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What do we know about DM?

Dark Matter halo Velocity distribution
=
0 300 650
v, km/s
Energy density Galactic orbital motion
Oy ~0.3GeV/iem’ v, ~ 300km/s

Andrei Derevianko - U. Nevada-Reno



Candidates: from WIMPs to MACHOs
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DM as a gas of stable extended objects

® Self-interacting quantum fields

® Networks of topological defects (light quantum fields = monopoles,
vortices, domain walls), solitons, Q-balls

® Non-gravitational (dissipative) interactions in the dark sector

lllustration: ferromagnets

magnetic domains

Curie point in ferromagnetic phase transitions
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DM halo="preferred” reference frame
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Macroscopic DM objects

Are there correlations with galactic velocity of moving through DM halo!?
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Are the clouds “natural’?
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“Gas of topological defects” DM model

o[

A2
d

>

Defect size and
particle mass

1 (1 A>
Prom E X e > d Energy density
T 1 1
ot pov 1/ % d?*x v, Time b/w “collisions”
m!kl‘.h
M. Pospelov d
T~ V_ Interaction time



Atomic clocks - amazing listening
devices

® Most precise instruments ever built

® Modern nuclear/atomic clocks aim at 19 significant figures of
accuracy

® Fraction of a second over the age of the Universe

® Best limits on modern-epoch drift of fundamental constants
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Clocks

quantum oscillator:

phase = 0, (1) = J(: w,dt’ —> time= ¢,()/ o,

withTDM o) = Jg(a)o +ow(t’))dt’ I::> clock speeds up/slows down

f A
AQrpy (t) = J_OOSa)(t’)dt’ IZ:> AtTDM (t) — ¢TDM (t)

@,
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Basic idea

Lump of dark matter ~300 km/s

\

v AR atomic frequencies are shifted
— / by the lump

“New physics” interaction

>

time reading - linear bias

»
absolute time
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Dark matter signature

>

difference in clock readings

»
time

l/vg

Monitor time difference b/w two spatially-separated clocks
= persistent clock discrepancy for over time /v,

GPS aperture =50,000 km => [/v,~ 150 sec

Details in Derevianko and Pospelov, Nature Phys. 10,933 (2014)

Andrei Derevianko - U. Nevada-Reno



Tomography of a monopole

>

clock phase
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Dark-matter portal

DM field electrons  protons EM field

Compare to the QED Lagrangian

L

TD lump pulls on the rest masses of electrons, quarks and EM coupling

Energies and frequencies are modulated as TD sweeps through
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Variation of fundamental constants

a)clock a, m‘l ’me 560(1): 2 K 5X(t)=K 50((2‘)_'_.“
Aoep m, w, ¢ “ o

X=fnd consts

Compare ratio of frequencies of two clocks with different sensitivities
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Variation of fundamental constants

Drift vs transients

Transient

Slow drift (e.g., NIST Al/Hg ion clocks)

d > 300km/s x 1year =10'""km
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Networks of clocks

Global Positioning System

“*Each GPS satellite has four clocks (32 satellites)
“*Data are sampled every second
“*Vast terrestrial network of monitoring stations (H masers)

Trans-european clock network

94 X Amsterdam oo .
= “*Optical fiber connects state-of-the art clocks
<N 653km —
BBBBBBBBB N **Elements were demonstrated
v N . .
I e (PTB-MPI Munich 920 km link) (Predehl et al, Science (2012))

.
LENS

TAI dissemination network between national labs
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Signal-to-noise ratio (thin wall)
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Projected limits (thin domain walls)
(if the TDM signature is not observed)
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GPS as a dark matter detector { /
SN
® GPS = max 32 satellites with Rb/Cs clocks

® 50,000 km aperture - largest human-built DM detector - no
extra $$%

® None of conventional effects would sweep at 300 km/s
(except for solar flares)

® Other navigation systems: Glonass/Galileo/BeiDou

® Extensive terrestrial clock network on receiving stations
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GPS clocks

® Presently a mix of ll-generation block sats (IIAIIR,IIRM,IIF)

® |2
® Fac
® On

nr orbits
n satellite has 4 clocks (depends on individual satellite)

y a single clock is operational at a time on a single satellite

(misbehaving clocks are swapped, swaps are documented)
® Rb and Cs clocks (20+ Rb, 5 Cs)
® The broadcast microwave signals are tied to the clock output
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Data acquisition

Downlink microwave signals:
LI = 1572.42 MHz

Measure the carrier phase of the broadcast signal
(much more precise than the navigational message)

Collect data from many receivers around the world

Phases are combined => clock,orbit, position solutions

Errors: time ~ 0.Ins and positions ~ | mm

L2 = 1227.6 MHz
L5 = 1176.45 MHz

Wi
-

Figure 1 Pemnanent IGS station at Slide Mountain,
Nevada, USA.



Representative GNSS ground stations
(with 10 years of |-sec carrier phase data)
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Quartz oscillators (black)
Atomic clocks: Hydrogen Rubidium
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Signature

>

difference in clock readings

»
time

l/vg

Monitor time difference b/w two spatially-separated clocks
= persistent clock discrepancy for over time /v,

GPS aperture =50,000 km => [/v,~ 150 sec
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GPS data
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400 signal - but this occurs for all pairs with GO02 satellite -
=> technical glitch with the clock on the G02 satellite ?
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Data analysis

At the end of the day | would like to be able to say:
a certain signature fits the data with such-and-such probability.
Also we need to estimate parameters for a given signature
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Bayesian data analysis

P(M,I1)xP(DIM,,I)
P(D,I)

P(M.\D,I) =

Mo =“No DM signal”
Mi ="“Thin domain wall”
Hypoteses: . M, =“Monopole”
Mx="..."
. . | P(DIM,,I)
Relative odds (assuming equal priors): O,, =
? P(DIM,.I)

B ——

Complex multi-parameter models are “punished” automatically: built-in Occam’s razor
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_P(DIM,.I

" P(DIM,,I)

——
\—/

How to assign likelihoods?
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Clocks are noisy and
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non-stationary

Deterministic:
Time offset
Frequency offset
Frequency drift

Stochastic:
White noise PM
Flicker noise PM
White noise FM
Flicker noise FM
Random walk FM



Allan variances as noise characteristics

| e ||A (CFS)
| —1IA (RFS)
s —IIR (RFS)
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Time projection error o.(7)= ﬁMod Gy(T)

0.(30s)~3.5%x107(Cs-IIF)—- 5.2 x 107 (Rb-IIRM) ns
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Plan

® About 10 years of 30 second solutions are publicly available
(too bad they use “compound” reference clock (US/EU) )

® Regenerate GPS clock solutions with a single reference clock
(massive computational task but doable:“free” computer
time)

® Characterize likelihoods for clocks (non-stationarity/
covariances)

® X-correlate clocks
® Stage |:30s IGS satellite clock solutions

® Stage ll: high-rate |s data from ground station/satellite clocks
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»

difference in clock readings

Listening to dark matter with a
network of atomic clocks
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® Differential signals last for ~30 s for transcontinental networks, ~200 s for GPS
® X-correlations between clocks are important as

once a year short-duration events can be dismissed as outliers
® Other possibilities: networks of magnetometers (Budker et al), LIGO, EPV,...

Details in Derevianko and Pospelov, Nature Phys. 10,933 (2014)






