igor Lovchinsky, A.S., Elana Urbach, Nathalie de Leon, et al. manuscript in preparation

## Outline

- 1. The NV color center in diamond: introduction and applications
- 2. Magnetic sensing with an NV center: the tools
- NMR experiments with liquid hydrocarbons: detecting 10<sup>4</sup> nuclear spins

4. NMR spectroscopy of single protein molecules: detecting 400 nuclear spins

5. NMR with single nuclear spin sensitivity

![](_page_41_Picture_6.jpeg)

#### Detecting single nuclear spins?

![](_page_42_Figure_1.jpeg)

#### surface nuclear spin $\rightarrow$ NV center $\rightarrow$ optical readout

#### **Diamond surface electron spins**

![](_page_43_Figure_1.jpeg)

dipole field due to single electron spin:

$$B_e \approx \frac{\mu_e}{r^3}$$

#### surface electron spin $\rightarrow$ NV center $\rightarrow$ optical readout

M. Schaffry et al., *Phys. Rev. Lett.* **111**, 207210 (2011)

#### Idea: reporter-assisted nuclear spin sensing

![](_page_44_Figure_1.jpeg)

surface nuclear spin  $\rightarrow$  reporter electron spin  $\rightarrow$  NV center  $\rightarrow$  optical readout

![](_page_44_Picture_3.jpeg)

#### Detection of diamond surface electron spins

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Figure_3.jpeg)

#### Detection of diamond surface electron spins

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_2.jpeg)

M. Grinolds et al., Nature Nano. **9**, 279(2014)

#### Detection of diamond surface electron spins

![](_page_47_Figure_1.jpeg)

#### Imaging of diamond surface electron spins

<u>idea</u>:

$$B_e = \frac{g\mu_B}{r^3} \left[ \boldsymbol{S} - 3 \, \frac{(\boldsymbol{S} \cdot \boldsymbol{r})\boldsymbol{r}}{r^2} \right]$$

depends on angle between static magnetic field and r

DEER measurements at several different directions of static magnetic field

determine locations of surface electron spins with nanometer uncertainty

![](_page_48_Picture_7.jpeg)

![](_page_48_Figure_8.jpeg)

Alex Sushkov, Igor Lovchinsky, et al., *Phys. Rev. Lett.* **113**, 197601 (2014)

#### Manipulation of diamond surface electron spins

![](_page_49_Figure_1.jpeg)

#### **Coherent control of diamond surface electron spins**

![](_page_50_Figure_1.jpeg)

surface electron spin state

## Using surface electron spins as magnetic reporters to detect proton spins

![](_page_51_Figure_1.jpeg)

# Coherent coupling between surface electron spins and proton spins

![](_page_52_Figure_1.jpeg)

# Coherent coupling between surface electron spins and<sup>4</sup> proton spins

![](_page_53_Figure_1.jpeg)

![](_page_53_Picture_2.jpeg)

Larmor + hyperfine  $H_n = g_n \mu_n I_z B_z^{(0)} + a I_z S_z + b I_x S_z$ 

![](_page_53_Figure_4.jpeg)

#### Localization of individual coherently-coupled protons

![](_page_54_Figure_1.jpeg)

detection and localization of the surface proton spins relative to the reporter spin

Alex Sushkov, Igor Lovchinsky, et al., *Phys. Rev. Lett.* **113**, 197601 (2014)

![](_page_55_Figure_1.jpeg)

#### Outlook

#### single-molecule magnetic tomography

(coherent quantum dynamics between nuclear spins in the molecule)

![](_page_56_Picture_3.jpeg)

#### [Phys. Rev. X 5, 011001 (2015)]

#### nanoscale magnetic fields near surfaces

![](_page_56_Figure_6.jpeg)

[Nature Nano. 9, 279 (2014)] [Nature Phys. 9, 215 (2013)] [Nature Nano. 7, 320 (2012)] [Phys. Rev. Appl. 2, 054014 (2014)]

#### **Outlook:** addressable interacting spin systems

interplay between dynamics, interactions, and disorder in dipolar spin systems (many-body localization?)

![](_page_57_Picture_2.jpeg)

[*Phys. Rev. Lett.* **113**, 147204 (2014)] [*Phys. Rev. Lett.* **113**, 243002 (2014)] quantum simulation?

![](_page_57_Figure_5.jpeg)

[Nature Phys 9, 168 (2013)]

#### Outlook: the nature of dark matter?

idea: solid-state spin qubits for an axion dark matter search

![](_page_58_Figure_2.jpeg)

[D. Budker, P.Graham, et al., Phys. Rev. X 4, 021030 (2014)]

#### Summary

NMR experiments with liquid hydrocarbons: detecting 10<sup>4</sup> nuclear spins

NMR spectroscopy of single protein molecules: detecting 400 nuclear spins

NMR with single nuclear spin sensitivity

![](_page_59_Picture_4.jpeg)

![](_page_59_Picture_5.jpeg)

![](_page_59_Picture_6.jpeg)

![](_page_59_Picture_7.jpeg)

## Thanks!

Nathalie de Leon Ruffin Evans Kristiaan de Greve Shimon Kolkowitz Arthur Safira Quirin Unterreithmeier Georg Kucsko Peter Maurer Alp Sipahigil Sasha Zibrov Jeff Thompson Thibault Peyronel Crystal Senko Mike Goldman

Igor Lovchinsky Elana Urbach Nick Chisholm My Linh Pham Stephen DeVience Chinmay Belthangady Emma Rosenfeld Sonwoon Choi Eric Kessler Peter Komar Norman Yao Steve Bennett Brendan Shields Yiwen Chu Marsela Jorgolli Peggy Lo Minako Kubo Alex High Rob Devlin Alan Dibos Tianyang Ye Mark Polking Alex Shalek Ashok Ajoy Luca Marseglia Saha Kasturi David Hunger Alexei Akimov

![](_page_60_Picture_4.jpeg)

Misha Lukin

![](_page_60_Picture_6.jpeg)

Hongkun Park

![](_page_60_Picture_8.jpeg)

**Ron Walsworth** 

![](_page_60_Picture_10.jpeg)

Paola Cappellaro

![](_page_60_Picture_12.jpeg)

**Amir Yacoby**